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Preface

This short book is based on lecture notes of a course on statistical physics and

thermodynamics, which is oriented, to a certain extent, toward electrical engi-

neering students. The course has been taught in the Electrical Engineering

department of the Technion (Haifa, Israel) ever since year 2013. The main body

of the book is devoted to statistical physics, whereas much less emphasis is given to

the thermodynamics part. In particular, the idea is to let the important results

of thermodynamics (most notably, the laws of thermodynamics) to be obtained as

conclusions from the derivations in statistical physics.

Beyond the variety of central topics in statistical physics that are important to the

general scientific education of the electrical engineering student, special emphasis is

devoted to subjects that are vital to the engineering education concretely. These

include, first of all, quantum statistics, like the Fermi–Dirac distribution, as well as

diffusion processes, which are both fundamental for deep understanding of semi-

conductor devices. Another important issue for the electrical engineering student is

to understand mechanisms of noise generation and stochastic dynamics in physical

systems, most notably, in electric circuitry. Accordingly, the fluctuation–dissipation

theorem of statistical mechanics, which is the theoretical basis for understanding

thermal noise processes in systems, is presented from a signals-and-systems point

of view, in a way that would hopefully be understandable and useful for an engi-

neering student, and well connected to some other important courses learned by

students of electrical engineering, like courses on random processes. The quantum

regime, in this context, is important too and hence provided as well. Finally, we

touch very briefly upon some relationships between statistical mechanics and

information theory, which is the theoretical basis for communications engineering,

and demonstrate how statistical–mechanical approach can be useful for the study of

information–theoretic problems. These relationships are further explored in [1], and

in a much deeper manner.

In the table of contents below, chapters and sections, marked by asterisks, can be

skipped without loss of continuity.

Technion City, Haifa, Israel Neri Merhav
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Introduction

Statistical physics is a branch in physics which deals with systems with a huge

number of particles (or any other elementary units). For example, Avogadro’s

number, which is about 6� 1023, is the number of molecules in 22.4 liters of ideal

gas at standard temperature and pressure. Evidently, when it comes to systems with

such an enormous number of particles, there is no hope to keep track of the physical

state (e.g., position and momentum) of each and every individual particle by means

of the classical methods in physics, that is, by solving a gigantic system of dif-

ferential equations pertaining to Newton's laws for all particles. Moreover, even if

those differential equations could have been solved somehow (at least approxi-

mately), the information that they would have given us would be virtually useless.

What we normally really want to know about our physical system boils down to a

fairly short list of macroscopic quantities, such as energy, heat, pressure, temper-

ature, volume, magnetization, and the like. In other words, while we continue to use

the well-known laws of physics, even the classical ones, we no longer use them in

the ordinary manner that we have known from elementary physics courses. Instead,

we think of the state of the system, at any given moment, as a realization of a

certain probabilistic ensemble. This is to say that we approach the problem from a

probabilistic (or a statistical) point of view. The beauty of statistical physics is that

it derives the macroscopic theory of thermodynamics (i.e., the relationships

between thermodynamic potentials, temperature, pressure, etc.) as ensemble aver-

ages that stem from this probabilistic microscopic theory, in the limit of an infinite

number of particles, that is, the thermodynamic limit.

The purpose of this book is to teach statistical mechanics and thermodynamics,

with some degree of orientation toward students in electrical engineering. The main

body of the lectures is devoted to statistical mechanics, whereas much less emphasis

is given to the thermodynamics part. In particular, the idea is to let the laws

of thermodynamics to be obtained as conclusions from the derivations in statistical

mechanics.

Beyond the variety of central topics in statistical physics that are important to the

general scientific education of the electrical engineering student, special emphasis is

xi
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devoted to subjects that are vital to the engineering education concretely. These

include, first of all, quantum statistics, like the Fermi–Dirac distribution, as well as

diffusion processes, which are both fundamental for understanding semiconductor

devices. Another important issue for the electrical engineering student is to

understand mechanisms of noise generation and stochastic dynamics in physical

systems, most notably, in electric circuitry. Accordingly, the fluctuation–dissipation

theorem of statistical mechanics, which is the theoretical basis for understanding

thermal noise processes and physical systems, is presented from the standpoint of a

system with an input and output, in a way that would be understandable and useful

for an engineer, and well related to other courses in the undergraduate curriculum of

electrical engineering, like courses on random processes. This engineering per-

spective is not available in standard physics textbooks. The quantum regime, in this

context, is important and hence provided as well. Finally, we touch upon some

relationships between statistical mechanics and information theory, and demon-

strate how the statistical–mechanical approach can be useful for the study of

information theoretic problems. These relationships are further explored, and in a

much deeper manner, in [1].

Most of the topics in this book are covered on the basis of several other

well-known books on statistical mechanics. However, several perspectives and

mathematical derivations are original and new (to the best of the author’s knowl-

edge). The book includes fairly many examples, exercises, and figures, which will

hopefully help the student to grasp the material better.

It is assumed that the reader has prior background in the following subjects:

(i) elementary calculus and linear algebra, (ii) basics of quantum mechanics, and

(iii) fundamentals of probability theory. Chapter 7 assumes also basic background

in signals-and-systems theory, as well as the theory of random processes, including

the response of linear systems to random input signals.

Reference

1. N. Merhav, Statistical physics and information theory. Foundat. Trends Commun. Inf. Theor. 6

(1–2), pp. 1–212, 2009.
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Chapter 1

Kinetic Theory and the Maxwell Distribution

The concept that a gas consists of many small mobile mass particles is very old–it

dates back to the Greek philosophers. It has been periodically rejected and revived

throughout many generations of the history of science. Around the middle of the

19th century, against the general trend of rejecting the atomistic approach, Clausius,1

Maxwell2 and Boltzmann3 succeeded in developing a kinetic theory for the motion

of gas molecules, which was mathematically solid, on the one hand, and agreed

satisfactorily with the experimental evidence (at least in simple cases), on the other

hand.

In this chapter, we present some elements of Maxwell’s formalism and derivation

that builds the kinetic theory of the ideal gas. It derives some rather useful results

from first principles. While the main results that we shall see in this section can be

viewed as a special case of the more general concepts and principles that will be

provided later on, the purpose here is to give a quick snapshot on the taste of this

matter and to demonstrate how the statistical approach to physics, which is based

on very few reasonable assumptions, gives rise to rather far–reaching results and

conclusions.

The choice of the ideal gas, as a system of many mobile particles, is a good test-

bed to begin with, as on the one hand, it is simple, and on the other hand, it is not

irrelevant to electrical engineering and electronics in particular. For example, the free

electrons in a metal can often be considered a “gas” (albeit not an ideal gas), as we

shall see later on.

1Rudolf Julius Emanuel Clausius (1822–1888) was a German physicist and mathematician who is

considered to be one of the central pioneers of thermodynamics.
2James Clerk Maxwell (1831–1879) was a Scottish physicist and mathematician, whose other

prominent achievement was formulating classical electromagnetic theory.
3Ludwig Eduard Boltzmann (1844–1906) was an Austrian physicist, who has founded contributions

in statistical mechanics and thermodynamics. He was one of the advocators of the atomic theory

when it was still very controversial.

© The Author(s) 2018

N. Merhav, Statistical Physics for Electrical Engineering,

DOI 10.1007/978-3-319-62063-3_1
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2 1 Kinetic Theory and the Maxwell Distribution

1.1 The Statistical Nature of the Ideal Gas

From the statistical–mechanical perspective, an ideal gas is a system of mobile par-

ticles, which interact with one another only via elastic collisions, whose duration is

extremely short compared to the time elapsed between two consecutive collisions in

which a given particle is involved. This basic assumption is valid as long as the gas

is not too dense and the pressure that it exerts is not too high. As explained in the

Introduction, the underlying idea of statistical mechanics in general, is that instead

of hopelessly trying to keep track of the motion of each individual molecule, using

differential equations that are based on Newton’s laws, one treats the population of

molecules as a statistical ensemble using tools from probability theory, hence the

name statistical mechanics (or statistical physics).

What is the probability distribution of the state of the molecules of an ideal gas in

equilibrium? Here, by “state” we refer to the positions and the velocities (or momenta)

of all molecules at any given time. As for the positions, if gravity is neglected, and

assuming that the gas is contained in a given box (container) of volume V , there is no

apparent reason to believe that one region is preferable over others, so the distribution

of the locations is assumed uniform across the container, and independently of one

another. Thus, if there are N molecules, the joint probability density of their positions

is 1/V N everywhere within the container and zero outside. It is therefore natural to

define the density of particles per unit volume as ρ = N/V .

What about the distribution of velocities? This is slightly more involved, but as

we shall see, still rather simple, and the interesting point is that once we derive

this distribution, we will be able to derive some interesting relationships between

macroscopic quantities pertaining to the equilibrium state of the system (pressure,

density, energy, temperature, etc.). As for the velocity of each particle, we will make

two assumptions:

1. All possible directions of motion in space are equally likely. In other words, there

are no preferred directions (as gravity is neglected). Thus, the probability density

function (pdf) of the velocity vector �v = vx x̂ + vy ŷ + vz ẑ depends on �v only

via its magnitude, i.e., the speed s = ‖�v‖ =
√

v2
x + v2

y + v2
z , or in mathematical

terms:

f (vx , vy, vz) = g(v2
x + v2

y + v2
z ) (1.1.1)

for some function g.

2. The various components vx , vy and vz are identically distributed and independent,

i.e.,

f (vx , vy, vz) = f (vx) f (vy) f (vz). (1.1.2)

The rationale behind identical distributions is, like in item 1 above, namely, the

isotropic nature of the pdf. The rationale behind the independence assumption

is that in each collision between two particles, the total momentum is conserved

www.TechnicalBooksPDF.com



1.1 The Statistical Nature of the Ideal Gas 3

and in each component (x , y, and z) separately, so there are actually no interac-

tions among the component momenta. Each three–dimensional particle actually

behaves like three independent one–dimensional particles, as far as the momen-

tum is concerned.

We now argue that there is only one kind of (differentiable) joint pdf f (vx , vy, vz) that

complies with both assumptions at the same time, and this is the Gaussian density

where all three components of �v are independent, zero–mean and with the same

variance.

To see why this is true, consider the equation

f (vx ) f (vy) f (vz) = g(v2
x + v2

y + v2
z ) (1.1.3)

which combines both requirements. Let us assume that both f andg are differentiable.

Taking now partial derivatives w.r.t. vx , vy and vz , we obtain

f ′(vx ) f (vy) f (vz) = 2vxg
′(v2

x + v2
y + v2

z ) (1.1.4)

f (vx ) f ′(vy) f (vz) = 2vyg
′(v2

x + v2
y + v2

z ) (1.1.5)

f (vx ) f (vy) f ′(vz) = 2vzg
′(v2

x + v2
y + v2

z ) (1.1.6)

implying that

f ′(vx ) f (vy) f (vz)

vx

= f (vx ) f ′(vy) f (vz)

vy

= f (vx ) f (vy) f ′(vz)

vz

= 2g′(v2
x + v2

y + v2
z ),

(1.1.7)

and in particular,

f ′(vx )

vx f (vx)
= f ′(vy)

vy f (vy)
. (1.1.8)

Since the l.h.s. depends only on vx and the r.h.s. depends only on vy , the last identity

can hold only if f ′(vx )/[vx f (vx )] = const. Let us denote this constant by −2α.

Then, we have a simple differential equation,

f ′(vx)

f (vx )
= −2αvx , (1.1.9)

whose solution is easily found to be

f (vx ) = Be−αv2
x , (1.1.10)

and similar relations hold also for vy and vz . For f to be a valid pdf, α must be

positive and B must be the appropriate constant of normalization, which gives

www.TechnicalBooksPDF.com



4 1 Kinetic Theory and the Maxwell Distribution

f (vx ) =
√

α

π
e−αv2

x (1.1.11)

and the same applies to vy and vz . Thus, we finally obtain

f (vx , vy, vz) =
(α

π

)3/2

e−α(v2
x +v2

y+v2
z ) (1.1.12)

namely, a Gaussian pdf of three zero–mean independent variables with the same

variance, and it only remains to determine one constant, α, which is related to this

variance. We would like now to express α in terms of some physical parameters of

the system.

To this end, we adopt the following consideration. Assume, without essential loss

of generality, that the container is a box of sizes L x × L y × L z , whose walls are

parallel to the axes of the coordinate system. Consider a molecule with velocity

�v = vx x̂ + vy ŷ + vz ẑ hitting a wall parallel to the Y Z plane from the inner side

(left side) of the box. The molecule bounces elastically with a new velocity vector
�v′ = −vx x̂ + vy ŷ + vz ẑ, and so, the change in momentum, which is also the impulse

that the molecule exerts on the wall, is �p = 2mvx , where m is the mass of the

molecule. For a molecule of velocity vx in the x–direction to hit the wall within time

duration τ , its initial distance from the wall must not exceed vxτ in the x–direction.

Thus, the total average impulse contributed by a molecule with an x–component

velocity ranging between vx and vx + dvx , is given by

2mvx · vxτ

L x

·
√

α

π
e−αv2

x dvx .

Consequently, the average impulse of a single molecule, exerted within time τ , is the

integral, given by

2mτ

L x

·
√

α

π

∫ ∞

0

v2
x e−αv2

x dvx = mτ

2αL x

.

It follows that the average4 force exerted on the Y Z wall is obtained by dividing

the last expression by τ , namely, it is m/(2αL x ), and then the average pressure

contributed by a single molecule is m/(2αL x L y L z). Therefore, the total pressure

contributed by all N molecules is

P = m N

2αL x L y L z

= m N

2αV
= ρm

2α
(1.1.13)

4Average – over time as well.

www.TechnicalBooksPDF.com



1.1 The Statistical Nature of the Ideal Gas 5

and so, we can determine α in terms of the physical quantities P and ρ and m:

α = ρm

2P
. (1.1.14)

From the equation of state of the ideal gas5

P = ρkT (1.1.15)

where k is Boltzmann’s constant (= 1.381 × 10−23 Joules/degree) and T is absolute

temperature. Thus, an alternative expression for α is:

α = m

2kT
. (1.1.16)

On substituting this into the general Gaussian form of the pdf, we finally obtain

f (�v) =
( m

2πkT

)3/2

exp
[

− m

2kT
(v2

x + v2
y + v2

z )

]

=
( m

2πkT

)3/2

exp
[

− ǫ

kT

]

,

(1.1.17)

where ǫ is the (kinetic) energy of the molecule. This form of a pdf, that is proportional

to e−ǫ/(kT ), where ǫ is the energy, is not a coincidence. We shall see it again and again

later on, and in much greater generality, as a fact that stems from much deeper and

more fundamental principles. It is called the Boltzmann–Gibbs distribution.6

Having derived the pdf of �v, we can now calculate a few moments. Throughout

this book, we will denote the expectation operator by 〈·〉, which is the customary

notation used by physicists. Since

〈v2
x 〉 = 〈v2

y〉 = 〈v2
z 〉 = kT

m
(1.1.18)

we readily have

〈‖�v‖2〉 = 〈v2
x + v2

y + v2
z 〉 = 3kT

m
, (1.1.19)

5Consider this as an experimental fact.
6Another example of the Boltzmann form e−ǫ/(kT ) is the barometric formula: considering gravity,

the pressure increment dP between height h and height h + dh in an ideal–gas atmosphere, must

be equal to −μgdh, which is the pressure contributed by a layer of thickness dh, where μ is the

mass density. Thus, dP/dh = −μg. But by the equation of state, μ = Nm/V = m P/kT , which

gives the simple differential equation dP/dh = −Pmg/kT , whose solution is P = P0e−mgh/kT ,

and so, μ = −P ′/g = ρ0e−mgh/kT , which is proportional to the probability density. Then, here we

have ǫ = mgh, the gravitational potential energy of one particle.
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6 1 Kinetic Theory and the Maxwell Distribution

and so the root mean square (RMS) speed is given by

sRMS

�=
√

〈‖�v‖2〉 =
√

3kT

m
. (1.1.20)

Other related statistical quantities, that can be derived from f (�v), are the average

speed 〈s〉 and the most likely speed. Like sRMS, they are also proportional to
√

kT/m

but with different constants of proportionality (see Exercise 1.1 below). The average

kinetic energy per molecule is

〈ǫ〉 =
〈

1

2
m‖�v‖2

〉

= 3kT

2
, (1.1.21)

independent of m. This relation gives the basic significance to the notion of temper-

ature: at least in the case of the ideal gas, temperature is simply a quantity that is

directly proportional to the average kinetic energy of each particle. In other words,

temperature and kinetic energy are almost synonyms in this case. In the sequel, we

will see a more general definition of temperature. The factor of 3 at the numerator is

due to the fact that space has three dimensions, and so, each molecule has 3 degrees of

freedom. Every degree of freedom contributes an amount of energy given by kT/2.

This will turn out later to be a special case of a more general principle called the

equipartition of energy.

The pdf of the speed, s = ‖�v‖, can be derived from the pdf of the velocity �v using

the obvious consideration that all vectors �v of the same norm correspond to the same

speed. Thus, the pdf of s is simply the pdf of �v (which depends solely on ‖�v‖ = s)

multiplied by the surface area of a three–dimensional sphere of radius s, which is

4πs2, i.e.,

f (s) = 4πs2
( m

2πkT

)3/2

e−ms2/(2kT ) =
√

2

π

( m

kT

)3

· s2e−ms2/(2kT ) (1.1.22)

This is called the Maxwell distribution and it is depicted in Fig. 1.1 for various values

of the parameter kT/m. To obtain the pdf of the energy ǫ, we should change variables

according to s = √
2ǫ/m and ds = dǫ/

√
2mǫ. The result is

f (ǫ) = 2
√

ǫ√
π(kT )3/2

· e−ǫ/(kT ). (1.1.23)

Exercise 1.1 Use the above to calculate: (i) the average speed 〈s〉, (ii) the most likely

speed, argmaxs f (s), and (iii) the most likely energy argmaxǫ f (ǫ).

An interesting relation, that will be referred to later on, links between the average

energy per particle ǭ = 〈ǫ〉, the density ρ, and the pressure P , or equivalently, the

total energy E = N ǭ, the volume V and P:
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1.1 The Statistical Nature of the Ideal Gas 7

Fig. 1.1 Demonstration of

the Maxwell distribution for

various values of the

parameter kT/m. The red

curve (tall and narrow)

corresponds to the smallest

value and the blue curve

(short and wide) – to the

highest value

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P = ρkT = 2ρ

3
· 3kT

2
= 2ρ

3
· ǭ, (1.1.24)

which after multiplying by V becomes

PV = 2E

3
. (1.1.25)

It is interesting to note that this relation can be obtained directly from the analysis of

the impulse exerted by the particles on the walls, similarly as in the earlier derivation

of the parameter α, and without recourse to the equation of state (see, for example,

[1, Sect. 20–4, pp. 353–355]). This is because the parameter α of the Gaussian

pdf of each component of �v has the obvious meaning of 1/(2σ2
v), where σ2

v is the

common variance of each component of �v. Thus, σ2
v = 1/(2α) and so, 〈‖�v‖2〉 =

3σ2
v = 3/(2α), which in turn implies that

ǭ =
〈m

2
‖�v‖2

〉

= 3m

4α
= 3m

4ρm/(2P)
= 3P

2ρ
, (1.1.26)

in equivalence to the above.

1.2 Collisions

We now take a closer look into the issue of collisions. We first define the concept

of collision cross–section, which we denote by σ. Referring to Fig. 1.2, consider

a situation, where two hard spheres, labeled A and B, with diameters 2a and 2b,

respectively, are approaching each other, and let c be the projection of the distance

between their centers in the direction perpendicular to the direction of their relative
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8 1 Kinetic Theory and the Maxwell Distribution

Fig. 1.2 Hard sphere collision

motion, �v1 − �v2. Clearly, collision will occur if and only if c < a + b. In other words,

the two spheres would collide only if the center of B lies inside a volume whose

cross sectional area is σ = π(a + b)2, or for identical spheres, σ = 4πa2. Let the

colliding particles have relative velocity ��v = �v1 − �v2. Passing to the coordinate

system of the center of mass of the two particles, this is equivalent to the motion

of one particle with the reduced mass μ = m1m2/(m1 + m2), and so, in the case of

identical particles, μ = m/2. The average relative speed is easily calculated from the

Maxwell distribution, but with m being replaced by μ = m/2, i.e.,

〈‖��v‖〉 = 4π
( m

4πkT

)3/2
∫ ∞

0

(�v)3e−m(�v)2/(4kT )d(�v) = 4 ·
√

kT

πm
=

√
2〈s〉.
(1.2.1)

The total number of particles per unit volume that collide with a particular particle

within time τ is

Ncol(τ ) = ρσ〈‖��v‖〉τ = 4ρστ

√

kT

πm
(1.2.2)

and so, the collision rate of each particle is

ν = 4ρσ

√

kT

πm
. (1.2.3)

The mean distance between collisions (a.k.a. the mean free path) is therefore

λ = 〈‖�v‖〉
ν

= 1√
2ρσ

= kT√
2Pσ

. (1.2.4)

What is the probability distribution of the random distance L between two con-

secutive collisions of a given particle? In particular, what is p(l)
�= Pr{L ≥ l}? Let

us assume that the collision process is memoryless in the sense that the event of not

colliding before distance l1 + l2 is the intersection of two independent events, the

first one being the event of not colliding before distance l1, and the second one being

the event of not colliding before the additional distance l2. That is
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1.2 Collisions 9

p(l1 + l2) = p(l1)p(l2). (1.2.5)

We argue that under this assumption, p(l) must be exponential in l. This follows

from the following consideration.7 Taking partial derivatives of both sides w.r.t. both

l1 and l2, we get

p′(l1 + l2) = p′(l1)p(l2) = p(l1)p′(l2). (1.2.6)

Thus,

p′(l1)

p(l1)
= p′(l2)

p(l2)
(1.2.7)

for all non-negative l1 and l2. Thus, p′(l)/p(l) must be a constant, which we shall

denote by −a. This trivial differential equation has only one solution which obeys

the obvious initial condition p(0) = 1:

p(l) = e−al l ≥ 0 (1.2.8)

so it only remains to determine the parameter a, which must be positive since the

function p(l) must be monotonically non–increasing by definition. This can easily

be found by using the fact that 〈L〉 = 1/a = λ, and so,

p(l) = e−l/λ = exp

(

−
√

2Pσl

kT

)

. (1.2.9)

1.3 Dynamical Aspects

The discussion thus far focused on the static (equilibrium) behavior of the ideal gas.

In this subsection, we will briefly touch upon dynamical issues pertaining to non–

equilibrium situations. These issues will be further developed in Chap. 7, and with

much greater generality.

Consider two adjacent containers separated by a wall. Both have the same volume

V of the same ideal gas at the same temperature T , but with different densities ρ1

and ρ2, and hence different pressures P1 and P2. Let us assume that P1 > P2. At time

t = 0, a small hole is created in the separating wall. The area of this hole is A (see

Fig. 1.3).

If the mean free distancesλ1 andλ2 are relatively large compared to the dimensions

of the hole, it is safe to assume that every molecule that reaches the hole, passes

7Similar idea to the one of the earlier derivation of the Gaussian pdf of the ideal gas.
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10 1 Kinetic Theory and the Maxwell Distribution

Fig. 1.3 Gas leakage

through a small hole

through it. The mean number of molecules that pass from left to right within time τ

is given by8

N→ = ρ1V ·
∫ ∞

0

dvx

√

α

π
e−αv2

x · vxτ A

V
= ρ1τ A

2
√

πα
(1.3.1)

and so the number of particles per second, flowing from left to right is

dN→
dt

= ρ1 A

2
√

πα
. (1.3.2)

Similarly, in the opposite direction, we have

dN←
dt

= ρ2 A

2
√

πα
, (1.3.3)

and so, the net left–to–right current is

I
�= dN

dt
= (ρ1 − ρ2)A

2
√

πα
= (ρ1 − ρ2)A

√

kT

2πm
. (1.3.4)

An important point here is that the current is proportional to the difference between

densities (ρ1 − ρ2), and considering the equation of state of the ideal gas, it is there-

fore also proportional to the pressure difference, (P1 − P2). This rings the bell of

the well known analogous fact that the electric current is proportional to the voltage,

which in turn is the difference between the electric potentials at two points. Con-

sidering the fact that ρ
�= (ρ1 + ρ2)/2 is constant, we obtain a simple differential

equation

dρ1

dt
= (ρ2 − ρ1)

A

V

√

kT

2πm

�= C(ρ2 − ρ1) = 2C(ρ − ρ1) (1.3.5)

8Note that for vy = vz = 0, the factor vxτ A/V , in the forthcoming equation, is clearly the relative

volume (and hence the probability) of being in the ‘box’ in which a particle must be found in order

to pass the hole within τ seconds. When vy and vz are non–zero, instead of a rectangular box, this

region becomes a parallelepiped, but the relative volume remains vxτ A/V independently of vy

and vz .
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1.3 Dynamical Aspects 11

whose solution is

ρ1(t) = ρ + [ρ1(0) − ρ]e−2Ct (1.3.6)

which means that equilibrium is approached exponentially fast with time constant

τ = 1

2C
= V

2A

√

2πm

kT
. (1.3.7)

Imagine now a situation, where there is a long pipe aligned along the x–direction.

The pipe is divided into a chain of cells in a linear fashion, and in the wall between

each two consecutive cells there is a hole of area A. The length of each cell (i.e., the

distance between consecutive walls) is the mean free distance λ, so that collisions

within each cell can be neglected. Assume further that λ is so small that the density

of each cell at time t can be approximated using a continuous function ρ(x, t). Let

x0 be the location of one of the walls. Then, according to the above derivation, the

current at x = x0 is

I (x0) =
[

ρ

(

x0 − λ

2
, t

)

− ρ

(

x0 + λ

2
, t

)]

A

√

kT

2πm

≈ −Aλ

√

kT

2πm
· ∂ρ(x, t)

∂x

∣

∣

∣

∣

x=x0

. (1.3.8)

Thus, the current is proportional to the negative gradient of the density. This is quite

a fundamental result which holds with much greater generality. In the more general

context, it is known as Fick’s law.

Consider next two close points x0 and x0 + dx , with possibly different current

densities (i.e., currents per unit area) J (x0) and J (x0 + �x). The difference J (x0) −
J (x0 + �x) is the rate at which matter accumulates along the interval [x0, x0 + �x]
per unit area in the perpendicular plane. Within �t seconds, the number of particles

per unit area within this interval has grown by [J (x0) − J (x0 + �x)]�t . But this

amount is also [ρ(x0, t + �t) − ρ(x0, t)]�x , Taking the appropriate limits, we get

∂ J (x)

∂x
= −∂ρ(x, t)

∂t
, (1.3.9)

which is a one–dimensional version of the so called equation of continuity. Differ-

entiating now Eq. (1.3.8) w.r.t. x and comparing with (1.3.9), we obtain the diffusion

equation (in one dimension):

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
(1.3.10)
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12 1 Kinetic Theory and the Maxwell Distribution

where the constant D, in this case,

D = Aλ

S
·
√

kT

2πm
, (1.3.11)

which is called the diffusion coefficient. Here S is the cross–section area.

This is, of course, merely a toy model – it is a caricature of a real diffusion process,

but it captures its essence. Diffusion processes are central in irreversible statistical

mechanics, since the solution to the diffusion equation is sensitive to the sign of time.

This is different from the Newtonian equations of frictionless motion, which have a

time reversal symmetry and hence are reversible. We will touch upon these issues in

Chap. 7.

The equation of continuity, Fick’s law, the diffusion equation and its extension, the

Fokker–Planck equation (which will also be discussed), are all very central in physics

in general and in semiconductor physics, in particular, as they describe processes of

propagation of concentrations of electrons and holes in semiconductor materials.

Another branch of physics where these equations play an important role is fluid

mechanics.

1.4 Suggestions for Supplementary Reading

The following books are recommended for further reading and for related material.

Beck [2, Sect. 2.2] derives the pdf of the particle momenta in a manner somewhat

different than here. Other parts of this section are quite similar to those of [2, Chap. 2].

A much more detailed exposition of the kinetic theory of gases appears also in many

other textbooks, including: Huang [3, Chap. 4], Kardar [4, Chap. 3], Kittel [5, Part I,

Chap. 13], Mandl [6, Chap. 7], Reif [7, Chap. 9], and Tolman [8, Chap. IV], to name

a few.
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Chapter 2

Elementary Statistical Physics

In this chapter, we provide the formalism and the elementary background in statistical

physics. We first define the basic postulates of statistical mechanics, and then define

various ensembles. Finally, we shall derive some of the thermodynamic potentials

and their properties, as well as the relationships among them. The important laws of

thermodynamics will also be pointed out. The contents of this chapter has a consid-

erable overlap with Chap. 2 of [1] (though there are also considerable differences).

It is provided in this book too, mostly for the sake of completeness.

2.1 Basic Postulates

As explained in the Introduction, statistical physics is about a probabilistic approach

to systems of many particles. While our discussion here will no longer be specific

to the ideal gas as before, we will nonetheless start again with this example in mind,

just for the sake of concreteness, Consider then a system with a very large number N

of mobile particles, which are free to move in a given volume. The microscopic state

(or microstate, for short) of the system, at each time instant t , consists, in this example,

of the position vector �ri (t) and the momentum vector �pi (t) of each and every particle,

1 ≤ i ≤ N . Since each one of these is a vector of three components, the microstate is

then given by a (6N )–dimensional vector �x(t) = {(�ri (t), �pi (t)) : i = 1, 2, . . . , N },
whose trajectory along the time axis, in the phase space IR6N , is called the phase

trajectory.

Let us assume that the system is closed, i.e., isolated from its environment, in

the sense that no energy flows inside or out. Imagine that the phase space IR6N is

partitioned into very small hypercubes (or cells) � �p×��r . One of the basic postulates

of statistical mechanics is the following: in the long run, the relative amount of

time at which �x(t) spends within each such cell, converges to a certain number

between 0 and 1, which can be given the meaning of the probability of this cell.
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14 2 Elementary Statistical Physics

Thus, there is an underlying assumption of equivalence between temporal averages

and ensemble averages, namely, this is the postulate of ergodicity. Considerable

efforts were dedicated to the proof of the ergodic hypothesis at least in some cases.

As reasonable and natural as it may seem, the ergodic hypothesis should not be taken

for granted. It does not hold for every system but only if no other conservation law

holds. For example, a single molecule (N = 1) of a gas in a box is non–ergodic.

The reason is simple: assuming elastic collisions with the walls, the kinetic energy

of the molecule is conserved, and hence also the speed s, rather than sampling the

Maxwell distribution over time.

What are then the probabilities of the above–mentioned phase–space cells? We

would like to derive these probabilities from first principles, based on as few as

possible basic postulates. Our second postulate is that for an isolated system (i.e.,

whose energy is fixed) all microscopic states {�x(t)} are equiprobable. The rationale

behind this postulate is twofold:

• In the absence of additional information, there is no apparent reason that certain

regions in phase space would have preference relative to any others.

• This postulate is in harmony with a basic result in kinetic theory of gases – the

Liouville theorem (see e.g., [2]), which we will not touch upon in this book, but

in a nutshell, it asserts that the phase trajectories must lie along hyper-surfaces of

constant probability density.1

2.2 Statistical Ensembles

2.2.1 The Microcanonical Ensemble

Before we proceed, let us slightly broaden the scope of our discussion. In a more

general context, associated with our N–particle physical system, is a certain instan-

taneous microstate, generically denoted by x = (x1, x2, . . . , xN ), where each xi ,

1 ≤ i ≤ N , may itself be a vector of several physical quantities associated with par-

ticle number i , e.g., its position, momentum, angular momentum, magnetic moment,

spin, and so on, depending on the type and the nature of the physical system. Accord-

ing to the physical model of the given system, there is a certain energy function, a.k.a.

Hamiltonian, that assigns to every x a certain energy E(x).2 Now, let us denote by

A(E) the volume of the shell of energy about E . This means

1This is a result of the energy conservation law along with the fact that probability mass behaves

like an incompressible fluid in the sense that whatever mass that flows into a certain region from

some direction must be equal to the outgoing flow from some other direction. This is reflected in

the equation of continuity, which was demonstrated earlier.
2For example, in the case of an ideal gas, E(x) = ∑N

i=1 ‖ �pi ‖2/(2m), where m is the mass of each

molecule, namely, it accounts for the contribution of the kinetic energies only. In more complicated

situations, there might be additional contributions of potential energy, which depend on the positions.
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2.2 Statistical Ensembles 15

A(E) = Vol{x : E ≤ E(x) ≤ E + �E} =
∫

{x: E≤E(x)≤E+�E}
dx, (2.2.1)

where �E is a very small (but fixed) energy increment, which is immaterial when N

is large. Then, our above postulate concerning the ensemble of an isolated system,

which is called the microcanonical ensemble, is that the probability density P(x) is

given by

P(x) =
{

1
A(E)

E ≤ E(x) ≤ E + �E

0 elsewhere
(2.2.2)

In the discrete case, things are simpler: here, A(E) is the number of microstates with

E(x) = E (exactly) and P(x) is the uniform probability mass function over this set

of states.

Returning to the general case, we next define the notion of the density of states,

ω(E), which is intimately related to A(E). Basically, in simple cases, ω(E) is defined

such that ω(E)�E = A(E) where �E is very small, but there might be a few minor

corrections, depending on the concrete system being addressed. More generally, we

define the density of states such that ω(E)�E = �(E), where �(E) will be the

relevant (possibly corrected) function. The first correction has to do with the fact

that A(E) is, in general, not dimensionless: in the above example of a gas, it has

the physical units of [length × momentum]3N = [J · s]3N , but we must eliminate

these physical units because we will have to apply on it non–linear functions like the

logarithmic function. To this end, we normalize the volume A(E) by an elementary

reference volume. In the gas example, this reference volume is taken to be h3N ,

where h is Planck’s constant (h ≈ 6.62 × 10−34 J · s). Informally, the intuition

comes from the fact that h is our best available “resolution” in the plane spanned

by each component of �ri and the corresponding component of �pi , owing to the

uncertainty principle in quantum mechanics, which tells that the product of the

standard deviations �pa · �ra of each component a (a = x, y, z) is lower bounded

by �/2, where � = h/(2π). More formally, this reference volume is obtained in

a natural manner from quantum statistical mechanics: by changing the integration

variable �p to �k using the relation �p = ��k, where �k is the wave vector. This is a well–

known relation (one of the de Broglie relations) pertaining to particle–wave duality.

The second correction that is needed to pass from A(E) to �(E) is applicable when

the particles are indistinguishable3: In these cases, we do not consider permutations

between particles in a given configuration as distinct microstates. Thus, we have to

divide also by N ! Taking into account both corrections, we find that in the example

of the ideal gas,

3In the example of the ideal gas, since the particles are mobile and since they have no colors and

no identity certificates, there is no distinction between a state where particle no. 15 has position �r
and momentum �p while particle no. 437 has position �r ′ and momentum �p′ and a state where these

two particles are swapped.
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16 2 Elementary Statistical Physics

�(E) = A(E)

N !h3N
. (2.2.3)

Once again, it should be understood that both of these corrections are optional and

their applicability depends on the system in question: the first correction is applicable

only if A(E) has physical units and the second correction is applicable only if the

particles are indistinguishable. For example, if x is discrete, in which case the integral

defining A(E) is replaced by a sum (that counts x’s with E(x) = E), and the particles

are distinguishable, then no corrections are needed at all, i.e.,

�(E) = A(E). (2.2.4)

Now, the entropy is defined as

S(E) = k ln �(E), (2.2.5)

where k is Boltzmann’s constant. We will see later what is the relationship between

S(E) and the classical thermodynamic entropy, due to Clausius (1850), as well as the

information–theoretic entropy, due to Shannon (1948). As will turn out, all three are

equivalent to one another. Here, a comment on the notation is in order: the entropy S

may depend on additional quantities, other than the energy E , like the volume V and

the number of particles N . When this dependence will be relevant and important, we

will use the more complete form of notation S(E, V, N ). If only the dependence on

E is relevant in a certain context, we use the simpler notation S(E).

To get some insight into the behavior of the entropy, it should be noted that

normally, �(E) (and hence also ω(E)) behaves as an exponential function of N (at

least asymptotically), and so, S(E) is roughly linear in N . For example, if E(x) =
∑N

i=1
‖ �pi ‖2

2m
, then �(E) is the volume of a thin shell about the surface of a (3N )–

dimensional sphere with radius
√

2m E , divided by N !h3N , which is proportional to

(2m E)3N/2V N /N !h3N , where V is the volume. The quantity ω(E) is then associated

with the surface area of this (3N )–dimensional sphere. Specifically (ignoring the

contribution of the factor �E), we get

S(E, V, N ) = k ln

[

(

4πm E

3N

)3N/2

· V N

N !h3N

]

+ 3

2
Nk

≈ Nk ln

[

(

4πm E

3N

)3/2

· V

Nh3

]

+ 5

2
Nk. (2.2.6)

Assuming that E and V are both proportional to N (E = Nǫ and V = N/ρ), it

is readily seen that S(E, V, N ) is also proportional to N . A physical quantity that

has a linear dependence on the size of the system N , is called an extensive quantity.

Energy, volume and entropy are then extensive quantities. Other quantities, which
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2.2 Statistical Ensembles 17

are not extensive, i.e., independent of the system size, like temperature and pressure,

are called intensive.

It is interesting to point out that from the function S(E, V, N ), one can obtain the

entire information about the relevant macroscopic physical quantities of the system,

e.g., temperature, pressure, and so on. Specifically, the temperature T of the system

is defined according to:

1

T
=

[

∂S(E, V, N )

∂E

]

V,N

(2.2.7)

where [·]V,N emphasizes that the derivative is taken while keeping V and N constant.

One may wonder, at this point, what is the justification for defining temperature this

way. We will get back to this point a bit later, but for now, we can easily see that this

is indeed true at least for the ideal gas, as by taking the derivative of (2.2.6) w.r.t. E ,

we get

∂S(E, V, N )

∂E
= 3Nk

2E
= 1

T
, (2.2.8)

where the second equality has been shown already in Chap. 1.

Intuitively, in most situations, we expect that S(E) would be an increasing function

of E for fixed V and N (although this is not strictly always the case), which means

T ≥ 0. But T is also expected to increase with E (or equivalently, E is increasing

with T , as otherwise, the heat capacity dE/dT < 0). Thus, 1/T should decrease with

E , which means that the increase of S in E slows down as E grows. In other words,

we expect S(E) to be a concave function of E . In the above example, indeed, S(E)

is logarithmic and E = 3NkT/2, as we have seen.

How can we be convinced, in mathematical terms, that under certain regularity

conditions, S(E) is a concave function in E? The answer may be given by a simple

superadditivity argument: As both E and S are extensive quantities, let us define

E = Nǫ and for a given density ρ,

s(ǫ) = lim
N→∞

S(Nǫ)

N
, (2.2.9)

i.e., the per–particle entropy as a function of the per–particle energy, where we assume

that the limit exists. Consider the case where the Hamiltonian is additive, i.e.,

E(x) =
N

∑

i=1

E(xi ) (2.2.10)

just like in the above example where E(x) = ∑N
i=1

‖ �pi ‖2

2m
. Then, the inequality

�(N1ǫ1 + N2ǫ2) ≥ �(N1ǫ1) · �(N2ǫ2), (2.2.11)
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Fig. 2.1 Schottky defects in

a crystal lattice

expresses the simple fact that if our system is partitioned into two parts,4 one with

N1 particles, and the other with N2 = N − N1 particles, then every combination

of individual microstates with energies N1ǫ1 and N2ǫ2 corresponds to a combined

microstate with a total energy of N1ǫ1 + N2ǫ2 (but there are more ways to split this

total energy between the two parts). Thus,

k ln �(N1ǫ1 + N2ǫ2)

N1 + N2

≥ k ln �(N1ǫ1)

N1 + N2

+ k ln �(N2ǫ2)

N1 + N2

= N1

N1 + N2

· k ln �(N1ǫ1)

N1

+

N2

N1 + N2

· k ln �(N2ǫ2)

N2

. (2.2.12)

and so, by taking N1 and N2 to ∞, with N1/(N1 + N2) → λ ∈ (0, 1), we get:

s(λǫ1 + (1 − λ)ǫ2) ≥ λs(ǫ1) + (1 − λ)s(ǫ2), (2.2.13)

which establishes the concavity of s(·) at least in the case of an additive Hamiltonian,

which means that the entropy of mixing two systems of particles is greater than the

total entropy before the mix. A similar proof can be generalized to the case where

E(x) includes also a limited degree of interactions (short range interactions), e.g.,

E(x) = ∑N
i=1 E(xi , xi+1), but this requires somewhat more caution. In general,

however, concavity may no longer hold when there are long range interactions, e.g.,

where some terms of E(x) depend on a linear subset of particles.

Example 2.1 (Schottky defects) In a certain crystal, the atoms are located in a lattice,

and at any positive temperature there may be defects, where some of the atoms are

dislocated (see Fig. 2.1). Assuming that defects are sparse enough, such that around

each dislocated atom all neighbors are in place, the activation energy, ǫ0, required

for dislocation is fixed. Denoting the total number of atoms by N and the number of

defected ones by n, the total energy is then E = nǫ0, and so,

4This argument works for distinguishable particles. Later on, a more general argument will be

presented, that holds for indistinguishable particles too.
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�(E) =
(

N

n

)

= N !
n!(N − n)! , (2.2.14)

or, equivalently,

S(E) = k ln �(E) = k ln

[

N !
n!(N − n)!

]

≈ k[N ln N − n ln n − (N − n) ln(N − n)] (2.2.15)

where in the last passage we have used the Stirling approximation. It is important to

point out that here, unlike in the example of the ideal gas, we have not divided A(E)

by N ! The reason is that we do distinguish between two different configurations

where the same number of particles were dislocated but the sites of dislocation are

different. Yet, we do not distinguish between two microstates whose only difference

is two (identical) particles which are not dislocated but swapped. This is the reason

for the denominator n!(N − n)! in the expression of �(E). Now,5

1

T
= ∂S

∂E
= dn

dE
· dS

dn
= 1

ǫ0

· k ln
N − n

n
, (2.2.16)

which gives the number of defects as

n = N

exp(ǫ0/kT ) + 1
. (2.2.17)

At T = 0, there are no defects, but their number increases gradually with T , approx-

imately according to exp(−ǫ0/kT ). Note also that

S(E) = k ln

(

N

n

)

≈ k Nh2

( n

N

)

= k Nh2

(

E

Nǫ0

)

= k Nh2

(

ǫ

ǫ0

)

, (2.2.18)

where

h2(x)
�= −x ln x − (1 − x) ln(1 − x), 0 ≤ x ≤ 1

is the so called binary entropy function. Note also that s(ǫ) = kh2(ǫ/ǫ0) is indeed

concave in this example. �

5Here and in the sequel, the reader might wonder about the meaning of taking derivatives of, and

with respect to, integer valued variables, like the number of dislocated particles, n. To this end,

imagine an approximation where n is interpolated to be a continuous valued variable.
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Suppose we have two systems that are initially at certain temperatures (and with

corresponding energies). At a certain time instant, the two systems are brought into

thermal contact with one another, but their combination remains isolated. What hap-

pens after a long time? How does the total energy E , split and what is the final

temperature T of the combined system? The number of combined microstates where

subsystem no. 1 has energy E1 and subsystem no. 2 has energy E2 = E − E1 is

�1(E1) · �2(E − E1). As the combined system is isolated, the probability of such

a combined macrostate is proportional to �1(E1) · �2(E − E1). Keeping in mind

that, normally, �1 and �2 are exponential in N , then for large N , this product is

dominated by the value of E1 for which it is maximum, or equivalently, the sum

of logarithms, S1(E1) + S2(E − E1), is maximum, i.e., it is a maximum entropy

situation, which is the second law of thermodynamics, asserting that an isolated

system (in this case, combined of two subsystems) achieves its maximum possible

entropy in equilibrium. This maximum is normally achieved at the value of E1 for

which the derivative vanishes, i.e.,

S′
1(E1) − S′

2(E − E1) = 0 (2.2.19)

or

S′
1(E1) − S′

2(E2) = 0 (2.2.20)

which means

1

T1

≡ S′
1(E1) = S′

2(E2) ≡ 1

T2

. (2.2.21)

Thus, in equilibrium, which is the maximum entropy situation, the energy splits

in a way that temperatures are the same. Now, we can understand the concavity of

entropy more generally: λs(ǫ1)+(1−λ)s(ǫ2) was the total entropy per particle when

two subsystems (with the same entropy function) were isolated from one another,

whereas s(λǫ1 + (1 − λ)ǫ2) is the equilibrium entropy per particle after we let them

interact thermally.

At this point, we are ready to justify why S′(E) is equal to 1/T in general, as

was promised earlier. Although it is natural to expect that equality between S′
1(E1)

and S′
2(E2), in thermal equilibrium, is related to equality between T1 and T2, this

does not automatically mean that the derivative of each entropy is given by one over

its temperature. On the face of it, for the purpose of this implication, this derivative

could have been equal any one–to–one function of temperature f (T ). To see why

f (T ) = 1/T indeed, imagine that we have a system with an entropy function

S0(E) and that we let it interact thermally with an ideal gas whose entropy function,

which we shall denote now by Sg(E), is given as in Eq. (2.2.6). Now, at equilibrium

S′
0(E0) = S′

g(Eg), but as we have seen already, S′
g(Eg) = 1/Tg , where Tg is the

temperature of the ideal gas. But in thermal equilibrium the temperatures equalize,

i.e., Tg = T0, where T0 is the temperature of the system of interest. It then follows
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eventually that S′
0(E0) = 1/T0, which now means that in equilibrium, the derivative

of entropy of the system of interest is equal to the reciprocal of its temperature in

general, and not only for the ideal gas! At this point, the fact that our system has

interacted and equilibrated with an ideal gas is not important anymore and it does

not limit the generality of this statement. In simple words, our system does not ‘care’

what kind of system it has interacted with, whether ideal gas or any other. This

follows from a fundamental principle in thermodynamics, called the zero–th law of

thermodynamics, which states that thermal equilibrium has a transitive property:

If system A is in equilibrium with system B and system B is in equilibrium with

system C , then A is in equilibrium with C .

So we have seen that ∂S/∂E = 1/T , or equivalently, δS = δE/T . But in the

absence of any mechanical work (V is fixed) applied to the system and any chemical

energy injected into the system (N is fixed), any change in energy must be in the

form of heat,6 thus we denote δE = δQ, where Q is the heat intake. Consequently,

δS = δQ

T
, (2.2.22)

This is exactly the definition of the classical thermodynamic entropy due to Clausius.

Thus, at least for the case where no mechanical work is involved, we have demon-

strated the equivalence of the two notions of entropy, the statistical notion due

to Boltzmann S = k ln �, and the thermodynamic entropy due to Clausius,

S =
∫

dQ/T , where the integration should be understood to be taken along a slow

(quasi–static) process, where after each small increase in the heat intake, the sys-

tem is allowed to equilibrate, which means that T is given enough time to adjust

before more heat is further added. For a given V and N , the difference �S between

the entropies SA and SB associated with two temperatures TA and TB (pertaining to

internal energies E A and EB , respectively) is given by �S =
∫ B

A
dQ/T along such a

quasi–static process. This is a rule that defines entropy differences, but not absolute

levels. A reference value is determined by the third law of thermodynamics, which

asserts that as T tends to zero, the entropy tends to zero as well.7

We have seen what is the meaning of the partial derivative of S(E, V, N ) w.r.t. E .

Is there also a simple meaning to the partial derivative w.r.t. V ? Again, let us begin

by examining the ideal gas. Differentiating the expression of S(E, V, N ) of the ideal

gas w.r.t. V , we obtain

∂S(E, V, N )

∂V
= Nk

V
= P

T
, (2.2.23)

6Heat is a form of energy that is transferred neither by mechanical work nor by matter. It is the type

of energy that flows spontaneously from a system/body at a higher temperature to one with a lower

temperature (and this transfer is accompanied by an increase in the total entropy).
7In this context, it should be understood that the results we derived for the ideal gas hold only for

high enough temperatures: since S was found proportional to ln E and E is proportional to T , then

S is proportional to ln T , but this cannot be true for small T as it contradicts (among other things)

the third law.

www.TechnicalBooksPDF.com



22 2 Elementary Statistical Physics

where the second equality follows again from the equation of state. So at least for the

ideal gas, this partial derivative is related to the pressure P . For similar considerations

as before, the relation

∂S(E, V, N )

∂V
= P

T
(2.2.24)

is true not only for the ideal gas, but in general. Consider again an isolated system

that consists of two subsystems, separated by a wall (or a piston). Initially, this

wall is fixed and the volumes are V1 and V2. At a certain moment, this wall is

released and allowed to be pushed in either direction. How would the total volume

V = V1 + V2 divide between the two subsystems in equilibrium? Again, the total

entropy S1(E1, V1) + S2(E − E1, V − V1) would tend to its maximum for the same

reasoning as before. The maximum will be reached when the partial derivatives of

this sum w.r.t. both E1 and V1 would vanish. The partial derivative w.r.t. E1 has

already been addressed. The partial derivative w.r.t. V1 gives

P1

T1

= ∂S1(E1, V1)

∂V1

= ∂S2(E2, V2)

∂V2

= P2

T2

(2.2.25)

Since T1 = T2 by the thermal equilibrium pertaining to derivatives w.r.t. energies, it

follows that P1 = P2, which means mechanical equilibrium: the wall will be pushed

to the point where the pressures from both sides are equal. We now have the following

differential relationship:

δS = ∂S

∂E
δE + ∂S

∂V
δV

= δE

T
+ PδV

T
(2.2.26)

or

δE = T δS − PδV = δQ − δW, (2.2.27)

which is the the first law of thermodynamics, asserting that the change in the energy

δE of a system with a fixed number of particles is equal to the difference between

the incremental heat intake δQ and the incremental mechanical work δW carried out

by the system. This is nothing but a restatement of the law of energy conservation.

Example 2.2 (Compression of ideal gas) Consider again an ideal gas of N particles

at constant temperature T . The energy is E = 3NkT/2 regardless of the volume.

This means that if we compress (slowly) the gas from volume V1 to volume V2

(V2 < V1), the energy remains the same, in spite of the fact that we injected energy

by applying mechanical work
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W = −
∫ V2

V1

PdV = −NkT

∫ V2

V1

dV

V
= NkT ln

V1

V2

. (2.2.28)

What happened to that energy? The answer is that it was transformed into heat as

the entropy of the system (which is proportional to ln V ) has changed by the amount

�S = −Nk ln(V1/V2), and so, the heat intake �Q = T �S = −NkT ln(V1/V2)

exactly balances the work. �

Finally, we should consider the partial derivative of S w.r.t. N . This is given by

∂S(E, V, N )

∂N
= − μ

T
, (2.2.29)

where μ is called the chemical potential. If we now consider again the isolated system,

which consists of two subsystems that are allowed to exchange, not only heat and

volume, but also particles (of the same kind), whose total number is N = N1 + N2,

then again, maximum entropy considerations would yield an additional equality

between the chemical potentials, μ1 = μ2 (chemical equilibrium).8 The chemical

potential should be understood as a kind of a force that controls the ability to inject

particles into the system. For example, if the particles are electrically charged, then

the chemical potential has a simple analogy to the electrical potential. The first law

is now extended to have an additional term, pertaining to an increment of chemical

energy, and it now reads:

δE = T δS − PδV + μδN . (2.2.30)

Equation (2.2.30) can be used to derive a variety of relations. For example, μ =
(∂E/∂N )S,V , T = (∂H/∂S)N , where H = E + PV is called the enthalpy, P =
μ(∂N/∂V )E,S , and so on.

2.2.2 The Canonical Ensemble

So far we have assumed that our system is isolated, and therefore has a strictly fixed

energy E . Let us now relax this assumption and assume instead that our system is

free to exchange energy with its very large environment (heat bath) and that the total

energy of the system plus heat bath, E0, is by far larger than the typical energy of the

system. The combined system, composed of our original system plus the heat bath,

is now an isolated system at temperature T .

8Equality of chemical potentials is, in fact, the general principle of chemical equilibrium, and not

equality of concentrations or densities. In Sect. 1.3, we saw equality of densities, because in the

case of the ideal gas, the chemical potential is a function of the density, so equality of chemical

potentials happens to be equivalent to equality of densities in this case.
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Similarly as before, since the combined system is isolated, it is governed by the

microcanonical ensemble. The only difference is that now we assume that one of

the systems (the heat bath) is very large compared to the other (our test system).

This means that if our small system is in microstate x (for whatever definition of the

microstate vector) with energy E(x), then the heat bath must have energy E0 − E(x)

to complement the total energy to E0. The number of ways that the heat bath may

have energy E0 − E(x) is �B(E0 − E(x)), where �B(·) is the state volume function

pertaining to the entropy of the heat bath. In other words, the volume/number of

microstates of the combined system for which the small subsystem is in microstate

x is �B(E0 − E(x)). Since the combined system is governed by the microcanonical

ensemble, the probability of this is proportional to �B(E0 − E(x)). More precisely:

P(x) = �B(E0 − E(x))
∑

x′ �B(E0 − E(x′))
. (2.2.31)

Let us focus on the numerator for now, and normalize the result at the end. Then,

P(x) ∝ �B(E0 − E(x))

= exp{SB(E0 − E(x))/k}

≈ exp

{

SB(E0)

k
− 1

k

∂SB(E)

∂E

∣

∣

∣

∣

E=E0

· E(x)

}

= exp

{

SB(E0)

k
− 1

kT
· E(x)

}

∝ exp{−E(x)/(kT )}. (2.2.32)

It is customary to work with the so called inverse temperature:

β = 1

kT
(2.2.33)

and so,

P(x) ∝ e−βE(x), (2.2.34)

as we have already seen in the example of the ideal gas (where E(x) was the kinetic

energy), but now it is much more general. Thus, all that remains to do is to normal-

ize, and we then obtain the Boltzmann–Gibbs (B–G) distribution, or the canonical

ensemble, which describes the underlying probability law in equilibrium:

P(x) = exp{−βE(x)}
Z(β)

(2.2.35)
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where Z(β) is the normalization factor:

Z(β) =
∑

x

exp{−βE(x)} (2.2.36)

in the discrete case, or

Z(β) =
∫

dx exp{−βE(x)} (2.2.37)

in the continuous case. This function is called the partition function. As with the

function �(E), similar comments apply to the partition function: it must be dimen-

sionless, so if the components of x do have physical units, we must normalize by a

‘reference’ volume, which in the case of the (ideal) gas is again h3N . By the same

token, for indistinguishable particles, it should be divided by N ! While the micro-

canonical ensemble was defined in terms of the extensive variables E , V and N , in

the canonical ensemble, we replaced the variable E by the intensive variable that

controls it, namely, β (or T ). Thus, the full notation of the partition function should

be Z N (β, V ) or Z N (T, V ).

Exercise 2.1 Show that for the ideal gas

Z N (T, V ) = 1

N !h3N
V N (2πmkT )3N/2 = 1

N !

(

V

λ3

)N

(2.2.38)

where

λ
�= h√

2πmkT
. (2.2.39)

λ is called the thermal de Broglie wavelength.9

The formula of the B–G distribution is one of the most fundamental results in sta-

tistical mechanics, obtained solely from the energy conservation law and the postulate

of the uniform distribution in an isolated system. As we shall see, the meaning of the

partition function is by far deeper than just being a normalization constant. Interest-

ingly, a great deal of the macroscopic physical quantities, like the internal energy,

the free energy, the entropy, the heat capacity, the pressure, etc., can be obtained

from the partition function. This is in analogy to the fact that in the microcanonical

ensemble, S(E) (or, more generally, S(E, V, N )) was pivotal to the derivation of all

macroscopic physical quantities of interest.

9The origin of this name comes from the wave–particle de Broglie relation λ = h/p together with

the fact that the denominator,
√

2πmkT , can be viewed as a notion of thermal momentum of the

ideal gas, given the fact that the average molecular speed is proportional to
√

kT/m (see Sect. 1.1).
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Several comments are in order:

• The B–G distribution tells us that the system “prefers” to visit its low energy states

more than the high energy states, and what counts is only energy differences, not

absolute energies: If we add to all states a fixed amount of energy E0, this will

result in an extra factor of e−βE0 both in the numerator and in the denominator of

the B–G distribution, which of course will cancel out.

• In many physical systems, the Hamiltonian is a quadratic (or “harmonic”) function,

e.g., 1
2
mv2, 1

2
kx2, 1

2
CV 2, 1

2
L I 2, 1

2
Iω2, etc., in which case the resulting B–G

distribution turns out to be Gaussian. This is at least part of the explanation why

the Gaussian distribution is so frequently encountered in Nature.

• When the Hamiltonian is additive, that is, E(x) = ∑N
i=1 E(xi ), the various particles

are statistically independent: Additive Hamiltonians correspond to non–interacting

particles. In other words, the {xi }’s behave as if they were drawn from an i.i.d. prob-

ability distribution. By the law of large numbers 1
N

∑N
i=1 E(xi ) will tend (almost

surely) to ǫ = 〈E(X i )〉. Thus, the average energy of the system is about N · ǫ, not

only on the average, but moreover, with an overwhelmingly high probability for

large N . Nonetheless, this is different from the microcanonical ensemble where
1
N

∑N
i=1 E(xi ) was held strictly at the value of ǫ.

One of the important principles of statistical mechanics is that the microcanoni-

cal ensemble and the canonical ensemble (with the corresponding temperature) are

asymptotically equivalent (in the thermodynamic limit) as far as macroscopic quan-

tities go. They continue to be such, even in cases of interactions, as long as these are

short range10 and the same is true with the other ensembles that we will encounter

later in this chapter. This is an important and useful fact, because more often than

not, it is more convenient to analyze things in one ensemble rather than in others,

and so it is appropriate to pass to another ensemble for the purpose of the analysis,

even though the “real system” is in the other ensemble. We will use this ensemble

equivalence principle many times later on. The important thing, however, is to be

consistent and not to mix up two ensembles or more. Having moved to the other

ensemble, it is recommended to keep all further analysis in that ensemble.

Exercise 2.2 Consider the ideal gas with gravitation, where the Hamiltonian

includes, in addition to the kinetic energy term for each molecule, also an additive

term of potential energy mgzi for the i–th molecule (zi being its height). Suppose

that an ideal gas of N molecules of mass m is confined to a room whose floor and

ceiling areas are both A and whose height is h: (i) Write an expression for the joint

pdf of the location �r and the momentum �p of each molecule. (ii) Use this expression

to show that the gas pressures at the floor and the ceiling are given by

Pfloor = mgN

A(1 − e−mgh/kT )
; Pceiling = mgN

A(emgh/kT − 1)
. (2.2.40)

10This is related to the concavity of s(ǫ) [3, 4].
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Properties of the Partition Function and the Free Energy

Let us now examine more closely the partition function and make a few observations

about its basic properties. For simplicity, we shall assume that x is discrete. First, let’s

look at the limits: obviously, Z(0) is equal to the size of the entire set of microstates,

which is also
∑

E �(E). This is the high temperature limit, where all microstates

are equiprobable. At the other extreme, we have:

lim
β→∞

ln Z(β)

β
= − min

x
E(x)

�= −EGS (2.2.41)

which describes the situation where the system is frozen to the absolute zero. Only

states with minimum energy – the ground–state energy, prevail.

Another important property of Z(β), or more precisely, of ln Z(β), is that it is

a cumulant generating function: by taking derivatives of ln Z(β), we can obtain

cumulants of E(x). For the first cumulant, we have

〈E(X)〉 =
∑

x
E(x)e−βE(x)

∑

x
e−βE(x)

= −d ln Z(β)

dβ
. (2.2.42)

For example, referring to Exercise 2.1, for the ideal gas,

Z N (β, V ) = 1

N !

(

V

λ3

)N

= 1

N !
V N

h3N
·
(

2πm

β

)3N/2

, (2.2.43)

thus, 〈E(X)〉 = −d ln Z N (β, V )/dβ = 3N/(2β) = 3NkT/2 in agreement with

the result we obtained both in Chap. 1 and in the microcanonical ensemble, thus

demonstrating the ensemble equivalence principle. Similarly, it is easy to show that

Var{E(X)} = 〈E2(X)〉 − 〈E(X)〉2 = d2 ln Z(β)

dβ2
. (2.2.44)

This in turn implies that

d2 ln Z(β)

dβ2
≥ 0, (2.2.45)

which means that ln Z(β) must always be a convex function. Note also that

d2 ln Z(β)

dβ2
= −d〈E(x)〉

dβ

= −d〈E(x)〉
dT

· dT

dβ

= kT 2C(T ) (2.2.46)
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where C(T ) = d〈E(x)〉/dT is the heat capacity (at constant volume). Thus, the

convexity of ln Z(β) is intimately related to the physical fact that the heat capacity

of the system is positive.

Next, we look at the function Z(β) slightly differently. Instead of summing the

terms {e−βE(x)} over all states individually, we sum them by energy levels, in a

collective manner. This amounts to:

Z(β) =
∑

x

e−βE(x)

=
∑

E

�(E)e−βE

≈
∑

ǫ

eNs(ǫ)/k · e−βNǫ

=
∑

ǫ

exp{−Nβ[ǫ − T s(ǫ)]}

·= max
ǫ

exp{−Nβ[ǫ − T s(ǫ)]}
= exp{−Nβ min

ǫ
[ǫ − T s(ǫ)]}

�= exp{−Nβ[ǫ∗ − T s(ǫ∗)]}
�= e−βF , (2.2.47)

where here and throughout the sequel, the notation
·= means asymptotic equivalence

in the exponential scale. More precisely, aN
·= bN for two positive sequences {aN }

and {bN }, means that limN→∞
1
N

ln aN

bN
= 0.

The quantity f
�= ǫ∗ − T s(ǫ∗) is the (per–particle) free energy. Similarly, the

entire free energy, F , is defined as

F
�= E − T S = − ln Z(β)

β
= −kT ln Z(β). (2.2.48)

Once again, due to the exponentiality of (2.2.47) in N , with very high probability the

system would be found in a microstate x whose normalized energy ǫ(x) = E(x)/N is

very close to ǫ∗, the normalized energy that minimizes ǫ− T s(ǫ) and hence achieves

f . Note that the minimizing ǫ∗ (obtained by equating the derivative of ǫ − T s(ǫ)

to zero), is the solution to the equation s ′(ǫ∗) = 1/T , which conforms with the

definition of temperature. We see then that equilibrium in the canonical ensemble

amounts to minimum free energy. This extends the second law of thermodynamics

from isolated systems to non–isolated ones. While in an isolated system, the second

law asserts the principle of maximum entropy, when it comes to a non–isolated

system, this rule is replaced by the principle of minimum free energy.
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Exercise 2.3 Show that the canonical average pressure is given by

P = −∂F

∂V
= kT · ∂ ln Z N (β, V )

∂V
.

Examine this formula for the canonical ensemble of the ideal gas. Compare to the

equation of state.

The physical meaning of the free energy, or more precisely, the difference between

two free energies F1 and F2, is the minimum amount of work that it takes to transfer

the system from equilibrium state 1 to another equilibrium state 2 in an isothermal

(fixed temperature) process. This minimum is achieved when the process is quasi–

static, i.e., so slow that the system is always almost in equilibrium. Equivalently,

−�F is the maximum amount of energy in the system, that is free and useful for

performing work (i.e., not dissipated as heat) in fixed temperature.

To demonstrate this point, let us consider the case where E(x) includes a term of

a potential energy that is given by the (scalar) product of a certain external force and

the conjugate physical variable at which this force is exerted (e.g., pressure times

volume, gravitational force times height, moment times angle, magnetic field times

magnetic moment, voltage times electric charge, etc.), i.e.,

E(x) = E0(x) − λ · L(x) (2.2.49)

where λ is the force and L(x) is the conjugate physical variable, which depends on

(some coordinates of) the microstate. The partition function then depends on both β

and λ and hence will be denoted11 Z(β,λ). It is easy to see (similarly as before) that

ln Z(β,λ) is convex in λ for fixed β. Also,

〈L(x)〉 = kT · ∂ ln Z(β,λ)

∂λ
. (2.2.50)

The free energy is given by12

11Since the term λ · L(x) is not considered part of the internal energy (but rather an external energy

resource), formally, this ensemble is no longer the canonical ensemble, but a somewhat different

ensemble, called the Gibbs ensemble, which will be discussed later on.
12At this point, there is a distinction between the Helmholtz free energy and the Gibbs free energy.

The former is defined as F = E − T S in general, as mentioned earlier. The latter is defined as

G = E−T S−λL = −kT ln Z , where L is shorthand notation for 〈L(x)〉 (the quantity H = E−λL

is called the enthalpy). The physical significance of the Gibbs free energy is similar to that of the

Helmholtz free energy, except that it refers to the total work of all other external forces in the system

(if there are any), except the work contributed by the force λ (Exercise 2.4 show this!). The passage

to the Gibbs ensemble, which replaces a fixed value of L(x) (say, constant volume of a gas) by

the control of the conjugate external force λ, (say, pressure in the example of a gas) can be carried

out by another Legendre–Fenchel transform (see, e.g., [5, Sect. 1.14]) as well as Sect. 2.2.3 in the

sequel.
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F = E − T S

= −kT ln Z + λ〈L(X)〉

= kT

(

λ · ∂ ln Z

∂λ
− ln Z

)

. (2.2.51)

Now, let F1 and F2 be the equilibrium free energies pertaining to two values of λ,

denoted λ1 and λ2. Then,

F2 − F1 =
∫ λ2

λ1

dλ · ∂F

∂λ

= kT ·
∫ λ2

λ1

dλ · λ · ∂2 ln Z

∂λ2

=
∫ λ2

λ1

dλ · λ · ∂〈L(X)〉
∂λ

=
∫ 〈L(X)〉λ2

〈L(X)〉λ1

λ · d〈L(X)〉 (2.2.52)

The product λ · d〈L(X)〉 designates an infinitesimal amount of (average) work per-

formed by the force λ on a small change in the average of the conjugate variable

〈L(X)〉, where the expectation is taken w.r.t. the actual value of λ. Thus, the last

integral expresses the total work along a slow process of changing the force λ in

small steps and letting the system adapt and equilibrate after this small change every

time. On the other hand, it is easy to show (using the convexity of ln Z in λ), that if

λ varies in large steps, the resulting amount of work will always be larger.

Let us define

φ(β) = lim
N→∞

ln Z(β)

N
(2.2.53)

and, in order to avoid dragging the constant k, let us define

�(ǫ) = lim
N→∞

ln �(Nǫ)

N
= s(ǫ)

k
. (2.2.54)

Then, the chain of equalities (2.2.47), written slightly differently, gives

φ(β) = lim
N→∞

ln Z(β)

N

= lim
N→∞

1

N
ln

{

∑

ǫ

eN [�(ǫ)−βǫ]
}

= max
ǫ

[�(ǫ) − βǫ].
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Thus, φ(β) is (a certain variant of) the Legendre–Fenchel transform13 of �(ǫ). As

�(ǫ) is (normally) a concave, monotonically increasing function, then it can readily

be shown that the inverse transform is:

�(ǫ) = min
β

[βǫ + φ(β)]. (2.2.55)

The achiever, ǫ∗(β), of φ(β) in the forward transform is obtained by equating the

derivative to zero, i.e., it is the solution to the equation

β = �′(ǫ), (2.2.56)

where �′(ǫ) is the derivative of �(ǫ). In other words, ǫ∗(β) the inverse function of

�′(·). By the same token, the achiever, β∗(ǫ), of �(ǫ) in the backward transform is

obtained by equating the other derivative to zero, i.e., it is the solution to the equation

ǫ = −φ′(β) (2.2.57)

or in other words, the inverse function of −φ′(·). This establishes a relationship

between the typical per–particle energy ǫ and the inverse temperature β that gives

rise to ǫ (cf. the Lagrange interpretation above, where we said that β controls the

average energy).

Example 2.3 (Two level system) Similarly to the earlier example of Schottky defects,

which was previously given in the context of the microcanonical ensemble, consider

now a system of N independent particles, each having two possible states: state 0 of

zero energy and state 1, whose energy is ǫ0, i.e., E(x) = ǫ0x , x ∈ {0, 1}. The xi ’s are

independent, each having a marginal14:

P(x) = e−βǫ0x

1 + e−βǫ0
x ∈ {0, 1}. (2.2.58)

In this case,

φ(β) = ln(1 + e−βǫ0) (2.2.59)

13More precisely, the one–dimensional Legendre–Fenchel transform of a real function f (x) is

defined as g(y) = supx [xy − f (x)]. If f is convex, it can readily be shown that: (i) The inverse

transform has the very same form, i.e., f (x) = supy[xy − g(y)], and (ii) The derivatives f ′(x) and

g′(y) are inverses of each other.
14Note that the expected number of ‘activated’ particles 〈n〉 = N P(1) = Ne−βǫ0 /(1 + e−βǫ0 ) =
N/(eβǫ0 + 1), in agreement with the result of Example 2.1 (Eq. (2.2.17)). This demonstrates the

ensemble equivalence principle.
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and

�(ǫ) = min
β≥0

[βǫ + ln(1 + e−βǫ0)]. (2.2.60)

To find β∗(ǫ), we take the derivative and equate to zero:

ǫ − ǫ0e−βǫ0

1 + e−βǫ0
= 0 (2.2.61)

which gives

β∗(ǫ) = ln(ǫ0/ǫ − 1)

ǫ0

. (2.2.62)

On substituting this back into the above expression of �(ǫ), we get:

�(ǫ) = ǫ

ǫ0

ln

(

ǫ

ǫ0

− 1

)

+ ln

[

1 + exp

{

− ln

(

ǫ

ǫ0

− 1

)}]

, (2.2.63)

which after a short algebraic manipulation, becomes

�(ǫ) = h2

(

ǫ

ǫ0

)

, (2.2.64)

just like in the Schottky example. In the other direction:

φ(β) = max
ǫ

[

h2

(

ǫ

ǫ0

)

− βǫ

]

, (2.2.65)

whose achiever ǫ∗(β) solves the zero–derivative equation:

1

ǫ0

ln

[

1 − ǫ/ǫ0

ǫ/ǫ0

]

= β (2.2.66)

or equivalently,

ǫ∗(β) = ǫ0

1 + e−βǫ0
, (2.2.67)

which is exactly the inverse function of β∗(ǫ) above, and which when substituted

back into the expression of φ(β), indeed gives

φ(β) = ln(1 + e−βǫ0). (2.2.68)

This concludes Example 2.3.
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Comment A very similar model (and hence with similar results) pertains to non–

interacting spins (magnetic moments), where the only difference is that x ∈ {−1,+1}
rather than x ∈ {0, 1}. Here, the meaning of the parameter ǫ0 becomes that of

a magnetic field, which is more customarily denoted by B (or H ), and which is

either parallel or anti-parallel to that of the spin, and so the potential energy (in the

appropriate physical units), �B · �x , is either Bx or −Bx . Thus,

P(x) = eβBx

2 cosh(βB)
; Z(β) = 2 cosh(βB). (2.2.69)

The net magnetization per–spin is defined as

m
�=

〈

1

N

N
∑

i=1

X i

〉

= 〈X1〉 = ∂φ

∂(βB)
= tanh(βB). (2.2.70)

This is the paramagnetic characteristic of the magnetization as a function of the

magnetic field: as B → ±∞, the magnetization m → ±1 accordingly. When the

magnetic field is removed (B = 0), the magnetization vanishes too. We will get back

to this model and its extensions in Chap. 5. �

Now, observe that whenever β and ǫ are related as explained above, we have:

�(ǫ) = βǫ + φ(β) = φ(β) − β · φ′(β). (2.2.71)

The Gibbs entropy per particle is defined in its normalized form as

H̄ = − lim
N→∞

1

N

∑

x

P(x) ln P(x) = − lim
N→∞

1

N
〈ln P(x)〉, (2.2.72)

which in the case of the B–G distribution amounts to

H̄ = lim
N→∞

1

N

〈

ln
Z(β)

e−βE(X)

〉

= lim
N→∞

[

ln Z(β)

N
+ β〈E(X)〉

N

]

= φ(β) − β · φ′(β),

but this is exactly the same expression as in (2.2.71), and so, �(ǫ) and H̄ are identical

whenever β and ǫ are related accordingly. The former, as we recall, we defined as the

normalized logarithm of the number of microstates with per–particle energy ǫ. Thus,

we have learned that the number of such microstates is of the exponential order of

eN H̄ . Another look at this relation is the following:
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1 ≥
∑

x: E(x)≈Nǫ

P(x) =
∑

x: E(x)≈Nǫ

exp{−β
∑

i E(xi )}
Z N (β)

·=
∑

x: E(x)≈Nǫ

exp{−βNǫ − Nφ(β)}

= �(Nǫ) · exp{−N [βǫ + φ(β)]} (2.2.73)

which means that

�(Nǫ) ≤ exp{N [βǫ + φ(β)]} (2.2.74)

for all β, and so,

�(Nǫ) ≤ exp{N min
β

[βǫ + φ(β)]} = eN�(ǫ) = eN H̄ . (2.2.75)

A compatible lower bound is obtained by observing that the minimizing β gives rise

to 〈E(X1)〉 = ǫ, which makes the event {x : E(x) ≈ Nǫ} a high–probability event,

by the weak law of large numbers. A good reference for further study, and from a

more general perspective, is the article by Hall [6]. See also [7].

Now, that we identified the Gibbs entropy with the Boltzmann entropy, it is instruc-

tive to point out that the B–G distribution could have been obtained also in a different

manner, owing to the maximum–entropy principle that stems from the second law,

or the minimum free–energy principle. Specifically, let us denote the Gibbs entropy

as

H(P) = −
∑

x

P(x) ln P(x) (2.2.76)

and consider the following optimization problem:

max H(P)

s.t. 〈E(X)〉 = E (2.2.77)

By formalizing the equivalent Lagrange problem, where β now plays the role of a

Lagrange multiplier:

max

{

H(P) + β

[

E −
∑

x

P(x)E(x)

]}

, (2.2.78)

or equivalently,

min

{

∑

x

P(x)E(x) − H(P)

β

}

(2.2.79)
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one readily verifies that the solution to this problem is the B–G distribution where the

choice of the (Lagrange multiplier) β controls the average energy E . If β is identified

with the inverse temperature, the above is nothing but the minimization of the free

energy.

Note also that Eq. (2.2.71), which we will rewrite, with a slight abuse of notation

as

φ(β) − βφ′(β) = �(β) (2.2.80)

can be viewed in two ways. The first suggests to take derivatives of both sides w.r.t.

β and then obtain �′(β) = −βφ′′(β) and so,

s(β) = k�(β)

= k

∫ ∞

β

β̃φ′′(β̃)dβ̃ 3rd law

= k

∫ T

0

1

kT̃
· kT̃ 2c(T̃ ) · dT̃

kT̃ 2
c(T̃ )

�= heat capacity per particle

=
∫ T

0

c(T̃ )dT̃

T̃
(2.2.81)

recovering the Clausius entropy as c(T̃ )dT̃ is the increment of heat intake per particle

dq. The second way to look at Eq. (2.2.80) is as a first order differential equation in

φ(β), whose solution is easily found to be

φ(β) = −βǫGS + β ·
∫ ∞

β

dβ̂�(β̂)

β̂2
, (2.2.82)

where ǫGS = limN→∞ EGS/N . Equivalently,

Z(β)
·= exp

{

−βEGS + Nβ ·
∫ ∞

β

dβ̂�(β̂)

β̂2

}

, (2.2.83)

namely, the partition function at a certain temperature can be expressed as a functional

of the entropy pertaining to all temperatures lower than that temperature. Changing

the integration variable from β to T , this readily gives the relation

F = EGS −
∫ T

0

S(T ′)dT ′. (2.2.84)

Since F = E − ST , we have

E = EGS + ST −
∫ T

0

S(T ′)dT ′ = EGS +
∫ S

0

T (S′)dS′, (2.2.85)
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where the second term amounts to the heat Q that accumulates in the system, as

the temperature is raised from 0 to T . This is a special case of the first law of

thermodynamics. The more general form, as said, takes into account also possible

work performed on (or by) the system.

Let us now summarize the main properties of the partition function that we have

seen thus far:

1. Z(β) is a continuous function. Z(0) = |X n| and limβ→∞
ln Z(β)

β
= −EGS.

2. Generating cumulants: 〈E(X)〉 = −d ln Z/dβ, Var{E(X)} = d2 ln Z/dβ2, which

implies convexity of ln Z , and hence also of φ(β).

3. φ and � are a Legendre–Fenchel transform pair. � is concave.

We have also seen that Boltzmann’s entropy is not only equivalent to the Clausius

entropy, but also to the Gibbs/Shannon entropy. Thus, there are actually three different

forms of the expression of entropy.

Comment Consider Z(β) for an imaginary temperature β = iω, where i =
√

−1,

and define z(E) as the inverse Fourier transform of Z(iω). It can readily be seen that

z(E) = ω(E), i.e., for E1 < E2, the number of states with energy between E1 and

E2 is given by
∫ E2

E1
z(E)dE . Thus, Z(·) can be related to energy enumeration in two

different ways: one is by the Legendre–Fenchel transform of ln Z(β) for real β, and

the other is by the inverse Fourier transform of Z(β) for imaginary β. It should be

kept in mind, however, that while the latter relation holds for every system size N ,

the former is true only in the thermodynamic limit, as mentioned.

The Energy Equipartition Theorem

It turns out that in the case of a quadratic Hamiltonian, E(x) = 1
2
αx2, which means

that x is Gaussian, the average per–particle energy, is always given by 1/(2β) =
kT/2, independently of α. If we have N such quadratic terms, then of course, we

end up with NkT /2. In the case of the ideal gas, we have three such terms (one

for each dimension) per particle, thus a total of 3N terms, and so, E = 3NkT/2,

which is exactly the expression we obtained also from the microcanonical ensemble

as well as in the previous chapter. In fact, we observe that in the canonical ensemble,

whenever we have an Hamiltonian of the form α
2

x2
i plus some arbitrary terms that

do not depend on xi , then xi is Gaussian (with variance kT/α) and independent of

the other variables, i.e., p(xi ) ∝ e−αx2
i /(2kT ). Hence it contributes an amount of

〈

1

2
αX2

i

〉

= 1

2
α · kT

α
= kT

2
(2.2.86)

to the total average energy, independently of α. It is more precise to refer to this xi as

a degree of freedom rather than a particle. This is because in the three–dimensional

world, the kinetic energy, for example, is given by p2
x/(2m) + p2

y/(2m) + p2
z /(2m),

that is, each particle contributes three additive quadratic terms rather than one ( just
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like three independent one–dimensional particles) and so, it contributes 3kT /2. This

principle is called the energy equipartition theorem.

Below is a direct derivation of the equipartition theorem:

〈

1

2
αX2

〉

=
∫ ∞
−∞ dx(αx2/2)e−βαx2/2

∫ ∞
−∞ dxe−βαx2/2)

= − ∂

∂β
ln

[∫ ∞

−∞
dxe−βαx2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
d(

√

βx)e−α(
√

βx)2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
due−αu2/2

]

= 1

2

d ln β

dβ
= 1

2β
= kT

2
.

Note that although we could have used closed–form expressions for both the numer-

ator and the denominator of the first line, we have deliberately taken a somewhat

different route in the second line, where we have presented it as the derivative of

the denominator of the first line. Also, rather than calculating the Gaussian integral

explicitly, we only figured out how it scales with β, because this is the only thing

that matters after taking the derivative relative to β. The reason for using this trick

of bypassing the need to calculate integrals, is that it can easily be extended in two

directions at least:

1. Let x ∈ IRN and let E(x) = 1
2
x

T Ax, where A is a N × N positive definite

matrix. This corresponds to a physical system with a quadratic Hamiltonian, which

includes also interactions between pairs (e.g., harmonic oscillators or springs, which

are coupled because they are tied to one another). It turns out that here, regardless of

A, we get:

〈E(X)〉 =
〈

1

2
X

T AX

〉

= N · kT

2
. (2.2.87)

2. Back to the case of a scalar x , but suppose now a more general power–law

Hamiltonian, E(x) = α|x |θ. In this case, we get

〈E(X)〉 = 〈α|X |θ〉 = kT

θ
. (2.2.88)

Moreover, if limx→±∞ xe−βE(x) = 0 for all β > 0, and we denote E ′(x)
�= dE(x)/dx ,

then

〈X · E
′(X)〉 = kT . (2.2.89)
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It is easy to see that the earlier power–law result is obtained as a special case of this,

as E
′(x) = αθ|x |θ−1sgn(x) in this case.

Example 2.4 (Ideal gas with gravitation) Let

E(x) =
p2

x + p2
y + p2

z

2m
+ mgz. (2.2.90)

The average kinetic energy of each particle is 3kT /2, as said before. The contribution

of the average potential energy is kT (one degree of freedom with θ = 1). Thus, the

total is 5kT/2, where 60% come from kinetic energy and 40% come from potential

energy, universally, that is, independent of T , m, and g. �

2.2.3 The Grand–Canonical Ensemble and the Gibbs

Ensemble

A brief summary of what we have done thus far, is the following: we started with

the microcanonical ensemble, which was very restrictive in the sense that the energy

was held strictly fixed to the value of E , the number of particles was held strictly

fixed to the value of N , and at least in the example of a gas, the volume was also held

strictly fixed to a certain value V . In the passage from the microcanonical ensemble

to the canonical one, we slightly relaxed the first of these parameters, E : rather than

insisting on a fixed value of E , we allowed energy to be exchanged back and forth

with the environment, and thereby to slightly fluctuate (for large N ) around a certain

average value, which was controlled by temperature, or equivalently, by the choice

of β. This was done while keeping in mind that the total energy of both system and

heat bath must be kept fixed, by the law of energy conservation, which allowed us

to look at the combined system as an isolated one, thus obeying the microcanonical

ensemble. We then had a one–to–one correspondence between the extensive quantity

E and the intensive variable β, that adjusted its average value. But the other extensive

variables, like N and V were still kept strictly fixed.

It turns out, that we can continue in this spirit, and ‘relax’ also either one of the

other variables N or V (but not both at the same time), allowing it to fluctuate around

a typical average value, and controlling it by a corresponding intensive variable. Like

E , both N and V are also subjected to conservation laws when the combined system

is considered. Each one of these relaxations leads to a new ensemble, in addition to

the microcanonical and the canonical ensembles that we have already seen. In the

case where it is the variable V that is allowed to be flexible, this ensemble is called

the Gibbs ensemble. In the case where it is the variable N , this ensemble is called

the grand–canonical ensemble. There are, of course, additional ensembles based on

this principle, depending on the kind of the physical system.
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The Grand–Canonical Ensemble

The fundamental idea is essentially the very same as the one we used to derive the

canonical ensemble: let us get back to our (relatively small) subsystem, which is in

contact with a heat bath, and this time, let us allow this subsystem to exchange with

the heat bath, not only energy, but also matter, i.e., particles. The heat bath consists of

a huge reservoir of energy and particles. The total energy is E0 and the total number

of particles is N0. Suppose that we can calculate the number/volume of states of the

heat bath as a function of both its energy E ′ and amount of particles N ′, and denote

this function by �B(E ′, N ′). A microstate is now a combination (x, N ), where N is

the (variable) number of particles in our subsystem and x is as before for a given N .

From the same considerations as before, whenever our subsystem is in state (x, N ),

the heat bath can be in any one of �B(E0 − E(x), N0 − N ) microstates of its own.

Thus, owing to the microcanonical ensemble,

P(x, N ) ∝ �B(E0 − E(x), N0 − N )

= exp{SB(E0 − E(x), N0 − N )/k}

≈ exp

{

SB(E0, N0)

k
− 1

k

∂SB

∂E
· E(x) − 1

k

∂SB

∂N
· N

}

∝ exp

{

−E(x)

kT
+ μN

kT

}

(2.2.91)

where μ is the chemical potential of the heat bath. Thus, we now have the grand–

canonical distribution:

P(x, N ) = eβ[μN−E(x)]

�(β,μ)
, (2.2.92)

where the denominator is called the grand partition function:

�(β,μ)
�=

∞
∑

N=0

eβμN
∑

x

e−βE(x) �=
∞

∑

N=0

eβμN Z N (β). (2.2.93)

Example 2.5 (Grand partition function of the ideal gas) Using the result of Exercise

2.1, we have for the ideal gas:

�(β,μ) =
∞

∑

N=0

eβμN · 1

N !

(

V

λ3

)N

=
∞

∑

N=0

1

N !

(

eβμ · V

λ3

)N
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= exp

(

eβμ · V

λ3

)

. (2.2.94)

It is convenient to change variables and to define z = eβμ (which is called the

fugacity) and then, define

�̃(β, z) =
∞

∑

N=0

zN Z N (β). (2.2.95)

This notation emphasizes the fact that for a given β, �̃(z) is actually the z–transform

of the sequence {Z N (β)}N≥0. A natural way to think about P(x, N ) is as P(N ) ·
P(x|N ), where P(N ) is proportional to zN Z N (β) and P(x|N ) corresponds to the

canonical ensemble as before.

Using the grand partition function, it is now easy to obtain moments of the random

variable N . For example, the first moment is:

〈N 〉 =
∑

N N zN Z N (β)
∑

N zN Z N (β)
= z · ∂ ln �̃(β, z)

∂z
. (2.2.96)

Thus, we have replaced the fixed number of particles, N , by a random number of

particles, which concentrates around an average controlled by μ, or equivalently,

by z. The dominant15 value of N is the one that maximizes the product zN Z N (β),

or equivalently, βμN + ln Z N (β) = β(μN − FN ). Thus, ln �̃ is related to ln Z N

by another kind of a Legendre–Fenchel transform: ln �̃(β, z, V ) ≈ maxN [βμN +
ln Z N (β, V )] or equivalently

kT ln �̃(β, z, V ) ≈ max
N

[μN + kT ln Z N (β, V )].

Note that by passing to the grand–canonical ensemble, we have replaced two

extensive quantities, E and N , by their respective conjugate intensive variables,

T and μ. This means that the grand partition function depends on one remaining

extensive variable only, which is V , and so, under ordinary conditions, ln �(β, z),

or in its more complete notation, ln �(β, z, V ), depends linearly on V at least in the

thermodynamic limit, namely, limV →∞[ln �(β, z, V )]/V tends to a constant that

depends only on β and z. What is this constant? Let us examine again the first law in

its more general form, as it appears in Eq. (2.2.30). For fixed T and μ, we have the

following:

15The best way to understand this is in analogy to the derivation of ǫ∗ as the minimizer of the free

energy in the canonical ensemble, except that now the ‘big’ extensive variable is V rather than

N , so that zN Z N (β, V ) is roughly exponential in V for a given fixed ρ = N/V . The exponential

coefficient depends on ρ, and the ‘dominant’ ρ∗ maximizes this coefficient. Finally, the ‘dominant’

N is N∗ = ρ∗V .
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PδV = μδN + T δS − δE

= δ(μN + T S − E)

= δ(μN − F)

≈ kT · δ[ln �(β, z, V )] V large (2.2.97)

Thus, the constant of proportionality must be P . In other words, the grand–canonical

formula of the pressure is:

P = kT · lim
V →∞

ln �(β, z, V )

V
. (2.2.98)

This is different from the canonical–ensemble formula (Exercise 2.3): P = kT · ∂

ln Z N (β, V )/∂V , and to the microcanonical–ensemble formula, P = T · ∂S(E,

V, N )/∂V .

Example 2.6 (more on the ideal gas) Applying formula (2.2.96) to Eq. (2.2.94), we

readily obtain

〈N 〉 = zV

λ3
= eμ/kT V

λ3
. (2.2.99)

We see that the grand–canonical factor eμ/kT has the physical meaning of the average

number of ideal gas atoms in a cube of size λ × λ × λ, where λ is the thermal de

Broglie wavelength. Now, applying Eqs. (2.2.98) to (2.2.94), we get

P = kT · eμ/kT

λ3
= 〈N 〉 · kT

V
, (2.2.100)

recovering again the equation of state of the ideal gas. This also demonstrates the

principle of ensemble equivalence.

Once again, it should be pointed out that beyond the obvious physical significance

of the grand–canonical ensemble, sometimes it proves useful to work with from rea-

sons of pure mathematical convenience, using the principle of ensemble equivalence.

We will see this very clearly in the next chapters on quantum statistics.

The Gibbs Ensemble

Consider now the case where T and N are fixed, but V is allowed to fluctuate

around an average volume controlled by the pressure P . Again, we can analyze our

relatively small test system surrounded by a heat bath. The total energy is E0 and

the total volume of the system and the heat bath is V0. Suppose that we can calculate

the count/volume of states of the heat bath as function of both its energy E ′ and the

volume V ′, call it �B(E ′, V ′). A microstate is now a combination (x, V ), where V

is the (variable) volume of our subsystem. Once again, the same line of thought is
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used: whenever our subsystem is at state (x, V ), the heat bath may be in any one of

�B(E0 − E(x), V0 − V ) microstates of its own. Thus,

P(x, V ) ∝ �B(E0 − E(x), V0 − V )

= exp{SB(E0 − E(x), V0 − V )/k}

≈ exp

{

SB(E0, V0)

k
− 1

k

∂SB

∂E
· E(x) − 1

k

∂SB

∂V
· V

}

∝ exp

{

−E(x)

kT
− PV

kT

}

= exp{−β[E(x) + PV ]}. (2.2.101)

The corresponding partition function that normalizes this probability function is

given by

YN (β, P) =
∫ ∞

0

e−βPV Z N (β, V )dV =
∫ ∞

0

e−βPV dV
∑

x

e−βE(x). (2.2.102)

For a given N andβ, the function YN (β, P) can be thought of as the Laplace transform

of Z N (β, V ) as a function of V . In the thermodynamic limit, limN→∞
1
N

ln YN (β, P)

is the Legendre–Fenchel transform of limN→∞
1
N

ln Z N (β, V ) for fixed β, similarly

to the Legendre–Fenchel relationship between the entropy and the canonical log–

partition function.16 Note that analogously to Eq. (2.2.96), here the Gibbs partition

function serves as a cumulant generating function for the random variable V , thus,

for example,

〈V 〉 = −kT · ∂ ln YN (β, P)

∂P
. (2.2.103)

As mentioned in footnote no. 20,

G = −kT ln YN (β, P) = E − T S + PV = F + PV (2.2.104)

is the Gibbs free energy of the system, and for the case considered here, the force

is the pressure and the conjugate variable it controls is the volume. In analogy to

the grand–canonical ensemble, here too, there is only one extensive variable, this

time, it is N . Thus, G should be asymptotically proportional to N with a constant of

proportionality that depends on the fixed values of T and P .

16Exercise 2.5 Write explicitly the Legendre–Fenchel relation (and its inverse) between the Gibbs

partition function and the canonical partition function.
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Exercise 2.6 Show that this constant is the chemical potential μ.

All this is, of course, relevant when the physical system is a gas in a container. In

general, the Gibbs ensemble is obtained by a similar Legendre–Fenchel transform

replacing an extensive physical quantity of the canonical ensemble by its conjugate

force. For example, magnetic field is conjugate to magnetization, electric field is

conjugate to electric charge, mechanical force is conjugate to displacement, moment

is conjugate to angular shift, and so on. By the same token, the chemical potential is

a ‘force’ that is conjugate to the number of particles in grand–canonical ensemble,

and (inverse) temperature is a ‘force’ that controls the heat energy.

Figure 2.2 summarizes the thermodynamic potentials associated with the various

statistical ensembles. The arrow between each two connected blocks in the diagram

designates a passage from one ensemble to another by a Legendre–Fenchel transform

operator L that is defined generically at the bottom of the figure. In each passage,

it is also indicated which extensive variable is replaced by its conjugate intensive

variable.

It should be noted, that at least mathematically, one could have defined three

more ensembles that would complete the picture of Fig. 2.2 in a symmetric manner.

Two of the additional ensembles can be obtained by applying Legendre–Fenchel

transforms on S(E, V, N ), other than the transform that takes us to the canonical

ensemble. The first Legendre–Fenchel transform is w.r.t. the variable V , replacing

it by P , and the second additional ensemble is w.r.t. the variable N , replacing it

by μ. Let us denote the new resulting ‘potentials’ (minus kT times log–partition

functions) by A(E, P, N ) and B(E, V,μ), respectively. The third ensemble, with

potential C(E, P,μ), whose only extensive variable is E , could be obtained by

Fig. 2.2 Diagram of Legendre–Fenchel relations between the various ensembles
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yet another Legendre–Fenchel transform, either on A(E, P, N ) or B(E, V,μ) w.r.t.

the appropriate extensive variable. Of course, A(E, P, N ) and B(E, V,μ) are also

connected directly to the Gibbs ensemble and to the grand–canonical ensemble,

respectively, both by Legendre–Fenchel–transforming w.r.t. E . While these three

ensembles are not really used in physics, they might prove useful to work with

for calculating certain physical quantities, by taking advantage of the principle of

ensemble equivalence.

Exercise 2.7 Complete the diagram of Fig. 2.2 by the three additional ensembles just

defined. Can you give physical meanings to A, B and C? Also, as said, C(E, P,μ) has

only E as an extensive variable. Thus, limE→∞ C(E, P,μ)/E should be a constant.

What is this constant?

Even more generally, we could start from a system model, whose micro–canonical

ensemble consists of many extensive variables L1, . . . , Ln , in addition to the inter-

nal energy E (not just V and N ). The entropy function is then S(E, L1, . . . , Ln, N ).

Here, L i can be, for example, volume, mass, electric charge, electric polarization in

each one of the three axes, magnetization in each one of three axes, and so on. The

first Legendre–Fenchel transform takes us from the micro–canonical ensemble to the

canonical one upon replacing E by β. Then we can think of various Gibbs ensem-

bles obtained by replacing any subset of extensive variables L i by their respective

conjugate forces λi = T ∂S/∂L i , i = 1, . . . , n (in the above examples: pressure,

gravitational force (weight), voltage (or electric potential), electric fields, and mag-

netic fields in the corresponding axes, respectively). In the extreme case, all L i are

replaced by λi upon applying successive Legendre–Fenchel transforms, or equiva-

lently, a multi–dimensional Legendre–Fenchel transform:

G(T,λ1, . . . , λn, N ) = − sup
L1,...,Ln

[kT ln Z N (β, L1, . . . , Ln) − λ1L1 − . . . − λn Ln] .

(2.2.105)

Once again, there must be one extensive variable at least.

2.3 Suggestions for Supplementary Reading

Part of the presentation in this chapter is similar to a corresponding chapter in [1]. The

derivations associated with the various ensembles of statistical mechanics, as well

as their many properties, can also be found in any textbook on elementary statistical

mechanics, including: Beck [8, Chap. 3], Huang [9, Chaps. 6, 7], Honerkamp [10,

Chap. 3], Landau and Lifshitz [2], Pathria [11, Chaps. 2–4], and Reif [12, Chap. 6],

among many others.
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Chapter 3

Quantum Statistics – The Fermi–Dirac

Distribution

In our discussion thus far, we have largely taken for granted the assumption that our

system can be analyzed in the classical regime, where quantum effects are negligible.

This is, of course, not always the case, especially at very low temperatures. Also,

if radiation plays a role in the physical system, then at very high frequency ν, the

classical approximation also breaks down. Roughly speaking, kT should be much

larger than hν for the classical regime to be well justified.1 It is therefore necessary

to address quantum effects in statistical physics issues, most notably, the fact that

certain quantities, like energy and angular momentum (or spin), no longer take on

values in the continuum, but only in a discrete set, which depends on the system in

question.

Consider a gas of identical particles with discrete single–particle quantum states,

1, 2, . . . , r, . . ., corresponding to energies

ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫr ≤ · · · .

Since the particles are assumed indistinguishable, then for a gas of N particles, a

micro–state is defined by the combination of occupation numbers

N1, N2, . . . , Nr , . . . ,

where Nr is the number of particles at a single state r .

1One well–known example is black–body radiation. According to the classical theory, the radiation

density per unit frequency grows proportionally to kT ν2, a function whose integral over ν, from zero

to infinity, diverges (“the ultraviolet catastrophe”). This absurd is resolved by quantum mechanical

considerations, according to which the factor kT should be replaced by hν/[ehν/(kT ) − 1], which

is close to kT at low frequencies, but decays exponentially for ν > kT/h.
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48 3 Quantum Statistics – The Fermi–Dirac Distribution

The first fundamental question is the following: what values can the occupation

numbers N1, N2, . . . assume? According to quantum mechanics, there might be cer-

tain restrictions on these numbers. In particular, there are two kinds of situations that

may arise, which divide the various particles in the world into two mutually exclusive

classes.

For the first class of particles, there are no restrictions at all. The occupation

numbers can assume any non–negative integer value (Nr = 0, 1, 2, . . .). Particles

of this class are called Bose–Einstein (BE) particles2 or bosons for short. Another

feature of bosons is that their spins are always integral multiples of �, namely, 0, �,

2�, etc. Examples of bosons are photons, π mesons and K mesons. We will focus

on them in the next chapter.

In the second class of particles, the occupation numbers are restricted by the Pauli

exclusion principle (discovered in 1925), according to which no more than one par-

ticle can occupy a given quantum state r (thus Nr is either 0 or 1 for all r ), since

the wave function of two such particles is anti–symmetric and thus vanishes if they

assume the same quantum state (unlike bosons for which the wave function is sym-

metric). Particles of this kind are called Fermi–Dirac (FD) particles3 or fermions for

short. Another characteristic of fermions is that their spins are always odd multiples

of �/2, namely, �/2, 3�/2, 5�/2, etc. Examples of fermions are electrons, positrons,

protons, and neutrons. The statistical mechanics of fermions will be discussed in this

chapter.

3.1 Combinatorial Derivation of the FD Statistics

Consider a gas of N fermions in volume V and temperature T . In the thermodynamic

limit, where the dimensions of the system are large, the discrete single–particle energy

levels {ǫr } are very close to each other. Therefore, instead of considering each one of

them individually, we shall consider groups of neighboring states. Since the energy

levels in each group are very close, we will approximate all of them by a single

energy value. Let us label these groups by s = 1, 2, . . .. Let group no. s contain Gs

single–particle states and let the representative energy level be ǫ̂s . Let us assume that

Gs ≫ 1. A (coarse–grained) microstate of the gas is now defined by the occupation

numbers

N̂1, N̂2, . . . , N̂s, . . . ,

N̂s being the total number of particles in group no. s, where, of course
∑

s N̂s = N .

2Bosons were first introduced by Bose (1924) in order to derive Planck’s radiation law, and Einstein

applied this finding in the same year to a perfect gas of particles.
3Introduced independently by Fermi and Dirac in 1926.
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3.1 Combinatorial Derivation of the FD Statistics 49

To derive the equilibrium behavior of this system, we analyze the Helmholtz free

energy F as a function of the occupation numbers, and use the fact that in equilibrium,

it should be minimum. Since E = ∑

s N̂s ǫ̂s and F = E − T S, this boils down to

the evaluation of the entropy S = k ln �(N̂1, N̂2, . . .). Let �s(N̂s) be the number of

ways of putting N̂s particles into Gs states of group no. s. Now, for fermions each

one of the Gs states is either empty or occupied by one particle. Thus,

�s(N̂s) = Gs !
N̂s !(Gs − N̂s)!

(3.1.1)

and

�(N̂1, N̂2, . . .) =
∏

s

�s(N̂s). (3.1.2)

Therefore,

F(N̂1, N̂2, . . .) =
∑

s

[N̂s ǫ̂s − kT ln �s(N̂s)]

≈
∑

s

[

N̂s ǫ̂s − kT Gsh2

(

N̂s

Gs

)]

. (3.1.3)

As said, we wish to minimize F(N̂1, N̂2, . . .) s.t. the constraint
∑

s N̂s = N . Consider

then the minimization of the Lagrangian4

L =
∑

s

[

N̂s ǫ̂s − kT Gsh2

(

N̂s

Gs

)]

− λ

(

∑

s

N̂s − N

)

. (3.1.4)

The solution is readily obtained to read

N̂s = Gs

e(ǫ̂s−λ)/kT + 1
(3.1.5)

where the Lagrange multiplier λ is determined to satisfy the constraint

∑

s

Gs

e(ǫ̂s−λ)/kT + 1
= N . (3.1.6)

4For readers that are not familiar with Lagrangians, the minimization of F s.t.
∑

s N̂s = N , is

equivalent to the unconstrained minimization of F − λ(
∑

s N̂s − N ) for the value of λ at which

the constraint is met with equality by the minimizer {N̂∗
s }. This is because F(N̂∗

1 , N̂∗
2 , . . .) −

λ(
∑

s N̂∗
s − N ) ≤ F(N̂1, N̂2, . . .) − λ(

∑

s N̂s − N ), together with
∑

s N̂s = ∑

s N̂∗
s = N , imply

F(N̂∗
1 , N̂∗

2 , . . .) ≤ F(N̂1, N̂2, . . .) for every {N̂s} with
∑

s N̂s = N .
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Fig. 3.1 Illustration of the

FD distribution. As T

decreases, the curve becomes

closer to N̄r = u(μ − ǫr ),

where u(·) is the unit step

function
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Exercise 3.1 After showing the general relation μ = (∂F/∂N )T,V , show that λ =
μ, namely, the Lagrange multiplier λ has the physical meaning of the chemical

potential. From now on, then we replace the notation λ by μ.

Note that N̂s/Gs is the mean occupation number N̄r of a single state r within

group no. s. I.e.,

N̄r = 1

e(ǫr −μ)/kT + 1
(3.1.7)

with the constraint

∑

r

1

e(ǫr −μ)/kT + 1
= N . (3.1.8)

It is pleasing that this result no longer depends on the partition into groups. Equa-

tion (3.1.7) is the FD distribution, and it is depicted in Fig. 3.1.

3.2 FD Statistics from the Grand–Canonical Ensemble

Thanks to the principle of ensemble equivalence, an alternative, simpler derivation of

the FD distribution results from the use of the grand–canonical ensemble. Beginning

from the canonical partition function

Z N (β) =
1

∑

N1=0

1
∑

N2=0

. . . δ

(

∑

r

Nr = N

)

e−β
∑

r Nr ǫr , (3.2.1)
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we pass to the grand–canonical ensemble in the following manner:

�(β,μ) =
∞

∑

N=0

eβμN

1
∑

N1=0

1
∑

N2=0

. . . δ

(

∑

r

Nr = N

)

e−β
∑

r Nr ǫr

=
1

∑

N1=0

1
∑

N2=0

. . .

[ ∞
∑

N=0

δ

(

∑

r

Nr = N

)]

eβ
∑

r Nr (μ−ǫr )

=
1

∑

N1=0

1
∑

N2=0

. . . eβ
∑

r Nr (μ−ǫr )

=
1

∑

N1=0

1
∑

N2=0

. . .
∏

r

eβNr (μ−ǫr )

=
∏

r

[

1
∑

Nr =0

eβNr (μ−ǫr )

]

=
∏

r

[

1 + eβ(μ−ǫr )
]

. (3.2.2)

Note that this product form of the grand partition function means that under the grand–

canonical ensemble the binary random variables {Nr } are statistically independent,

i.e.,

P(N1, N2, . . .) =
∏

r

Pr (Nr ) (3.2.3)

where

Pr (Nr ) = eβNr (μ−ǫr )

1 + eβ(μ−ǫr )
, Nr = 0, 1, r = 1, 2, . . . . (3.2.4)

Thus,

N̄r = Pr{Nr = 1} = e(μ−ǫr )/kT

1 + e(μ−ǫr )/kT
= 1

e(ǫr −μ)/kT + 1
. (3.2.5)

Equivalently, defining αr = β(μ − ǫr ), we have � = ∏

r

∑1
Nr =0 eαr Nr , giving rise

to N̄r = ∂ ln �/∂αr = eαr /(1 + eαr ), which is the same result.
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3.3 The Fermi Energy

Let us now examine what happens if the system is cooled to the absolute zero (T →
0). It should be kept in mind that the chemical potential μ depends on T , so let μ0

be the chemical potential at T = 0. It is readily seen that N̄r approaches a unit

step function (see Fig. 3.1), namely, all energy levels {ǫr } below μ0 are occupied

(N̄r ≈ 1) by a fermion, whereas all those that are above μ0 are empty (N̄r ≈ 0).

The explanation is simple: Pauli’s exclusion principle does not allow all particles to

reside at the ground state at T = 0 since then many of them would occupy the same

quantum state. The minimum energy of the system that can possibly be achieved is

when all energy levels are filled up, one by one, starting from the ground state up to

some maximum level, which is exactly μ0. This explains why even at the absolute

zero, fermions have energy.5 The maximum occupied energy level in a gas of non–

interacting fermions at the absolute zero is called the Fermi energy, which we shall

denote by ǫF. Thus, μ0 = ǫF, and then the FD distribution at very low temperatures

is approximately

N̄r = 1

e(ǫr −ǫF)/kT + 1
. (3.3.1)

We next take a closer look on the FD distribution, taking into account the density

of states. Consider a metal box of dimensions L x × L y × L z and hence volume

V = L x L y L z . The energy level associated with quantum number (lx , ly, lz) is given

by

ǫlx ,ly ,lz
= π2

�
2

2m

(

l2
x

L2
x

+
l2
y

L2
y

+ l2
z

L2
z

)

= �
2

2m
(k2

x + k2
y + k2

z ), (3.3.2)

where kx , ky and kz are the wave numbers pertaining to the various solutions of

the Schrödinger equation. First, we would like to count how many quantum states

{(lx , ly, lz)} give rise to energy between ǫ and ǫ + dǫ. We denote this number by

g(ǫ)dǫ, where g(ǫ) is the density of states.

g(ǫ)dǫ =
∑

lx ,ly ,lz

1

{

2mǫ

�2
≤ π2l2

x

L2
x

+
π2l2

y

L2
y

+ π2l2
z

L2
z

≤ 2m(ǫ + dǫ)

�2

}

≈ L x L y L z

π3
· Vol

{

�k : 2mǫ

�2
≤ ‖�k‖2 ≤ 2m(ǫ + dǫ)

�2

}

= V

π3
· Vol

{

�k : 2mǫ

�2
≤ ‖�k‖2 ≤ 2m(ǫ + dǫ)

�2

}

. (3.3.3)

5Indeed, free electrons in a metal continue to be mobile and free even at T = 0.

www.TechnicalBooksPDF.com



3.3 The Fermi Energy 53

A volume element pertaining to a given value of K = ‖�k‖ (�k being kx x̂ +ky ŷ +kz ẑ)

is given by dK times the surface area of sphere of radius K , namely, 4πK 2dK , but it

has to be divided by 8, to account for the fact that the components of �k are positive.

I.e., it is π
2

K 2dK . From Eq. (3.3.2), we have ǫ = �
2 K 2/2m, and so

K 2dK = 2mǫ

�2
· 1

2�

√

2m

ǫ
dǫ =

√
2ǫm3dǫ

�3
(3.3.4)

Therefore, combining the above, we get

g(ǫ) =
√

2ǫm3V

2π2�3
. (3.3.5)

For electrons, spin values of ±1/2 are allowed, so this density should be doubled,

and so

ge(ǫ) =
√

2ǫm3V

π2�3
. (3.3.6)

Approximating the equation of the constraint on the total number of electrons, we

get

Ne =
∑

r

1

e(ǫr −ǫF)/kT + 1

≈
∫ ∞

0

ge(ǫ)dǫ

e(ǫ−ǫF)/kT + 1

=
√

2m3V

π2�3
·
∫ ∞

0

√
ǫdǫ

e(ǫ−ǫF)/kT + 1

≈
√

2m3V

π2�3
·
∫ ǫF

0

√
ǫdǫ T ≈ 0

=
√

2m3V

π2�3
· 2ǫ

3/2
F

3
(3.3.7)

which easily leads to the following simple formula for the Fermi energy:

ǫF = �
2

2m

(

3π2 Ne

V

)2/3

= �
2

2m
(3π2ρe)

2/3, (3.3.8)

where ρe is the electron density. In most metals ǫF is about the order of 5–10 electron–

volts (eV’s), whose equivalent temperature TF = ǫF/k (the Fermi temperature) is of

the order of magnitude of 100,000 ◦K. Hence, the Fermi energy is much larger than

kT in laboratory conditions. In other words, electrons in a metal behave like a gas
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at an extremely high temperature. This means that the internal pressure in metals

(the Fermi pressure) is extremely large and this a reason why metals are almost

incompressible. This kind of pressure also stabilizes a neutron star (a Fermi gas of

neutrons) or a white dwarf star (a Fermi gas of electrons) against the inward pull of

gravity, which would ostensibly collapse the star into a Black Hole. Only when a

star is sufficiently massive to overcome the degeneracy pressure can it collapse into

a singularity.

Exercise 3.2 Derive an expression for 〈ǫn〉 of an electron near T = 0, in terms of ǫF.

3.4 Useful Approximations of Fermi Integrals

Before considering applications, it will be instructive to develop some useful approx-

imations for integrals associated with the Fermi function

f (ǫ)
�= 1

e(ǫ−μ)/kT + 1
. (3.4.1)

For example, if we wish to calculate the average energy, we have to deal with an

integral like

∫ ∞

0

ǫ3/2 f (ǫ)dǫ.

Consider then, more generally, an integral of the form

In =
∫ ∞

0

ǫn f (ǫ)dǫ.

Upon integrating by parts, we readily have

In = f (ǫ) · ǫn+1

n + 1

∣

∣

∣

∣

∞

0

− 1

n + 1

∫ ∞

0

ǫn+1 f ′(ǫ)dǫ

= − 1

n + 1

∫ ∞

0

ǫn+1 f ′(ǫ)dǫ (3.4.2)

Changing variables to x = (ǫ − μ)/kT ,

In = − 1

n + 1

∫ ∞

−μ/kT

(μ + kT x)n+1φ′(x)dx

≈ − μn+1

n + 1

∫ ∞

−∞

(

1 + kT x

μ

)n+1

φ′(x)dx, (3.4.3)
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where we have introduced the scaled version of f , which is φ(x) = f (μ + kT x) =
1/(ex + 1) and φ′ is its derivative, and where in the second line we are assuming

μ ≫ kT . Applying the Taylor series expansion to the binomial term (recall that n is

not necessarily an integer), and using the symmetry of φ′ around the origin, we have

In = − μn+1

n + 1

∫ ∞

−∞

[

1 + (n + 1)
kT x

μ
+ n(n + 1)

2

(

kT x

μ

)2

+ · · ·
]

φ′(x)dx

= − μn+1

n + 1

[

∫ ∞

−∞
φ′(x)dx + n(n + 1)

2

(

kT

μ

)2 ∫ ∞

−∞
x2φ′(x)dx + · · ·

]

≈ μn+1

n + 1

[

1 + n(n + 1)π2

6

(

kT

μ

)2
]

(3.4.4)

where the last line was obtained by calculating the integral of x2φ′(x) using a power

series expansion. Note that this series contains only even powers of kT/μ, thus the

convergence is rather fast. Let us now repeat the calculation of Eq. (3.3.7), this time

at T > 0.

ρe ≈
√

2m3

π2�3
·
∫ ∞

0

√
ǫdǫ

e(ǫ−μ)/kT + 1

=
√

2m3

π2�3
· I1/2

=
√

2m3

π2�3
· 2

3
μ3/2

[

1 + π2

8

(

kT

μ

)2
]

(3.4.5)

which gives

ǫF = μ

[

1 + π2

8

(

kT

μ

)2
]2/3

≈ μ

[

1 + π2

12

(

kT

μ

)2
]

= μ + (πkT )2

12μ
. (3.4.6)

This relation between μ and ǫF can be easily inverted by solving a simple quadratic

equation, which yields
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μ ≈ ǫF + ǫF

√

1 − (πkT/ǫF)2/3

2

≈ ǫF

[

1 − π2

12
·
(

kT

ǫF

)2
]

= ǫF

[

1 − π2

12
·
(

T

TF

)2
]

. (3.4.7)

Since T/TF ≪ 1 for all T in the interesting range, we observe that the chemical

potential depends extremely weakly on T . In other words, we can safely approximate

μ ≈ ǫF for all relevant temperatures of interest. The assumption that kT ≪ μ was

found self–consistent with the result μ ≈ ǫF.

Having established the approximation μ ≈ ǫF, we can now calculate the average

energy of the electron at an arbitrary temperature T :

〈ǫ〉 =
√

2m3

π2�3ρe

∫ ∞

0

ǫ3/2dǫ

e(ǫ−ǫF)/kT + 1

=
√

2m3

π2�3ρe

· I3/2

≈
√

2m3

π2�3ρe

· 2ǫ
5/2
F

5

[

1 + 5π2

8

(

T

TF

)2
]

= 3�
2

10m
· (3π2ρe)

2/3 ·
[

1 + 5π2

8

(

T

TF

)2
]

= 3ǫF

5
·
[

1 + 5π2

8

(

T

TF

)2
]

(3.4.8)

Note that the dependence of the average per–particle energy on the temperature is

drastically different from that of the ideal gas. While in the idea gas it was linear

(〈ǫ〉 = 3kT/2), here it is actually almost a constant, independent of the temperature

(just like the chemical potential).

The same technique can be used, of course, to calculate any moment of the electron

energy.

3.5 Applications of the FD Distribution

The FD distribution is at the heart of modern solid–state physics and semiconductor

physics (see also, for example, [1, Sect. 4.5]) and indeed frequently encountered in

related courses on semiconductor devices. It is also useful for understanding the
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physics of white dwarfs. We next briefly touch upon the very basics of conductance

in solids, as well as on two other applications: thermionic emission and photoelectric

emission.

3.5.1 Electrons in a Solid

The structure of the electron energy levels in a solid are basically obtained using

quantum–mechanical considerations. In the case of a crystal, this amounts to solving

the Schrödinger equation in a periodic potential, stemming from the corresponding

periodic lattice structure. Its idealized form, which ignores the size of each atom, is

given by a train of equispaced Dirac delta functions. This is an extreme case of the so

called Kronig–Penney model, where the potential function is a periodic rectangular

on–off function (square wave function), and it leads to a certain band structure. In

particular, bands of allowed energy levels are alternately interlaced with bands of

forbidden energy levels. The Fermi energy level ǫF, which depends on the overall

concentration of electrons, may either fall in an allowed band or in a forbidden band.

The former case is the case of a metal, whereas the latter case is the case of an

insulator or a semiconductor (the difference being only how wide is the forbidden

band in which ǫF lies). While in metals it is impossible to change ǫF, it is possible

by doping in semiconductors.

A semiconductor can then be thought of as a system with electron orbitals grouped

into two6 energy bands separated by an energy gap. The lower band is the valence

band (where electrons are tied to their individual atoms) and the upper band is the

conduction band, where they are free. In a pure semiconductor at T = 0, all valence

orbitals are occupied with electrons and all conduction orbitals are empty. A full

band cannot carry any current so a pure semiconductor at T = 0 is an insulator. In a

pure semiconductor the Fermi energy is exactly in the middle of the gap between the

valence band (where f (ǫ) is very close 1) and the conduction band (where f (ǫ) is very

close to 0). Finite conductivity in a semiconductor follows either from the presence of

electrons in the conduction band (conduction electrons) or from unoccupied orbitals

in the valence band (holes).

Two different mechanisms give rise to conduction electrons and holes: the first is

thermal excitation of electrons from the valence band to the conduction band, while

the second is the presence of impurities that change the balance between the number

of orbitals in the valence band and the number of electrons available to fill them.

We will not delve into this too much beyond this point, since this material is

normally well–covered in other courses in the standard curriculum of electrical engi-

neering, namely, courses on solid state physics. Here we only demonstrate the use of

the FD distribution in order to calculate the density of charge carriers. The density of

charge carriers n of the conduction band is found by integrating up, from the conduc-

6We treat both bands as single bands for our purposes. It does not matter that both may be themselves

groups of (sub)bands with additional gaps within each group.
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tion band edge ǫC, the product of the density of states ge(ǫ) and the FD distribution

f (ǫ), i.e.,

n =
∫ ∞

ǫC

dǫ · ge(ǫ) f (ǫ) =
√

2m3

π2�3

∫ ∞

ǫC

√
ǫ − ǫCdǫ

e(ǫ−ǫF)/kT + 1
, (3.5.1)

where here m designates the effective mass of the electron7 and where we have taken

the density of states to be proportional to
√

ǫ − ǫC since ǫC is now the reference

energy and only the difference ǫ − ǫC goes for kinetic energy.8 For a semiconductor

at room temperature, kT is much smaller than the gap, and so

f (ǫ) ≈ e−(ǫ−ǫF)/kT (3.5.2)

which yields the approximation

n ≈
√

2m3

π2�3
· eǫF/kT

∫ ∞

ǫC

dǫ · √
ǫ − ǫC · e−ǫ/kT

=
√

2m3

π2�3
· e−(ǫC−ǫF)/kT

∫ ∞

0

dǫ · √
ǫe−ǫ/kT

=
√

2(mkT )3

π2�3
· e−(ǫC−ǫF)/kT

∫ ∞

0

dx · √
xe−x

=
√

π

2
·
√

2(mkT )3

π2�3
· e−(ǫC−ǫF)/kT

= 1

4
·
(

2mkT

π�2

)3/2

· e−(ǫC−ǫF)/kT . (3.5.3)

We see then that the density of conduction electrons, and hence also the conduction

properties, depend critically on the gap between ǫC and ǫF. A similar calculation

holds for the holes, of course.

3.5.2 Thermionic Emission
∗

Thermionic emission is a current of charge carriers (most notably, electrons or ions)

via a surface (which acts as a potential barrier), caused by heat energy that overcomes

the electrostatic forces. If a refractory metal (e.g., tungsten) is heated up to high

7The effective mass is obtained by a second order Taylor series expansion of the energy as a

function of the wave-number (used to obtain the density of states), and thinking of the coefficient

of the quadratic term as �
2/2m.

8Recall that earlier we calculated the density of states for a simple potential well, not for a periodic

potential function. Thus, the earlier expression of ge(ǫ) is not correct here.
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enough temperature (somewhat below the melting point), an emission of electrons

can be obtained towards a positive anode. Quantum–mechanically speaking, this

heated metal can be viewed as a potential well with finitely high walls determined by

the surface potential barrier. Thus, some of the particles will be sufficiently energetic

to surmount the surface barrier (a.k.a. the surface work function) and hence will be

emitted. The work function φ varies between 2 and 6 eV for pure metals. The electron

will not be emitted unless the energy component normal to the surface would exceed

ǫF +φ. The excess energy beyond this threshold is in the form of translational kinetic

energy which dictates the velocity away from the surface.

The analysis of this effect is made by transforming the distribution of energy into

a distribution in terms of the components of the velocity, vx , vy , and vz . We begin

with the expression of the energy of a single electron9

ǫ = 1

2
m(v2

x + v2
y + v2

z ) = π2
�

2

2m

(

l2
x

L2
x

+
l2
y

L2
y

+ l2
z

L2
z

)

. (3.5.4)

Thus, dvx = hdlx/(2mL x) and similar relations hold for the two other components,

which together yield

dlx dlydlz =
(m

h

)3

V dvx dvydvz, (3.5.5)

where we have divided by 8 since every quantum state can be occupied by only one

out of 8 combinations of the signs of the three component velocities. The fraction of

electrons dN with quantum states within the cube dlx dlydlz is simply the expected

number of occupied quantum states within that cube, which is

dN = dlx dlydlz

1 + exp{(ǫlx ly lz
− ǫ)/kT } .

Thus, we can write the distribution function of the number of electrons in a cube

dvx × dvy × dvz as

dN = 2V
(m

h

)3 dvx dvydvz

1 + exp

{

1

kT

[

1

2
m(v2

x + v2
y + v2

z ) − ǫF

]} , (3.5.6)

where we have doubled the expression due to the spin and we have taken the chemical

potential of the electron gas to be ǫF, independently of temperature, as was justified

in the previous subsection. Assuming that the surface is parallel to the Y Z plane, the

9We are assuming that the potential barrier φ is fairly large (relative to kT ), such that the relationship

between energy and quantum numbers is reasonably well approximated by that of a particle in a

box.
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minimum escape velocity in the x–direction is v0 =
√

2
m

(ǫF + φ) and there are no

restrictions on vy and vz . The current along the x–direction is

I = dq

dt
= qedN [leaving the surface]

dt

= qe

dt

∫ ∞

v0

∫ +∞

−∞

∫ +∞

−∞

vx dt

Lx

· 2V
(m

h

)3 dvx dvydvz

1 + exp

{

1

kT

[

1

2
m(v2

x + v2
y + v2

z ) − ǫF

]}

= 2L y L zqe

(m

h

)3
∫ ∞

v0

vx dvx

∫ +∞

−∞

dvydvz

1 + exp

{

1

kT

[

1

2
m(v2

x + v2
y + v2

z ) − ǫF

]} ,

(3.5.7)

where the factor vx dt/L x in the second line is the fraction of electrons close enough

to the surface so as to be emitted within time dt . Thus, the current density (current

per unity area) is

J = 2qe

(m

h

)3
∫ ∞

v0

dvx · vx

∫ +∞

−∞

∫ +∞

−∞

dvydvz

1 + exp

{

1

kT

[

1

2
m(v2

x + v2
y + v2

z ) − ǫF

]} .

(3.5.8)

As for the inner double integral, transform to polar coordinates to obtain

∫ +∞

−∞

∫ +∞

−∞

dvydvz

1 + exp

{

1

kT

[

1

2
m(v2

x + v2
y + v2

z ) − ǫF

]}

= 2π

∫ ∞

0

vyzdvyz

1 + emv2
yz/2kT · exp

[

1

kT

(

1

2
mv2

x − ǫF

)]

= 2πkT

m

∫ ∞

0

du

1 + exp

[

1

kT

(

1

2
mv2

x − ǫF

)]

· eu

u = mv2
yz/2kT

= 2πkT

m
ln

{

1 + exp

[

1

kT

(

ǫF − 1

2
mv2

x

)]}

(3.5.9)

which yields

J = 4πm2qekT

h3

∫ ∞

v0

dvx · vx ln

{

1 + exp

[

1

kT

(

ǫF − 1

2
mv2

x

)]}

. (3.5.10)
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Now, since normally10 φ ≫ kT , the exponent in the integrand is very small through-

out the entire range of integration and so, it is safe to approximate it by ln(1+x) ≈ x ,

i.e.,

J ≈ 4πm2qekT

h3
eǫF/kT

∫ ∞

v0

dvx · vx e−mv2
x /2kT

= 4πmqe(kT )2

h3
exp

{

1

kT

(

ǫF − 1

2
mv2

0

)}

= 4πmqe(kT )2

h3
e−φ/kT , (3.5.11)

and thus we have obtained a simple expression for the current density as function

of temperature. This result, which is known as the Richardson–Dushman equation,

is in very good agreement with experimental evidence. Further discussion on this

result can be found in [1, 2].

3.5.3 Photoelectric Emission
∗

An analysis based on a similar line of thought applies also to the photoelectric

emission, an effect where electrons are emitted from a metal as a result of radiation

at frequency beyond a certain critical frequency ν0 (the Einstein threshold frequency),

whose corresponding photon energy hν0 is equal to the work function φ. Here, the

electron gains an energy amount of hν from a photon, which helps to pass the energy

barrier, and so the minimum velocity of emission, after excitation by a photon of

energy hν is given by

hν + 1

2
mv2

0 = ǫF + φ = ǫF + hν0. (3.5.12)

Let α denote the probability that a photon actually excites an electron. Then, similarly

as in the previous subsection,

J = α · 4πm2qekT

h3

∫ ∞

v0

dvx · vx ln

{

1 + exp

[

1

kT

(

ǫF − 1

2
mv2

x

)]}

. (3.5.13)

where this time

v0 =
√

2

m
[ǫF + h(ν0 − ν)]. (3.5.14)

10At room temperature (T = 300 ◦K), kT ≈ 4 × 10−21 Joules ≈ 0.024eV, whereas φ is between

2eV and 6eV.
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Changing the integration variable to

x = 1

kT

[

1

2
mv2

x + h(ν − ν0) − ǫF

]

,

we can write the last integral as

J = α · 4πmqe(kT )2

h3

∫ ∞

0

dx ln

{

1 + exp

[

h(ν − ν0)

kT
− x

]}

dx . (3.5.15)

Now, let us denote

� = h(ν − ν0)

kT
. (3.5.16)

Integrating by parts (twice), we have

∫ ∞

0

dx ln(1 + e�−x ) =
∫ ∞

0

xdx

ex−� + 1

= 1

2

∫ ∞

0

x2ex−�dx

(ex−� + 1)2

�= f (e�). (3.5.17)

For h(ν − ν0) ≫ kT , we have e� ≫ 1, and then it can be shown (using the same

technique as in Sect. 3.4) that f (e�) ≈ �2/2, which gives

J = α · 2πmqe

h
(ν − ν0)

2 (3.5.18)

independently of T . In other words, when the energy of light quantum is much larger

than the thermal energy kT , temperature becomes irrelevant. At the other extreme of

very low frequency, where h(ν0 −ν) ≫ kT , and then e� ≪ 1, we have f (e�) ≈ e�,

and then

J = α · 4πmqe(kT )2

h3
e(hν−φ)/kT (3.5.19)

which is like the thermionic current density, enhanced by a photon factor ehν/kT .

3.6 Suggestions for Supplementary Reading

The Fermi–Dirac distribution, its derivation, and its various applications can also be

found in many alternative textbooks, such as: Beck [1, Chap. 4], Huang [3, Chap. 11],

Kittel [4, Part I, Chap. 19], Landau and Lifshitz [5, Chap. V], Mandl [6, Sect. 11.4.1],
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Pathria [2], and Reif [7, Chap. 9]. The exposition in this chapter is based, to a large

extent, on the books by Beck, Mandl and Pathria. Applications to semiconductor

physics are based also on Omar [8, Chaps. 6, 7] and Gershenfeld [9].
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Chapter 4

Quantum Statistics – The Bose–Einstein

Distribution

The general description of bosons was provided in the introductory paragraphs of

Chap. 3. As said, the crucial difference between bosons and fermions is that in the

case of bosons, Pauli’s exclusion principle does not apply. In this chapter, we study

the statistical mechanics of bosons.

4.1 Combinatorial Derivation of the BE Statistics

Using the same notation as in Chap. 3, again, we are partitioning the energy levels

ǫ1, ǫ2, . . . into groups, labeled by s, where in group no. s, which has Gs quantum

states, the representative energy is ǫ̂s . As before, a microstate is defined in terms

of {N̂s} and �(N̂1, N̂2, . . .) = ∏

s �s(N̂s), but now we need a different estimate of

each factor �s(N̂s), since now there are no restrictions on the occupation numbers

of the quantum states. In how many ways can one partition N̂s particles among Gs

states? Imagine that the N̂s particles of group no. s are arranged along a line. By

means of Gs − 1 partitions we divide the particles into Gs subsets corresponding to

the various states in that group. We have a total of (N̂s + Gs − 1) elements, N̂s of

them are particles and the remaining (Gs − 1) are partitions (see Fig. 4.1). In how

many distinct ways can we configure them? The answer is simple:

�s(N̂s) = (N̂s + Gs − 1)!
N̂s !(Gs − 1)!

. (4.1.1)

On the account that Gs ≫ 1, the −1 term can be safely neglected, and we approximate

�s(N̂s) = (N̂s + Gs)!
N̂s !Gs !

. (4.1.2)
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66 4 Quantum Statistics – The Bose–Einstein Distribution

Fig. 4.1 N̂s particles and

Gs − 1 partitions

Repeating the same derivation as in Sect. 4.1, but with the above �s(N̂s), we get:

ln �s(N̂s) ≈ (N̂s + Gs)h2

(

Gs

N̂s + Gs

)

, (4.1.3)

and so the free energy is now

F ≈
∑

s

[

N̂s ǫ̂s − kT (N̂s + Gs)h2

(

Gs

N̂s + Gs

)]

, (4.1.4)

which should be minimized s.t.
∑

s N̂s = N . Upon carrying out the minimization

of the corresponding Lagrangian, we arrive1 at the following result for the most

probable occupation numbers:

N̂s = Gs

eβ(ǫ̂s−μ) − 1
(4.1.5)

or, moving back to the original occupation numbers,

N̄r = 1

eβ(ǫr −μ) − 1
, (4.1.6)

where μ is again the Lagrange multiplier, which has the meaning of the chemical

potential. This is Bose–Einstein (BE) distribution. As we see, the formula is very

similar to that of the FD distribution, the only difference is that in the denominator,

+1 is replaced by −1. Surprisingly enough, this is a crucial difference that makes

the behavior of bosons drastically different from that of fermions. Note that for this

expression to make sense, μ must be smaller than the ground energy ǫ1, otherwise

the denominator either vanishes or becomes negative. If the ground–state energy is

zero, this means μ < 0.

4.2 Derivation Using the Grand–Canonical Ensemble

As in Sect. 4.2, an alternative derivation can be carried out using the grand–canonical

ensemble. The only difference is that now, the summations over {Nr }, are not only

over {0, 1} but over all non–negative integers. In particular,

1Exercise 4.1 Fill in the detailed derivation.
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�(β,μ) =
∏

r

[ ∞
∑

Nr =0

eβNr (μ−ǫr )

]

. (4.2.1)

Of course, here too, for convergence of each geometric series, we must assume

μ < ǫ1, and then the result is

�(β,μ) =
∏

r

1

1 − eβ(μ−ǫr )
. (4.2.2)

Here, under the grand–canonical ensemble, N1, N2, . . . are independent geometric

random variables with distributions

Pr (Nr ) = [1 − eβ(μ−ǫr )]eβNr (μ−ǫr ) Nr = 0, 1, 2, . . . , r = 1, 2, . . . (4.2.3)

Thus, N̄r is just the expectation of this geometric random variable, which is readily

found2 to be as in Eq. (4.1.6).

4.3 Bose–Einstein Condensation

In analogy to the FD case, here too, the chemical potential μ is determined from the

constraint on the total number of particles. In this case, it reads

∑

r

1

eβ(ǫr −μ) − 1
= N . (4.3.1)

Taking into account the density of states in a potential well of sizes L x × L y × L z

(as was done in Chap. 3), in the continuous limit, this yields

ρ =
√

2m3

2π2�3
·
∫ ∞

0

√
ǫdǫ

e(ǫ−μ)/kT − 1
. (4.3.2)

At this point, an important peculiarity should be discussed. Consider Eq. (4.3.2) and

suppose that we are cooling the system. As T decreases, μ must adjust in order to keep

Eq. (4.3.2) holding since the number of particles must be preserved. In particular, as

T decreases, μ must increase, yet it must be negative. The point is that even for μ = 0,

which is the maximum allowed value of μ, the integral at the r.h.s. of (4.3.2) is finite3

as the density of states is proportional to
√

ǫ and hence balances the divergence of

the BE integral near ǫ = 0. Let us define then

2Exercise 4.2 Show this.
3Exercise 4.3 Show this.
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̺(T )
�=

√
2m3

2π2�3
·
∫ ∞

0

√
ǫdǫ

eǫ/kT − 1
(4.3.3)

and let Tc be the solution to the equation ̺(T ) = ρ, which can be found as follows.

By changing the integration variable to z = ǫ/kT , we can rewrite the r.h.s. as

̺(T ) =
(

mkT

2π�2

)3/2 {

2√
π

∫ ∞

0

√
zdz

ez − 1

}

≈ 2.612 ·
(

mkT

2π�2

)3/2

, (4.3.4)

where the constant 2.612 is the numerical value of the expression in the curly brackets.

Thus,

Tc ≈ 0.5274 · 2π�
2

mk
· ρ2/3 = 3.313 · �

2ρ2/3

mk
. (4.3.5)

The problem is that for T < Tc, Eq. (4.3.2) can no longer be solved by any non–

positive value of μ. So what happens below Tc?

The root of the problem is in the passage from the discrete sum over r to the

integral over ǫ. The paradox is resolved when it is understood that below Tc, the

contribution of ǫ = 0 should be separated from the integral. That is, the correct form

is

N = 1

e−μ/kT − 1
+

√
2m3V

2π2�3
·
∫ ∞

0

√
ǫdǫ

e(ǫ−μ)/kT − 1
. (4.3.6)

or, after dividing by V ,

ρ = ρ0 +
√

2m3

2π2�3
·
∫ ∞

0

√
ǫdǫ

e(ǫ−μ)/kT − 1
, (4.3.7)

where ρ0 is the density of ground–state particles, and now the integral accommodates

the contribution of all particles with strictly positive energy. Now, for T < Tc,

we simply have ρ0 = ρ − ̺(T ), which means that a macroscopic fraction of the

particles condensate at the ground state. This phenomenon is called Bose–Einstein

condensation. Note that for T < Tc,

ρ0 = ρ − ̺(T )

= ̺(Tc) − ̺(T )

= ̺(Tc)

[

1 − ̺(T )

̺(Tc)

]

= ̺(Tc)

[

1 −
(

T

Tc

)3/2
]
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= ρ

[

1 −
(

T

Tc

)3/2
]

(4.3.8)

which gives a precise characterization of the condensation as a function of tempera-

ture. It should be pointed out that Tc is normally extremely low.4

One might ask why does the point ǫ = 0 require special caution when T < Tc,

but does not require such caution for T > Tc? The answer is that for T > Tc,

ρ0 = 1/V [e−μ/kT − 1] tends to zero in the thermodynamic limit (V → ∞) since

μ < 0. However, as T → Tc, μ → 0, and ρ0 becomes singular.

It is instructive to derive the pressure exerted by the ideal Boson gas for T < Tc.

This can be obtained from the grand partition function

ln � = −
∑

r

ln(1 − e−ǫr /kT ) (μ = 0)

∼ −
√

2m3V

2π2�3

∫ ∞

0

dǫ · √
ǫ ln(1 − e−ǫ/kT )

= −
√

2m3(kT )3/2V

2π2�3

∫ ∞

0

dx · √
x ln(1 − e−x ), (4.3.9)

where integral over x (including the minus sign) is just a positive constant C that we

will not calculate here. Now,

P = lim
V →∞

kT ln �

V
= C

√
2m3(kT )5/2

2π2�3
. (4.3.10)

We see that the pressure is independent of the density ρ (compare with the ideal gas

where P = ρkT ). This is because the condensed particles do not contribute to the

pressure. What matters is only the density of those with positive energy, and this

density in turn depends only on T .

Exercise 4.4 Why fermions do not condensate? What changes in the last derivation?

Exercise 4.5 The last derivation was in three dimensions (d = 3). Modify the deriva-

tion of the BE statistics to apply to a general dimension d, taking into account the

dependence of the density of states upon d . For which values of d bosons condensate?

4In 1995 the first gaseous condensate was produced by Eric Cornell and Carl Wieman at the Univer-

sity of Colorado, using a gas of rubidium atoms cooled to 170 nanokelvin. For their achievements

Cornell, Wieman, and Wolfgang Ketterle of MIT received the 2001 Nobel Prize in Physics. In

November 2010 the first photon BEC was observed.
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4.4 Black–Body Radiation

A black body is an (idealized model of an) object that absorbs all the incident electro-

magnetic radiation (and reflects none), regardless of the wavelength. A black body

in thermal equilibrium emits radiation that is called black–body radiation. It should

be understood that all bodies emit electromagnetic radiation whenever at positive

temperature, but normally, this radiation is not in thermal equilibrium. One of the

important applications of the BE statistics is to investigate the equilibrium properties

of black–body radiation.

If we consider the radiation inside an opaque object whose surfaces and walls

are kept at fixed temperature T , then the radiation and the surfaces arrive at thermal

equilibrium and then, the radiation has properties that are appreciably close to those

of a black body. To study the behavior of such a radiation, one creates a tiny hole in the

surface of the enclosure (so that a photon entering the cavity will be ‘trapped’ within

internal reflections, but will never be reflected out) it will not disturb the equilibrium

of the cavity and then the emitted radiation will have the same properties as the cavity

radiation, which in turn are the same as the radiation properties of a black body. The

temperature of the black body is T as well, of course. In this section, we study these

radiation properties using BE statistics.

We consider a radiation cavity of volume V and temperature T . Historically,

Planck (1900) viewed this system as an assembly of harmonic oscillators with quan-

tized energies (n + 1/2)�ω, n = 0, 1, 2, . . ., where ω is the angular frequency of the

oscillator. An alternative point of view is as an ideal gas of identical and indistin-

guishable photons, each one with energy �ω. Photons have integral spin and hence are

bosons, but they have zero mass and zero chemical potential when they interact with

a black–body. The reason is that there is no constraint that their total number would

be conserved (they are emitted and absorbed in the black–body material with which

they interact). Since in equilibrium F should be minimum, then (∂F/∂N )T,V = 0.

But (∂F/∂N )T,V = μ, and so, μ = 0. It follows then that distribution of photons

across the quantum states obeys BE statistics with μ = 0, that is

N̄ω = 1

e�ω/kT − 1
. (4.4.1)

The calculation of the density of states here is somewhat different from the one in

Sect. 4.3. Earlier, we considered a particle with positive mass m, whose kinetic energy

is ‖	p‖2/2m = �
2‖	k‖2/2m, whereas now we are talking about a photon whose rest

mass is zero and whose energy is �ω = �‖	k‖c = ‖	p‖c (c being the speed of light),

so the dependence on ‖	k‖ is now linear rather than quadratic. This is a relativistic

effect.

Assuming that V is large enough, we can pass to the continuous approximation.

As in Sect. 3.3, the number of waves (i.e., the number of quantum states) whose

wave–vector magnitude lies between ‖	k‖ and ‖	k‖ + d‖	k‖, is given by
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(1/8) · 4π‖	k‖2d‖	k‖
(π/L x) · (π/L y) · (π/L z)

= V ‖	k‖2d‖	k‖
2π2

.

In terms of frequencies, using the relation ω = ‖	k‖c, and doubling the above expres-

sion, due to two directions of polarization (left– and right–circular polarizations), we

have that the total number of quantum states of a photon in the range [ω,ω + dω] is

V ω2dω/π2c3. Thus, the number of photons in this frequency range is

dNω = V

π2c3
· ω2dω

e�ω/kT − 1
. (4.4.2)

The contribution of this to the energy is

dEω = �ωdNω = �V

π2c3
· ω3dω

e�ω/kT − 1
. (4.4.3)

This expression for the spectrum of black–body radiation is known as Planck’s law.

Exercise 4.6 Write Planck’s law in terms of the wavelength dEλ.

At low frequencies (�ω ≪ kT ), this gives

dEω ≈ kT V

π2c3
ω2dω (4.4.4)

which is the Rayleigh–Jeans law. This is actually the classic limit (see footnote at the

Introduction to Chap. 3), obtained from multiplying kT by the “number of waves.”

In the other extreme of �ω ≫ kT , we have

dEω = �ωdNω ≈ �V

π2c3
· ω3e−�ω/kT dω, (4.4.5)

which is Wien’s law. At low temperatures, this is an excellent approximation over a

very wide range of frequencies. The frequency of maximum radiation is (Fig. 4.2)

ωmax = 2.822 · kT

�
, (4.4.6)

namely, linear in temperature. This relation has immediate applications. For example,

the sun is known to be a source of radiation, which with a good level of approximation,

can be considered a black body. Using a spectrometer, one can measure the frequency

ωmax of maximum radiation (which turns out to be at the lower limit of the visible

range), and estimate the sun’s surface temperature (from Eq. (4.4.6)), to be T ≈
5800◦ K. At room temperature, ωmax falls deep in the infrared range, and thus invisible

to the human eye. Hence the name black body.
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Fig. 4.2 Illustration of

Planck’s law. The energy

density per unit frequency as

a function of frequency
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Now, the energy density is

E

V
= �

π2c3

∫ ∞

0

ω3dω

e�ω/kT − 1
= aT 4 (4.4.7)

where the second equality is obtained by changing the integration variable to x =
�ω/kT and then

a = �

π2c3

(

k

�

)4 ∫ ∞

0

x3dx

ex − 1
= π2k4

15�3c3
. (4.4.8)

The relation E/V = aT 4 is called the Stefan–Boltzmann law. The heat capacity at

constant volume, CV = (∂E/∂T )V , is therefore proportional to T 3.

Exercise 4.7 Calculate ρ, the density of photons.

Additional thermodynamic quantities can now be calculated from the logarithm

of the grand–canonical partition function

ln � = −
∑

r

ln[1 − e−�ωr /kT ] = − V

π2c3

∫ ∞

0

dω · ω2 ln[1 − e−�ω/kT ]. (4.4.9)

For example, the pressure of the photon gas can be calculated from

P = kT ln �

V

= − kT

π2c3

∫ ∞

0

dω · ω2 ln[1 − e−�ω/kT ]
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= − (kT )4

π2c3�3

∫ ∞

0

dx · x2 ln(1 − e−x )

= 1

3
aT 4 = E

3V
, (4.4.10)

where the integral is calculated using integration by parts.5 Note that while in the

ideal gas P was only linear in T , here it is proportional to the fourth power of T . Note

also that here, PV = E/3, which is different from the ideal gas, where PV = 2E/3.

4.5 Suggestions for Supplementary Reading

The exposition in this chapter is heavily based on those of Mandl [1] and Pathria

[2]. Additional relevant textbooks are the same as those that are mentioned also in

Sect. 3.6 (as BE statistics and FD statistics are almost always presented on a similar

footing).
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Chapter 5

Interacting Particle Systems and Phase

Transitions

In this chapter, we discuss systems with interacting particles. As we shall see, when

the interactions among the particles are significant, the system exhibits a certain

collective behavior that, in the thermodynamic limit, may be subjected to phase

transitions, i.e., abrupt changes in the behavior of the system in the presence of

a gradual change in an external control parameter, like temperature, pressure, or

magnetic field. The contents of this chapter has a considerable overlap with Chap. 5

of [1], and it is provided in this book too for the sake of completeness.

5.1 Introduction – Sources of Interaction

So far, we have dealt almost exclusively with systems that have additive Hamiltoni-

ans, E(x) =∑i E(xi ), which means, under the canonical ensemble, that the particles

are statistically independent and there are no interactions among them. In Nature,

of course, this is seldom really the case. Sometimes this is still a reasonably good

approximation, but in other cases, the interactions are appreciably strong and cannot

be neglected. Among the different particles there could be many sorts of mutual

forces, such as mechanical, electrical, or magnetic forces. There could also be inter-

actions that stem from quantum–mechanical effects: as described earlier, fermions

must obey Pauli’s exclusion principle. Another type of interaction stems from the fact

that the particles are indistinguishable, so permutations between them are not con-

sidered as distinct states. For example, referring to BE statistics, had the N particles

been statistically independent, the resulting partition function would be

Z N (β) =
[

∑

r

e−βǫr

]N

=
∑

N1,N2,...

δ

(

∑

r

Nr = N

)

N !
∏

r Nr !
· exp

{

−β
∑

r

Nrǫr

}

(5.1.1)
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whereas in Eq. (3.2.1), the combinatorial factor, N !/∏r Nr !, that distinguishes

between the various permutations among the particles, is absent. This introduces

dependency, which means interaction. Indeed, for the ideal boson gas, we have

encountered the effect of Bose–Einstein condensation, which is a phase transition,

and phase transitions can occur only in systems of interacting particles, as will be

discussed in this chapter.1

5.2 Models of Interacting Particles

The simplest forms of deviation from the purely additive Hamiltonian structure are

those that consist, in addition to the individual energy terms, {E(xi )}, also terms that

depend on pairs, and/or triples, and/or even larger cliques of particles. In the case of

purely pairwise interactions, this means a structure like the following:

E(x) =
N
∑

i=1

E(xi ) +
∑

(i, j)

ε(xi , x j ) (5.2.1)

where the summation over pairs can be defined over all pairs i �= j , or over some of

the pairs, according to a given rule, e.g., depending on the distance between particle i

and particle j , and according to the geometry of the system, or according to a certain

graph whose edges connect the relevant pairs of variables (that in turn, are designated

as nodes).

For example, in a one–dimensional array (a lattice) of particles, a customary model

accounts for interactions between neighboring pairs only, neglecting more remote

ones, thus the second term above would be
∑

i ε(xi , xi+1). A well known special

case of this is that of a polymer or a solid with crystal lattice structure, where, in the

one–dimensional version of the model, atoms are thought of as a chain of masses

connected by springs (see left part of Fig. 5.1), i.e., an array of coupled harmonic

oscillators. In this case, ε(xi , xi+1) = 1
2

K (xi+1 − xi )
2, where K is a constant and xi

is the displacement of the i-th atom from its equilibrium location, i.e., the potential

energies of the springs. In higher dimensional arrays (or lattices), similar interactions

apply, there are just more neighbors to each site, from the various directions (see right

part of Fig. 5.1). These kinds of models will be discussed in the next chapter in some

depth.

In a system where the particles are mobile and hence their locations vary and

have no geometrical structure, like in a gas, the interaction terms are also potential

energies pertaining to the mutual forces (see Fig. 5.2), and these normally depend

solely on the distances ‖�ri − �r j‖.

1Another way to understand the dependence is to observe that occupation numbers {Nr } are depen-

dent via the constraint on their sum. This is different from the grand–canonical ensemble, where

they are independent.
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Fig. 5.1 Elastic interaction

forces between adjacent

atoms in a one–dimensional

lattice (left part of the figure)

and in a two–dimensional

lattice (right part)

Fig. 5.2 Mobile particles

and mutual forces between

them

For example, in a non–ideal gas,

E(x) =
N
∑

i=1

‖ �pi‖2

2m
+
∑

i �= j

φ(‖�ri − �r j‖). (5.2.2)

A simple special case is that of hard spheres (Billiard balls), without any forces,

where

φ(‖�ri − �r j‖) =
{

∞ ‖�ri − �r j‖ < 2R

0 ‖�ri − �r j‖ ≥ 2R
(5.2.3)

which expresses the simple fact that balls cannot physically overlap. The analysis of

this model can be carried out using diagrammatic techniques (the cluster expansion,

etc.), but we will not get into details in this book.2 To demonstrate, however, the

effect of interactions on the deviation from the equation of state of the ideal gas, we

consider next a simple one–dimensional example.

Example 5.1 (Non–ideal gas in one dimension) Consider a one–dimensional object

of length L that contains N + 1 particles, whose locations are 0 ≡ r0 ≤ r1 ≤ . . . ≤
rN−1 ≤ rN ≡ L , namely, the first and the last particles are fixed at the edges. The

2The reader can find the derivations in any textbook on elementary statistical mechanics, for exam-

ple, [2, Chap. 9].
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order of the particles is fixed, namely, they cannot be swapped. Let the Hamiltonian

be given by

E(x) =
N
∑

i=1

φ(ri − ri−1) +
n
∑

i=1

p2
i

2m
(5.2.4)

where φ is a given potential function designating the interaction between two neigh-

boring particles along the line. The partition function, which is an integral of

the Boltzmann factor pertaining to this Hamiltonian, should incorporate the fact

that the positions {ri } are not independent. It is convenient to change variables to

ξi = ri − ri−1, i = 1, 2, . . . , N , where it should be kept in mind that ξi ≥ 0 for all

i and
∑N

i=1 ξi = L . Let us assume that L is an extensive variable, i.e., L = Nξ0 for

some constant ξ0 > 0. Thus, the partition function is

Z N (β, L) = 1

hN

∫

dp1 · · · dpN

∫

IR+
N

dξ1 · · · dξN e
−β
∑N

i=1[φ(ξi )+p2
i
/2m] · δ

⎛

⎝L −
N
∑

i=1

ξi

⎞

⎠

(5.2.5)

= 1

λN

∫

IR+
N

dξ1 · · · dξN e
−β
∑N

i=1 φ(ξi ) · δ

⎛

⎝L −
N
∑

i=1

ξi

⎞

⎠ , (5.2.6)

where λ = h/
√

2πmkT . The constraint
∑N

i=1 ξi = L makes the analysis of the

configurational partition function difficult. Let us pass to the corresponding Gibbs

ensemble where instead of fixing the length L , we control it by applying a force f .3

The corresponding partition function now reads

YN (β, f ) = λ−N

∫ ∞

0

dLe−β f L Z N (β, L)

= λ−N

∫ ∞

0

dLe−β f L

∫

IR+
N

dξ1 · · · dξN e−β
∑N

i=1 φ(ξi ) · δ

(

L −
N
∑

i=1

ξi

)

= λ−N

∫

IR+
N

dξ1 · · · dξN

[

∫ ∞

0

dLe−β f Lδ

(

L −
N
∑

i=1

ξi

)]

e−β
∑N

i=1 φ(ξi )

= λ−N

∫

IR+
N

dξ1 · · · dξN exp

{

−β

[

f

N
∑

i=1

ξi +
N
∑

i=1

φ(ξi )

]}

�= λ−N

∫

IR+
N

dξ1 · · · dξN exp

[

−s

N
∑

i=1

ξi − β

N
∑

i=1

φ(ξi )

]

=
{

1

λ

∫ ∞

0

dξ · e−[sξ+βφ(ξ)]
}N

(5.2.7)

3Here we use the principle of ensemble equivalence.
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With a slight abuse of notation, from now on, we will denote the last expression by

YN (β, s). Consider now the following potential function

φ(ξ) =

⎧

⎨

⎩

∞ 0 ≤ ξ ≤ d

−ǫ d < ξ ≤ d + δ

0 ξ > d + δ

(5.2.8)

In words, distances below d are strictly forbidden (e.g., because of the size of the

particles), in the range between d and d+δ there is a negative potential−ǫ, and beyond

d + δ the potential is zero.4 Now, for this potential function, the one–dimensional

integral above is given by

I =
∫ ∞

0

dξe−[sξ+βφ(ξ)] = e−sd

s
[e−sδ(1 − eβǫ) + eβǫ], (5.2.9)

and so,

YN (β, s) = e−sd N

λN s N
[e−sδ(1 − eβǫ) + eβǫ]N

= exp
{

N
[

ln[e−sδ(1 − eβǫ) + eβǫ] − sd − ln(λs)
]}

(5.2.10)

Now, the average length of the system is given by

〈L〉 = −∂ ln YN (β, s)

∂s

= Nδe−sδ(1 − eβǫ)

e−sδ(1 − eβǫ) + eβǫ
+ Nd + N

s
, (5.2.11)

or, equivalently, 〈�L〉 = 〈L〉 − Nd, which is the excess length beyond the possible

minimum, is given by

〈�L〉 = Nδe− f δ/kT (1 − eǫ/kT )

e− f δ/kT (1 − eǫ/kT ) + eǫ/kT
+ NkT

f
. (5.2.12)

Thus,

f · 〈�L〉 = NkT + N f δe− f δ/kT (1 − eǫ/kT )

e− f δ/kT (1 − eǫ/kT ) + eǫ/kT

= N

[

kT − f δ

e(ǫ+ f δ)/kT /(eǫ/kT − 1) − 1

]

(5.2.13)

4This is a caricature of the Lennard–Jones potential function φ(ξ) ∝ [(d/ξ)12 − (d/ξ)6], which

begins from +∞, decreases down to a negative minimum, and finally increases and tends to zero.
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where the last line is obtained after some standard algebraic manipulation. Note that

without the potential well of the intermediate range of distances (ǫ = 0 or δ = 0), the

second term in the square brackets disappears and we get a one dimensional version

of the equation of state of the ideal gas (with the volume being replaced by length

and the pressure – replaced by force). The second term is then a correction term due

to the interaction. The attractive potential reduces the product f · �L . �

Yet another example of a model, or more precisely, a very large class of models

with interactions, are those of magnetic materials. These models will closely accom-

pany our discussions from this point onward in this chapter. Although few of these

models are solvable, most of them are not. For the purpose of our discussion, a mag-

netic material is one for which the relevant property of each particle is its magnetic

moment. As a reminder, the magnetic moment is a vector proportional to the angular

momentum of a revolving charged particle (like a rotating electron, or a current loop),

or the spin, and it designates the intensity of its response to the net magnetic field that

this particle ‘feels’. This magnetic field is given by the superposition of an externally

applied magnetic field and the magnetic fields generated by the neighboring spins.

Quantum mechanical considerations dictate that each spin, which will be denoted

by si , is quantized, that is, it may take only one out of finitely many values. In the

simplest case to be adopted in our study – two values only. These will be designated

by si = +1 (“spin up”) and si = −1 (“spin down”), corresponding to the same

intensity, but in two opposite directions, one parallel to the magnetic field, and the

other – anti-parallel (see Fig. 5.3). The Hamiltonian associated with an array of spins

s = (s1, . . . , sN ) is customarily modeled (up to certain constants that, among other

things, accommodate for the physical units) with a structure like this:

E(s) = −B ·
N
∑

i=1

si −
∑

(i, j)

Ji j si s j , (5.2.14)

where B is the externally applied magnetic field and {Ji j } are the coupling constants

that designate the levels of interaction between spin pairs, and they depend on prop-

erties of the magnetic material and on the geometry of the system. The first term

accounts for the contributions of potential energies of all spins due to the magnetic

field, which in general, are given by the inner product �B · �si , but since each �si is either

parallel or anti-parallel to �B, as said, these boil down to simple products, where only

the sign of each si counts. Since P(s) is proportional to e−βE(s), the spins ‘prefer’

to be parallel, rather than anti-parallel to the magnetic field. The second term in the

above Hamiltonian accounts for the interaction energy. If Ji j are all positive, they

also prefer to be parallel to each other (the probability for this is larger), which is

the case where the material is called ferromagnetic (like iron and nickel). If they are

all negative, the material is antiferromagnetic. In the mixed case, it is called a spin

glass. In the latter, the behavior is rather complicated.
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Fig. 5.3 Illustration of a

spin array on a square lattice

The case where all Ji j are equal and the double summation over {(i, j)} is over

nearest neighbors only is called the Ising model. A more general version of it is

called the O(n) model, according to which each spin is an n–dimensional unit vector

�si = (s1
i , . . . , sn

i ) (and so is the magnetic field), where n is not necessarily related to

the dimension d of the lattice in which the spins reside. The case n = 1 is then the

Ising model. The case n = 2 is called the XY model, and the case n = 3 is called the

Heisenberg model.

Of course, the above models for the Hamiltonian can (and, in fact, are being)

generalized to include interactions formed also, by triples, quadruples, or any fixed

size p (that does not grow with N ) of spin–cliques.

We next discuss a very important effect that exists in some systems with strong

interactions (both in magnetic materials and in other models): the effect of phase

transitions.

5.3 A Qualitative Discussion on Phase Transitions

As was mentioned in the introductory paragraph of this chapter, a phase transition

means an abrupt change in the collective behavior of a physical system, as we change

gradually one of the externally controlled parameters, like the temperature, pressure,

or magnetic field. The most common example of a phase transition in our everyday

life is the water that we boil in the kettle when we make coffee, or when it turns into

ice as we put it in the freezer.

What exactly these phase transitions are? In physics, phase transitions can occur

only if the system has interactions. Consider, the above example of an array of spins

with B = 0, and let us suppose that all Ji j > 0 are equal, and thus will be denoted

commonly by J (like in the O(n) model). Then,
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82 5 Interacting Particle Systems and Phase Transitions

P(s) =
exp

{

β J
∑

(i, j) si s j

}

Z(β)
(5.3.1)

and, as mentioned earlier, this is a ferromagnetic model, where all spins ‘like’ to be

in the same direction, especially when β J is large. In other words, the interactions,

in this case, tend to introduce order into the system. On the other hand, the second

law talks about maximum entropy, which tends to increase the disorder. So there are

two conflicting effects here. Which one of them prevails?

The answer turns out to depend on temperature. Recall that in the canonical

ensemble, equilibrium is attained at the point of minimum free energy f = ǫ−T s(ǫ).

Now, T plays the role of a weighting factor for the entropy. At low temperatures,

the weight of the second term of f is small, and minimizing f is approximately

equivalent to minimizing ǫ, which is obtained by states with a high level of order,

as E(s) = −J
∑

(i, j) si s j , in this example. As T grows, however, the weight of the

term −T s(ǫ) increases, and min f , becomes more and more equivalent to max s(ǫ),

which is achieved by states with a high level of disorder (see Fig. 5.4). Thus, the

order–disorder characteristics depend primarily on temperature. It turns out that for

some magnetic systems of this kind, this transition between order and disorder may

be abrupt, in which case, we call it a phase transition. At a certain critical temperature,

called the Curie temperature, there is a sudden transition between order and disorder.

In the ordered phase, a considerable fraction of the spins align in the same direction,

which means that the system is spontaneously magnetized (even without an external

magnetic field), whereas in the disordered phase, about half of the spins are in either

direction, and then the net magnetization vanishes. This happens if the interactions,

or more precisely, their dimension in some sense, is strong enough.

What is the mathematical significance of a phase transition? If we look at the

partition function, Z N (β), which is the key to all physical quantities of interest, then

for every finite N , this is simply the sum of finitely many exponentials in β and

therefore it is continuous and differentiable infinitely many times. So what kind of

abrupt changes could there possibly be in the behavior of this function? It turns out

that while this is true for all finite N , it is no longer necessarily true if we look at the

thermodynamic limit, i.e., if we look at the behavior of

φ(β) = lim
N→∞

ln Z N (β)

N
. (5.3.2)

Fig. 5.4 Qualitative graphs

of f (ǫ) at various

temperatures. The

minimizing ǫ increases

with T
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While φ(β) must be continuous for all β > 0 (since it is convex), it need not necessar-

ily have continuous derivatives. Thus, a phase transition, if exists, is fundamentally an

asymptotic property, it may exist in the thermodynamic limit only. While a physical

system is, after all finite, it is nevertheless well approximated by the thermodynamic

limit when it is very large.

The above discussion explains also why a system without interactions, where all

{xi } are i.i.d., cannot have phase transitions. In this case, Z N (β) = [Z1(β)]N , and

so, φ(β) = ln Z1(β), which is always a smooth function without any irregularities.

For a phase transition to occur, the particles must behave in some collective manner,

which is the case only if interactions take place.

There is a distinction between two types of phase transitions:

• If φ(β) has a discontinuous first order derivative, then this is called a first order

phase transition.

• If φ(β) has a continuous first order derivative, but a discontinuous second order

derivative then this is called a second order phase transition, or a continuous phase

transition.

We can talk, of course, about phase transitions w.r.t. additional parameters other

than temperature. In the above magnetic example, if we introduce back the magnetic

field B into the picture, then Z , and hence also φ, become functions of B too. If we

then look at derivative of

φ(β, B) = lim
N→∞

ln Z N (β, B)

N

= lim
N→∞

1

N
ln

⎡

⎣

∑

s

exp

⎧

⎨

⎩

βB

N
∑

i=1

si + β J
∑

(i, j)

si s j

⎫

⎬

⎭

⎤

⎦ (5.3.3)

w.r.t. the product (βB), which multiplies the magnetization,
∑

i si , at the exponent,

this would give exactly the average magnetization per spin

m(β, B) =
〈

1

N

N
∑

i=1

Si

〉

, (5.3.4)

and this quantity might not always be continuous. Indeed, as mentioned earlier, below

the Curie temperature there might be a spontaneous magnetization. If B ↓ 0, then

this magnetization is positive, and if B ↑ 0, it is negative, so there is a discontinuity

at B = 0. We shall see this more concretely later on.
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5.4 The One–Dimensional Ising Model

The most familiar model of a magnetic system with interactions is the one–

dimensional Ising model, according to which

E(s) = −B

N
∑

i=1

si − J

N
∑

i=1

si si+1 (5.4.1)

with the periodic boundary condition sN+1 = s1. Thus,

Z N (β, B) =
∑

s

exp

{

βB

N
∑

i=1

si + β J

N
∑

i=1

si si+1

}

=
∑

s

exp

{

h

N
∑

i=1

si + K

N
∑

i=1

si si+1

}

h
�= βB, K

�= β J

=
∑

s

exp

{

h

2

N
∑

i=1

(si + si+1) + K

N
∑

i=1

si si+1

}

. (5.4.2)

Consider now the 2 × 2 matrix P whose entries are exp{ h
2
(s + s ′) + K ss ′}, s, s ′ ∈

{−1,+1}, i.e.,

P =
(

eK+h e−K

e−K eK−h

)

. (5.4.3)

Also, si = +1 will be represented by the column vector σi = (1, 0)T and si = −1

will be represented by σi = (0, 1)T . Thus,

Z(β, B) =
∑

σ1

· · ·
∑

σN

(σT
1 Pσ2) · (σT

2 Pσ2) · · · (σT
N Pσ1)

=
∑

σ1

σT
1 P

(

∑

σ2

σ2σ
T
2

)

P

(

∑

σ3

σ3σ
T
3

)

P · · · P

(

∑

σN

σN σT
N

)

Pσ1

=
∑

σ1

σT
1 P · I · P · I · · · I · Pσ1

=
∑

σ1

σT
1 P N σ1

= tr{P N }
= λN

1 + λN
2 (5.4.4)
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where λ1 and λ2 are the eigenvalues of P , which are

λ1,2 = eK cosh(h) ±
√

e−2K + e2K sinh2(h). (5.4.5)

Letting λ1 denote the larger (the dominant) eigenvalue, i.e.,

λ1 = eK cosh(h) +
√

e−2K + e2K sinh2(h), (5.4.6)

then clearly,

φ(h, K ) = lim
N→∞

ln Z N (h, K )

N
= ln λ1. (5.4.7)

The average magnetization is

M(h, K ) =
〈

N
∑

i=1

Si

〉

=
∑

s
(
∑N

i=1 si ) exp{h∑N
i=1 si + K

∑N
i=1 si si+1}

∑

s
exp{h∑N

i=1 si + K
∑N

i=1 si si+1}

= ∂ ln Z(h, K )

∂h
(5.4.8)

and so, the per–spin magnetization is:

m(h, K )
�= lim

N→∞
M(h, K )

N
= ∂φ(h, K )

∂h
= sinh(h)
√

e−4K + sinh2(h)
(5.4.9)

or, returning to the original parametrization:

m(β, B) = sinh(βB)
√

e−4β J + sinh2(βB)
. (5.4.10)

For β > 0 and B > 0 this is a smooth function, and so, there are no phase transi-

tions and no spontaneous magnetization at any finite temperature.5 However, at the

absolute zero (β → ∞), we get

lim
B↓0

lim
β→∞

m(β, B) = +1; lim
B↑0

lim
β→∞

m(β, B) = −1, (5.4.11)

5Note, in particular, that for J = 0 (i.i.d. spins) we get paramagnetic characteristics m(β, B) =
tanh(βB), in agreement with the result pointed out in the example of two–level systems, in the

comment that follows Example 2.3.
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thus m is discontinuous w.r.t. B at β → ∞, which means that there is a phase

transition at T = 0. In other words, the Curie temperature is Tc = 0 independent

of J .

We see then that one–dimensional Ising model is easy to handle, but it is not very

interesting in the sense that there is actually no phase transition. The extension to

the two–dimensional Ising model on the square lattice is surprisingly more difficult.

It is still solvable, but only without an external magnetic field. It was first solved in

1944 by Onsager [3], who has shown that it exhibits a phase transition with Curie

temperature given by

Tc = 2J

k ln(
√

2 + 1)
. (5.4.12)

For lattice dimension larger than two, the problem is still open.

It turns out then that what counts for the existence of phase transitions, is not

only the intensity of the interactions (designated by the magnitude of J ), but more

importantly, the “dimensionality” of the structure of the pairwise interactions. If we

denote by nℓ the number of ℓ–th order neighbors of every given site, namely, the

number of sites that can be reached within ℓ steps from the given site, then what

counts is how fast does the sequence {nℓ} grow, or more precisely, what is the value

of d
�= limℓ→∞

ln nℓ

ln ℓ
, which is exactly the ordinary dimensionality for hyper-cubic

lattices. Loosely speaking, this dimension must be sufficiently large for a phase

transition to exist.

To demonstrate this point, we next discuss an extreme case of a model where

this dimensionality is actually infinite. In this model “everybody is a neighbor of

everybody else” and to the same extent, so it definitely has the highest connectivity

possible. This is not quite a physically realistic model, but it is pleasing that it is easy

to solve and that it exhibits a phase transition that is fairly similar to those that exist

in real systems. It is also intimately related to a very popular approximation method

in statistical mechanics, called the mean field approximation. Hence it is sometimes

called the mean field model. It is also known as the Curie–Weiss model or the infinite

range model.

Finally, we should comment that there are other “infinite–dimensional” Ising

models, like the one defined on the Bethe lattice (an infinite tree without a root and

without leaves), which is also easily solvable (by recursion) and it also exhibits phase

transitions [4], but we will not discuss it here.

5.5 The Curie–Weiss Model

According to the Curie–Weiss (C–W) model,

E(s) = −B

N
∑

i=1

si − J

2N

∑

i �= j

si s j . (5.5.1)
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Here, all pairs {(si , s j )} communicate to the same extent, and without any geometry.

The 1/N factor here is responsible for keeping the energy of the system extensive

(linear in N ), as the number of interaction terms is quadratic in N . The factor 1/2

compensates for the fact that the summation over i �= j counts each pair twice. The

first observation is the trivial fact that

(

∑

i

si

)2

=
∑

i

s2
i +

∑

i �= j

si s j = N +
∑

i �= j

si s j (5.5.2)

where the second equality holds since s2
i ≡ 1. It follows then, that our Hamiltonian

is, up to a(n immaterial) constant, equivalent to

E(s) = −B

N
∑

i=1

si − J

2N

(

N
∑

i=1

si

)2

= −N

⎡

⎣B ·
(

1

N

N
∑

i=1

si

)

+ J

2

(

1

N

N
∑

i=1

si

)2
⎤

⎦ , (5.5.3)

thus E(s) depends on s only via the magnetization m(s) = 1
N

∑

i si . This fact makes

the C–W model very easy to handle:

Z N (β, B) =
∑

s

exp

{

Nβ

[

B · m(s) + J

2
m2(s)

]}

=
+1
∑

m=−1

�(m) · eNβ(Bm+Jm2/2)

·=
+1
∑

m=−1

eNh2((1+m)/2) · eNβ(Bm+Jm2/2)

·= exp

{

N · max
|m|≤1

[

h2

(

1 + m

2

)

+ βBm + βm2 J

2

]}

(5.5.4)

and so,

φ(β, B) = max
|m|≤1

[

h2

(

1 + m

2

)

+ βBm + βm2 J

2

]

. (5.5.5)

The maximum is found by equating the derivative to zero, i.e.,

0 = 1

2
ln

(

1 − m

1 + m

)

+ βB + β Jm ≡ − tanh−1(m) + βB + β Jm (5.5.6)
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Fig. 5.5 Graphical solutions of equation m = tanh(β Jm): The left part corresponds to the case

β J < 1, where there is one solution only, m∗ = 0. The right part corresponds to the case β J > 1,

where in addition to the zero solution, there are two non–zero solutions m∗ = ±m0

or equivalently, the maximizing (and hence the dominant) m is a solution m∗ to the

equation6

m = tanh(βB + β Jm).

Consider first the case B = 0, where the equation boils down to

m = tanh(β Jm). (5.5.7)

It is instructive to look at this equation graphically. Referring to Fig. 5.5, we have to

make a distinction between two cases: If β J < 1, namely, T > Tc
�= J/k, the slope

of the function y = tanh(β Jm) at the origin, β J , is smaller than the slope of the

linear function y = m, which is 1, thus these two graphs intersect only at the origin.

It is easy to check that in this case, the second derivative of

ψ(m)
�= h2

(

1 + m

2

)

+ β Jm2

2
(5.5.8)

at m = 0 is negative, and therefore it is indeed the maximum (see Fig. 5.6, left part).

Thus, the dominant magnetization is m∗ = 0, which means disorder and hence no

spontaneous magnetization for T > Tc. On the other hand, when β J > 1, which

means temperatures lower than Tc, the initial slope of the tanh function is larger than

that of the linear function, but since the tanh function cannot take values outside the

interval (−1,+1), the two functions must intersect also at two additional, symmetric,

non–zero points, which we denote by +m0 and −m0 (see Fig. 5.5, right part). In this

case, it can readily be shown that the second derivative of ψ(m) is positive at the

origin (i.e., there is a local minimum at m = 0) and negative at m = ±m0, which

means that there are maxima at these two points (see Fig. 5.6, right part). Thus, the

dominant magnetizations are ±m0, each capturing about half of the probability.

Consider now the case β J > 1, where the magnetic field B is brought back

into the picture. This will break the symmetry of the right graph of Fig. 5.6 and the

corresponding graphs of ψ(m) would be as in Fig. 5.7, where now the higher local

6Once again, for J = 0, we are back to non–interacting spins and then this equation gives the

paramagnetic behavior m = tanh(βB).
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Fig. 5.6 The function ψ(m) = h2((1 + m)/2) + β Jm2/2 has a unique maximum at m = 0 when

β J < 1 (left graph) and two local maxima at ±m0, in addition to a local minimum at m = 0, when

β J > 1 (right graph)

Fig. 5.7 The case β J > 1 with a magnetic field B. The left graph corresponds to B < 0 and the

right graph – to B > 0

maximum (which is also the global one) is at m0(B) whose sign is as that of B. But

as B → 0, m0(B) → m0 of Fig. 5.6. Thus, we see the spontaneous magnetization

here. Even after removing the magnetic field, the system remains magnetized to the

level of m0, depending on the direction (the sign) of B before its removal. Obviously,

the magnetization m(β, B) has a discontinuity at B = 0 for T < Tc, which is a first

order phase transition w.r.t. B (see Fig. 5.8). We note that the point T = Tc is the

Fig. 5.8 Magnetization versus magnetic field: For T < Tc there is spontaneous magnetization:

limB↓0 m(β, B) = +m0 and limB↑0 m(β, B) = −m0, and so there is a discontinuity at B = 0
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boundary between the region of existence and the region of non–existence of a phase

transition w.r.t. B. Such a point is called a critical point. The phase transition w.r.t.

β is of the second order.

Finally, we should mention here an alternative technique that can be used to

analyze this model, which is based on the so called Hubbard–Stratonovich transform.

Specifically, we have the following chain of equalities:

Z(h, K ) =
∑

s

exp

⎧

⎨

⎩

h

N
∑

i=1

si + K

2N

(

N
∑

i=1

si

)2
⎫

⎬

⎭

h
�= βB, K

�= β J

=
∑

s

exp

{

h

N
∑

i=1

si

}

· exp

⎧

⎨

⎩

K

2N

(

N
∑

i=1

si

)2
⎫

⎬

⎭

=
∑

s

exp

{

h

N
∑

i=1

si

}

·
√

N

2πK

∫

IR

dz exp

{

− N z2

2K
+ z ·

N
∑

i=1

si

}

=
√

N

2πK

∫

IR

dze−N z2/(2K )
∑

s

exp

{

(h + z)

N
∑

i=1

si

}

=
√

N

2πK

∫

IR

dze−N z2/(2K )

[

1
∑

s=−1

e(h+z)s

]N

=
√

N

2πK

∫

IR

dze−N z2/(2K )[2 cosh(h + z)]N

= 2N ·
√

N

2πK

∫

IR

dz exp{N [ln cosh(h + z) − z2/(2K )]}, (5.5.9)

where the passage from the second to the third line follows the use of the characteristic

function of a Gaussian random variable: If X ∼ N (0,σ2), then
〈

eαX
〉

= eα2σ2/2 (in

our case, σ2 = K/N and α =∑i si ).

The integral in the last line can be shown (see, e.g., [1, Chap. 4]) to be dominated

by e to N times the maximum of the function in the square brackets at the exponent

of the integrand, or equivalently, the minimum of the function

γ(z) = z2

2K
− ln cosh(h + z). (5.5.10)

by equating its derivative to zero, we get the very same equation as m = tanh(βB +
β Jm) by setting z = β Jm. The function γ(z) is different from the function ψ that we

maximized earlier, but the extremum is the same. This function is called the Landau

free energy.
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5.6 Spin Glasses∗

So far we discussed only models where the non–zero coupling coefficients, J = {Ji j }
are equal, thus they are either all positive (ferromagnetic models) or all negative

(antiferromagnetic models). As mentioned earlier, there are also models where the

signs of these coefficients are mixed, which are called spin glass models.

Spin glass models have a much more complicated and more interesting behavior

than ferromagnets, because there might be meta-stable states, due to the fact that not

all spin pairs {(si , s j )} can necessarily be in their preferred mutual polarization. It

might be the case that some of these pairs are “frustrated.” In order to model situations

of amorphism and disorder in such systems, it is customary to model the coupling

coefficients as random variables. This model with random parameters means that

there are now two levels of randomness:

• Randomness of the coupling coefficients J .

• Randomness of the spin configuration s given J , according to the Boltzmann

distribution, i.e.,

P(s|J) =
exp

{

β
[

B
∑N

i=1 si +∑(i, j) Ji j si s j

]}

Z(β, B|J)
. (5.6.1)

However, these two sets of random variables have a rather different stature. The

underlying setting is normally such that J is considered to be randomly drawn once

and for all, and then remain fixed, whereas s keeps varying all the time (according to

the dynamics of the system). At any rate, the time scale along which s varies is much

smaller than that of J . Another difference is that J is normally not assumed to depend

on temperature, whereas s does. In the terminology of physicists, s is considered an

annealed random variable, whereas J is considered a quenched random variable.7

Accordingly, there is a corresponding distinction between annealed averages and

quenched averages.

Let us see what is exactly the difference between the quenched averaging and

the annealed one. If we examine, for instance, the free energy, or the log–partition

function, ln Z(β|J), this is now a random variable because it depends on the random

J . If we denote by 〈·〉J the expectation w.r.t. the randomness of J , then quenched

averaging means 〈ln Z(β|J)〉J , whereas annealed averaging means ln〈Z(β|J)〉J .

Normally, the relevant average is the quenched one, because the random variable
1
N

ln Z(β|J) typically converges to the same limit as its expectation 1
N

〈ln Z(β|J)〉J

(the so called self–averaging property), but more often than not, it is also much harder

to calculate. Clearly, the annealed average is never smaller than the quenched one

because of Jensen’s inequality, but they sometimes coincide at high temperatures.

The difference between them is that in quenched averaging, the dominant realizations

7In a nutshell, annealing means slow cooling, whereas quenching means fast cooling, that causes

the material to freeze without enough time to settle in an ordered structure. The result is then a

disordered structure, modeled by frozen (fixed) random parameters, J .
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of J are the typical ones, whereas in annealed averaging, this is not necessarily the

case. This follows from the following sketchy consideration. As for the annealed

average, we have:

〈Z(β|J)〉J =
∑

J

P(J)Z(β|J)

≈
∑

α

Pr{J : Z(β|J)
·= eNα} · eNα

≈
∑

α

e−N E(α) · eNα (assuming exponential probabilities)

·= eN maxα[α−E(α)] (5.6.2)

which means that the annealed average is dominated by realizations of the system

with
ln Z(β|J)

N
≈ α∗ �= arg max

α
[α − E(α)], (5.6.3)

which may differ from the typical value of α, which is

α = φ(β) ≡ lim
N→∞

1

N
〈ln Z(β|J)〉 . (5.6.4)

On the other hand, when it comes to quenched averaging, the random variable

ln Z(β|J) behaves linearly in N , and concentrates strongly around the typical value

Nφ(β), whereas other values are weighted by (exponentially) decaying probabilities.

The literature on spin glasses includes many models for the randomness of the

coupling coefficients. We end this part by listing just a few.

• The Edwards–Anderson (E–A) model, where {Ji j } are non–zero for nearest–

neighbor pairs only (e.g., j = i ± 1 in one–dimensional model). According to

this model, {Ji j } are i.i.d. random variables, which are normally modeled to have

a zero–mean Gaussian pdf, or binary symmetric with levels ±J0. It is customary

to work with a zero–mean distribution if we have a pure spin glass in mind. If the

mean is nonzero, the model has either a ferromagnetic or an anti-ferromagnetic

bias, according to the sign of the mean.

• The Sherrington–Kirkpatrick (S–K) model, which is similar to the E–A model,

except that the support of {Ji j } is extended to include all N (N − 1)/2 pairs, and

not only nearest–neighbor pairs. This can be thought of as a stochastic version of

the C–W model in the sense that here too, there is no geometry, and every spin

interacts with every other spin to the same extent, but here the coefficients are

random, as said.

• The p–spin model, which is similar to the S–K model, but now the interaction

term consists, not only of pairs, but also of triples, quadruples, and so on, up to

cliques of size p, i.e., products si1
si2

· · · si p
, where (i1, . . . , i p) exhaust all possible

subsets of p spins out of N . Each such term has a Gaussian coefficient Ji1,...,i p
with

an appropriate variance.
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Considering the p–spin model, it turns out that if we look at the extreme case of

p → ∞ (taken after the thermodynamic limit N → ∞), the resulting behavior

turns out to be extremely erratic: all energy levels {E(s)}s∈{−1,+1}N become i.i.d.

Gaussian random variables. This is, of course, a toy model, which has very little to

do with reality (if any), but it is surprisingly interesting and easy to work with. It is

called the random energy model (REM).

5.7 Suggestions for Supplementary Reading

As mentioned earlier, part of the presentation in this chapter is similar to Chap. 5

of [1]. The topic of interacting particles and phase transitions is covered in many

textbooks, including: Huang [5, Part C], Kardar [6, Chap. 5], Landau and Lifshitz [7,

Chap. VI and onward], Pathria [2, Chaps. 10–13], and Reif [8, Chap. 10].
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Chapter 6

Vibrations in a Solid – Phonons

and Heat Capacity∗

6.1 Introduction

In analogy to black–body radiation, discussed earlier, there is a similar issue related

to vibrational modes of a solid. As in black–body radiation, the analysis of vibrational

modes in a solid can be viewed either by regarding the system as interacting harmonic

oscillators or as a gas of particles, called phonons – the analogue of photons, but in

the context of sound waves, rather than electromagnetic waves.

In this chapter, we shall use this point of view and apply statistical mechanical

methods to calculate the heat capacity pertaining to the lattice vibrations of crys-

talline solids.1 There are two basic experimental facts which any reasonable theory

must be able to explain. The first is that in room temperature the heat capacity of

most solids is about 3 k for each atom.2 This is the Dulong and Petit law (1819),

but this is only an approximation. The second fact is that at low temperatures, the

heat capacity at constant volume, CV , decreases, and actually vanishes at T = 0.

Experimentally, it was observed that the low–temperature dependence is of the form

CV = αT 3 + γT , where α and γ are constants that depend on the material and the

volume. For certain insulators, like potassium chloride, γ = 0, namely, CV is propor-

tional to T 3. For metals (like copper), the linear term is present, but it is contributed

by the conduction electrons. A good theory of the vibrational contribution to heat

capacity should therefore predict the T 3 behavior at low temperatures. In classical

statistical mechanics, the equipartition theorem suggests a constant heat capacity at

all temperatures, in contradiction with both experiments and with the third law of

1In general, there are additional contributions to the heat capacity (e.g., from orientational ordering

in paramagnetic salts, or from conduction electrons in metals, etc.), but here we shall consider only

the vibrational heat capacity.
2Each atom has 6 degrees of freedom (3 of position + 3 of momentum). Classically, each one of

them contributes one quadratic term to the Hamiltonian, whose mean is kT/2, thus a total mean

energy of 3 kT, which means specific heat of 3 k per atom.
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96 6 Vibrations in a Solid – Phonons and Heat Capacity∗

thermodynamics that asserts that as T → 0, the entropy S tends to zero (whereas

a constant heat capacity would yield S ∝ ln T for small T ). A fundamental con-

tribution in resolving this contradiction between theory and experiment was due to

Einstein (1907), who considered the lattice vibrations in the quantum regime. Ein-

stein’s derivations reproduce the desired features (observed experimentally) at least

qualitatively. However, he used a simplified model and did not expect full agree-

ment with experiment, but he pointed out the kind of modifications which the model

requires. Einstein’s theory was later improved by Debye (1912), who considered a

more realistic model.

6.2 Formulation

Consider a Hamiltonian of a classical solid composed of N atoms whose positions

in space are specified by the coordinates x = (x1, . . . , x3N ). In the state of lowest

energy (the ground state), these coordinates are denoted by x̄ = (x̄1, . . . , x̄3N ), which

are normally points of a lattice in the three–dimensional space, if the solid in question

is a crystal. Let ξi = xi − x̄i , i = 1, . . . , 3N , denote the displacements. The kinetic

energy of the system is clearly

K =
1

2
m

3N
∑

i=1

ẋ2
i =

1

2
m

3N
∑

i=1

ξ̇2
i (6.2.1)

and the potential energy is

�(x) = �(x̄) +
∑

i

(

∂�

∂xi

)

x=x̄

ξi +
∑

i, j

1

2

(

∂2�

∂xi∂x j

)

x=x̄

ξiξ j + . . . (6.2.2)

The first term in this expansion represents the minimum energy when all atoms are

at rest in their mean positions x̄i . We henceforth denote this energy by �0. The

second term is identically zero because �(x) is minimized at x = x̄. The second

order terms of this expansion represent the harmonic component of the vibrations.

If we assume that the overall amplitude of the vibrations is reasonably small, we

can safely neglect all successive terms and then we are working with the so called

harmonic approximation. Thus, we may write

E(x) = �0 +
1

2
m

3N
∑

i=1

ξ̇2
i +

∑

i, j

αi jξiξ j (6.2.3)
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where we have denoted

αi j =
1

2
·

∂2�

∂xi∂x j

∣

∣

∣

∣

x=x̄

. (6.2.4)

This Hamiltonian corresponds to harmonic oscillators that are coupled to one another,

as discussed in Sects. 2.2.2 and 5.2, where the off–diagonal terms of the matrix

A = {αi j } designate the pairwise interactions. This Hamiltonian obeys the general

form of Eq. (5.2.1)

While Einstein neglected the off–diagonal terms of A in the first place, Debye

did not. In the following, we present the latter approach, which is more general (and

more realistic), whereas the former will essentially be a special case.

6.3 Heat Capacity Analysis

The first idea of the analysis is to transform the coordinates into a new domain where

the components are all decoupled. This means diagonalizing the matrix A. Since A

is a symmetric non–negative definite matrix, it is clearly diagonalizable by a unitary

matrix formed by its eigenvectors, and the diagonal elements of the diagonalized

matrix (which are the eigenvalues of A) are non–negative. Let us denote the new

coordinates of the system by qi , i = 1, . . . , 3N , and the eigenvalues – by 1
2
mω2

i .

By linearity of the differentiation operation, the same transformation take us from

the vector of velocities {ξ̇i } (of the kinetic component of the Hamiltonian) to the

vector of derivatives of {qi }, which will be denoted {q̇i }. Fortunately enough, since

the transformation is unitary it leaves the components {q̇i } decoupled. In other words,

by the Parseval theorem, the norm of {ξ̇i } is equal to the norm of {q̇i }. Thus, in the

transformed domain, the Hamiltonian reads

E(q) = �0 +
1

2
m

∑

i

(q̇2
i + ω2

i q2
i ). (6.3.1)

which can be viewed as 3N decoupled harmonic oscillators, each one oscillating in its

individual normal mode ωi . The parameters {ωi } are called characteristic frequencies

or normal modes.

Example 6.1 (One–dimensional ring of springs) If the system has translational sym-

metry and if, in addition, there are periodic boundary conditions, then the matrix A is

circulant, which means that it is always diagonalized by the discrete Fourier transform

(DFT). In this case, qi are the corresponding spatial frequency variables, conjugate

to the location displacement variables ξi . The simplest example of this is a ring of N

one–dimensional springs, as discussed in Sect. 5.2 (see left part of Fig. 5.1), where

the Hamiltonian (in the current notation) is

http://dx.doi.org/10.1007/978-3-319-62063-3_2
http://dx.doi.org/10.1007/978-3-319-62063-3_5
http://dx.doi.org/10.1007/978-3-319-62063-3_5
http://dx.doi.org/10.1007/978-3-319-62063-3_5
http://dx.doi.org/10.1007/978-3-319-62063-3_5
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E(x) = �0 +
1

2
m

∑

i

ξ̇2
i +

1

2
K

∑

i

(ξi+1 − ξi )
2. (6.3.2)

In this case, the matrix A is given by

A = K ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 1
2

0 . . . 0 − 1
2

− 1
2

1 − 1
2

0 . . . 0

0 − 1
2

1 − 1
2

0 . . .

· · · · · ·
0 0 . . . − 1

2
1 − 1

2

− 1
2

0 . . . 0 − 1
2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6.3.3)

The eigenvalues of A are λi = K [1 − cos(2πi/N )], which are simply the DFT

coefficients of the N–sequence formed by any row of A (removing the com-

plex exponential of the phase factor). This means that the normal modes are

ωi =
√

2K [1 − cos(2πi/N )]/m. �

Classically, each of the 3N normal modes of vibration corresponds to a wave

of distortion of the lattice. Quantum–mechanically, these modes give rise to quanta

called phonons, in analogy to the fact that vibrational modes of electromagnetic

waves give rise to photons. There is one important difference, however: while the

number of normal modes in the case of an electromagnetic wave is infinite, here the

number of modes (or the number of phonon energy levels) is finite – there are exactly

3N of them. This gives rise to a few differences in the physical behavior, but at low

temperatures, where the high–frequency modes of the solid become unlikely to be

excited, these differences become insignificant.

The Hamiltonian is then

E(n1, n2, . . .) = �0 +
∑

i

(

ni +
1

2

)

�ωi , (6.3.4)

where the non-negative integers {ni } denote the ‘states of excitation’ of the various

oscillators, or equally well, the occupation numbers of the various phonon levels in

the system. The internal energy is then

〈E〉 = −
∂

∂β
ln Z3N (β)

= −
∂

∂β
ln

(

∑

n1

∑

n2

. . . exp

{

−β

[

�0 +
∑

i

(

ni +
1

2

)

�ωi

]})

= −
∂

∂β
ln

[

e−β�0

∏

i

e−β�ωi /2

1 − e−β�ωi

]
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= �0 +
∑

i

1

2
�ωi +

∑

i

∂

∂β
ln(1 − e−β�ωi )

= �0 +
∑

i

1

2
�ωi +

∑

i

�ωi

1 − e−β�ωi
. (6.3.5)

Only the last term of the last expression depends on T . Thus, the heat capacity at

constant volume3 is:

CV =
∂ 〈E〉
∂T

= k
∑

i

(�ωi/kT )2ehωi /kT

(ehωi /kT − 1)2
. (6.3.6)

To proceed from here, one has to know (or assume something) about the form of the

density g(ω) of {ωi } and then pass from summation to integration. It is this point

where the difference between Einstein’s approach and Debye’s approach starts to

show up.

6.3.1 Einstein’s Theory

For Einstein, who assumed that the oscillators do not interact in the original, ξ–

domain, all the normal modes are equal ωi = ωE for all i , because then (assuming

translational symmetry) A is proportional to the identity matrix and then all its

eigenvalues are the same. Thus, in Einstein’s model g(ω) = 3Nδ(ω − ωE ), and the

result is

CV = 3Nk E(x) (6.3.7)

where E(x) is the so–called the Einstein function:

E(x) =
x2ex

(ex − 1)2
(6.3.8)

with

x =
�ωE

kT

�=
�E

T
. (6.3.9)

where �E = �ωE/k is called the Einstein temperature. At high temperatures

T ≫ �E , where x ≪ 1 and then E(x) ≈ 1, we readily see that CV (T ) ≈ 3Nk, in

agreement with classical physics. For low temperatures, CV (T ) falls exponentially

fast as T → 0. This theoretical rate of decay, however, is way too fast compared to

3Exercise 6.1 Why is this the heat capacity at constant volume? Where is the assumption of constant

volume being used here?.
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the observed rate, which is cubic, as described earlier. But at least, Einstein’s theory

predicts the qualitative behavior correctly.

6.3.2 Debye’s Theory

Debye (1912), on the other hand, assumed a continuous density g(ω). He assumed

some cutoff frequency ωD , so that

∫ ωD

0

g(ω)dω = 3N . (6.3.10)

For g(ω) in the range 0 ≤ ω ≤ ωD , Debye adopted a Rayleigh expression in the

spirit of the one we saw in black–body radiation, but with a distinction between

the longitudinal mode and the two independent transverse modes associated with

the propagation of each wave at a given frequency. Letting vL and vT denote the

corresponding velocities of these modes, this amounts to

g(ω)dω = V

(

ω2dω

2π2v3
L

+
ω2dω

π2v3
T

)

. (6.3.11)

This, together with the previous equation, determines the cutoff frequency to be

ωD =
[

18π2ρ

1/v3
L + 2/v3

T

]1/3

(6.3.12)

where ρ = N/V is the density of the atoms. Accordingly,

g(ω) =
{

9N

ω3
D

ω2 ω ≤ ωD

0 elsewhere
(6.3.13)

The Debye formula for the heat capacity is now

CV = 3Nk D(x0) (6.3.14)

where D(·) is called the Debye function

D(x0) =
3

x3
0

∫ x0

0

x4ex dx

(ex − 1)2
(6.3.15)

with

x0 =
�ωD

kT

�=
�D

T
, (6.3.16)
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where �D = �ωD/k is called the Debye temperature. Integrating by parts, the Debye

function can also be written as

D(x0) = −
3x0

ex0 − 1
+

12

x3
0

∫ x0

0

x3dx

ex − 1
. (6.3.17)

Now, for T ≫ �D , which means x0 ≪ 1, D(x0) can be approximated by a Taylor

series expansion:

D(x0) = 1 −
x2

0

20
+ . . . (6.3.18)

Thus, for high temperatures, we again recover the classical result CV = 3Nk. On the

other hand, for T ≪ �D , which is x0 ≫ 1, the dominant term in the integration by

parts is the second one, which gives the approximation

D(x0) ≈
12

x3
0

∫ ∞

0

x3dx

ex − 1
=

4π4

5x3
0

=
4π4

5

(

T

�D

)3

. (6.3.19)

Therefore, at low temperatures, the heat capacity is

CV ≈
12π4

5
Nk

(

T

�D

)3

. (6.3.20)

In other words, Debye’s theory indeed recovers the T 3 behavior at low tempera-

tures, in agreement with experimental evidence. Moreover, the match to experimental

results is very good, not only near T = 0, but across a rather wide range of temper-

atures. In some textbooks, like [1, p. 164, Fig. 6.7], or [2, p. 177, Fig. 7.10], there are

plots of CV as a function of T for certain materials, which show impressive proximity

between theory and measurements.

Exercise 6.2 Extend Debye’s analysis to allow two different cutoff frequencies, ωL

and ωT – for the longitudinal and the transverse modes, respectively.

Exercise 6.3 Calculate the density g(ω) for a ring of springs as described in

Example 6.1. Write an expression for CV as an integral and try to simplify it as

much as you can.

6.4 Suggestions for Supplementary Reading

The exposition in this chapter is based largely on the books by Mandl [1] and Pathria

[2]. Additional material appears also in Kardar [3, Sect. 6.2].
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Chapter 7

Fluctuations, Stochastic Dynamics

and Noise

So far we have discussed mostly systems in equilibrium. Extensive quantities like

volume, energy, etc., have been calculated as means of certain ensembles, and these

were not only means, but moreover, the values of high probability in the thermody-

namic limit. In this chapter, we investigate the statistical fluctuations around these

means, as well as dynamical issues, like the rate of approach to equilibrium when

a system is initially away from equilibrium. We will also discuss noise generation

mechanisms as well as their implications on electric circuits and other systems.

Historically, the theory of fluctuations has been interesting and useful because it

made several experimental effects explicable. This was refreshing, considering the

fact that late–nineteenth–century classical physicists were not able to explain these

effects rigorously. One such phenomenon is Brownian motion – the irregular, random

motion of very light particles suspended in a drop of liquid, which is observed using

a microscope. Another phenomenon is electrical noise, such as thermal noise and

shot noise, as mentioned in the previous paragraph.

Classical thermodynamics cannot explain fluctuations and, in fact, even denies

their existence, because a fluctuation into a less probable state leads to a decrease

of entropy, which is seemingly contradictory to the ideas of the consistent increase

of entropy. This contradiction is resolved by the statistical–mechanical viewpoint,

according to which the increase of entropy holds true only on the average (or with

high probability), not deterministically. Apart from their theoretical interest, fluc-

tuations are important to understand in order to make accurate measurements of

physical properties and at the same time, to realize that the precision is limited by

the fluctuations.
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7.1 Elements of Fluctuation Theory

So far, we have established probability distributions for various physical situations

and have taken for granted the most likely value (or the mean value) as the value of

the physical quantity of interest. For example, the internal energy in the canonical

ensemble was taken to be 〈E〉, which is also the most likely value, with a very sharp

peak as N grows.

The first question is what is the probabilistic characterization of the departure

from the mean. One of the most natural measures of this departure is the variance,

in the above example of the energy, Var{E} =
〈

E2
〉

− 〈E〉2, or the relative standard

deviation
√

Var{E}/ 〈E〉. When several physical quantities are involved, then the

covariances between them are also measures of fluctuation. There are two possible

routes to assess fluctuations in this second order sense. The first is directly from

the relevant ensemble, and the second is by a Gaussian approximation. It is empha-

sized that when it comes to fluctuations, the principle of ensemble equivalence no

longer holds. For example, in the microcanonical ensemble, Var{E} = 0 (since E is

fixed), whereas in the canonical ensemble, it is normally extensive, as we shall see

shortly. Only
√

Var{E}/ 〈E〉, which is proportional to 1/
√

N and hence tends to 0,

can be considered asymptotically equivalent (in a very rough sense) to that of the

microcanonical ensemble.

Consider a system in the canonical ensemble, and let us calculate the probability

of energy level E(x) = E , which fluctuates from the mean E∗. Then,

P(E) = �(E)e−βE

Z(β)

≈ e−β[E−T S(E)]

e−βF

= e−β[E−T S(E)]

e−β[E∗−T S(E∗)]

= e−β[�E−T �S], �E = E − E∗; �S = S(E) − S(E∗). (7.1.1)

Now,

�S = ∂S

∂E
�E + 1

2
· ∂2S

∂E2
· (�E)2 + . . .

= 1

T
· �E + 1

2
· ∂2S

∂E2
· (�E)2 + . . . (7.1.2)
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and so,

P(E) ≈ e−β[�E−T �S] ≈ exp

{

βT

2
· ∂2S

∂E2
· (�E)2

}

= exp

{

1

2k
· ∂2S

∂E2
· (E − E∗)2

}

. (7.1.3)

One should keep in mind that since S(E) is concave, its second derivative is negative,

so in the vicinity of E∗, the random variable E(X) is nearly Gaussian with mean E∗

and variance k/|∂2S/∂E2|. How does this variance scale with N? Note that since S

and E are both extensive (proportional to N ), the first derivative is intensive, and the

second derivative is proportional to 1/N , so the variance of E is proportional to N ,

which means that the standard deviation of the energy fluctuations scales like
√

N ,

and so the relative variance
√

Var{E}/E scales like 1/
√

N (cf. the additive case,

where E(X) = ∑

i E(X i ) is the sum of N i.i.d. random variables). This asymptotic

Gaussianity should not be a surprise, as we have approximated F(E) by a second

order Taylor series expansion around its minimum, so e−βF(E) is approximated by

an exponentiated quadratic expression which is Gaussian. The same idea can be

used for additional quantities that fluctuate. For example, in the Gibbsian ensemble,

where both E and V fluctuate, the Gibbs free energy is nearly quadratic in (�E,�V )

around its equilibrium value, and so, this random vector is Gaussian with a covariance

matrix that is proportional to the inverse of the Hessian of S w.r.t. E and V .

Example 7.1 (Ideal gas) In the case of the ideal gas, Eq. (2.2.6) gives

E(S, V ) = 3N 5/3h2

4πe5/3mV 2/3
e2S/(3Nk), (7.1.4)

whose Hessian is

∇2 E = 2E

9

(

2/(Nk)2 −2/(NkV )

−2/(NkV ) 5/V 2

)

. (7.1.5)

Thus, the covariance matrix of (�V,�S) is

� = kT · (∇2 E)−1 = 9kT

2E
· (NkV )2

6
·
(

5/V 2 2/(NkV )

2/(NkV ) 2/(Nk)2

)

(7.1.6)

or, using the relation E = 3NkT/2,

� =
(

5Nk2/2 kV

kV V 2/N

)

. (7.1.7)

Thus, Var{�S} = 5Nk2/2, Var{�V } = V 2/N , and 〈�S�V 〉 = kV , which are all

extensive. �

http://dx.doi.org/10.1007/978-3-319-62063-3_2
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7.2 Brownian Motion and the Langevin Equation

The term “Brownian motion” is after the botanist Robert Brown, who, in 1828, had

been observing tiny pollen grains in a liquid under a microscope and saw that they

moved in a random fashion, and that this motion was not triggered by currents or

other processes in the liquid, like evaporation, etc. The movement was caused by

frequent collisions with the particles of the liquid. Einstein (1905) was the first to

provide a sound theoretical analysis of Brownian motion on the basis of the “random

walk problem.” Here, we introduce the topic using a formulation due to the French

physicist Paul Langevin (1872–1946), which makes the derivation extremely simple.

Langevin focuses on the motion of a relatively large particle of mass m, located at x(t)

at time t , whose velocity is v(t) = ẋ(t). The particle is subjected to the influence of a

force, composed of two components: one is a slowly varying macroscopic force and

the other is varying rapidly and randomly. The latter has zero mean, but it fluctuates.

In the one–dimensional case, it obeys the differential equation

mẍ(t) + γ ẋ(t) = F + Fr(t), (7.2.1)

where γ is a frictional (dissipative) coefficient and Fr(t) is the random component

of the force. While this differential equation is nothing but Newton’s law and hence

obvious in macroscopic physics, it should not be taken for granted in the micro-

scopic regime. In elementary Gibbsian statistical mechanics, all processes are time

reversible in the microscopic level, since energy is conserved in collisions as the

effect of dissipation in binary collisions is traditionally neglected. A reasonable the-

ory, however, should incorporate the dissipative term.

The response of x(t) to F + Fr(t) is, clearly, the superposition of the individ-

ual responses to F and to Fr(t) separately. The former is the solution to a simple

(deterministic) differential equation, which is not the center of our interest here.

Considering the response to Fr(t) only, multiply Eq. (7.2.1) by x(t), to get

mx(t)ẍ(t) ≡ m

[

d(x(t)ẋ(t))

dt
− ẋ2(t)

]

= −γx(t)ẋ(t) + x(t)Fr(t). (7.2.2)

Taking the expectation, while assuming that, due to the randomness of {Fr(t)}, x(t)

and Fr(t) at time t , are independent, we have, 〈x(t)Fr(t)〉 = 〈x(t)〉 〈Fr(t)〉 = 0. Also,

note that m
〈

ẋ2(t)
〉

= kT by the energy equipartition theorem (which applies here

since we are assuming the classical regime), and so, we end up with

m
d 〈x(t)ẋ(t)〉

dt
= kT − γ 〈x(t)ẋ(t)〉 , (7.2.3)

a simple first order differential equation, whose solution is

〈x(t)ẋ(t)〉 = kT

γ
+ Ce−γt/m, (7.2.4)
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where C is a constant of integration. Imposing the condition that x(0) = 0, this gives

C = −kT/γ, and so

1

2

d
〈

x2(t)
〉

dt
≡ 〈x(t)ẋ(t)〉 = kT

γ

(

1 − e−γt/m
)

, (7.2.5)

which yields

〈

x2(t)
〉

= 2kT

γ

[

t − m

γ
(1 − e−γt/m)

]

. (7.2.6)

The last equation gives the mean square deviation of a particle away from its origin,

at time t . The time constant of the dynamics, a.k.a. the relaxation time, is θ = m/γ.

For short times (t ≪ θ),
〈

x2(t)
〉

≈ kT t2/m, which means that it looks like the particle

is moving at constant velocity of
√

kT/m. For t ≫ θ, however,

〈

x2(t)
〉

≈ 2kT

γ
· t. (7.2.7)

It should now be pointed out that this linear growth rate of
〈

x2(t)
〉

is a characteristic of

Brownian motion. Here it is only an approximation for t ≫ θ, as for m > 0, {x(t)} is

not a pure Brownian motion. Pure Brownian motion corresponds to the case m = 0

(hence θ = 0), namely, the term mẍ(t) in the Langevin equation can be neglected,

and then x(t) is simply proportional to
∫ t

0
Fr(τ )dτ where {Fr(t)} is white noise.

Figure 7.1 illustrates a few realizations of a Brownian motion in one dimension and

in two dimensions.

We may visualize each collision on the pollen grain as that of an impulse, because

the duration of each collision is extremely short. In other words, the position of

the particle x(t) is responding to a sequence of (positive and negative) impulses at

random times. Let

Rv(τ ) = 〈v(t)v(t + τ )〉 = 〈ẋ(t)ẋ(t + τ )〉 (7.2.8)

denote the autocorrelation of the random process v(t) = ẋ(t) and let Sv(ω) =
F{Rv(τ )} be the power spectral density.1

Clearly, by the Langevin equation {v(t)} is the response of a linear, time–invariant

linear system

H(s) = 1

ms + γ
= 1

m(s + 1/θ)
; h(t) = 1

m
e−t/θu(t) (7.2.9)

1To avoid confusion, one should keep in mind that although Sv(ω) is expressed as a function of

the radial frequency ω, which is measured in radians per second, the physical units of the spectral

density function itself here are Volt2/Hz and not Volt2/[radian per second]. To pass to the latter,

one should divide by 2π. Thus, to calculate power, one must use
∫ +∞
−∞ Sv(2π f )d f .
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Fig. 7.1 Illustration of a Brownian motion. Upper figures: one–dimensional Brownian motion –

three realizations of x(t) as a function of t . Lower figures: two–dimensional Brownian motion –

three realizations of �r(t) = [x(t), y(t)]. All realizations start at the origin

to the random input process {Fr(t)}. Assuming that the impulse process {Fr(t)} is

white noise, then

Rv(τ ) = const · h(τ ) ∗ h(−τ ) = const · e−|τ |/θ = Rv(0)e−|τ |/θ = kT

m
· e−|τ |/θ

(7.2.10)

and

Sv(ω) = 2kT

m
· ω0

ω2 + ω2
0

, ω0 = 1

θ
= γ

m
(7.2.11)

that is, a Lorentzian spectrum. We see that the relaxation time θ is indeed a measure

of the “memory” of the particle and ω0 = 1/θ plays the role of 3 dB cutoff frequency

of the spectrum of {v(t)}. What is the spectral density of the driving input white

noise process?

SFr
(ω) = Sv(ω)

|H(iω)|2 = 2kT ω0

m(ω2 + ω2
0)

· m2(ω2 + ω2
0) = 2kT mω0 = 2kT γ.

(7.2.12)

This result is very important. The spectral density of the white noise is 2kT times

the dissipative coefficient of the system, γ. In other words, the dissipative element of
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the system is ‘responsible’ for the noise. At first glance, it may seem surprising: why

should the intensity of the (external) driving force Fr(t) be related to the dissipative

coefficient γ? The answer is that they are related via energy balance considerations,

since we are assuming thermal equilibrium. Because the energy waste (dissipation)

is proportional to γ, the energy supply from Fr(t) must also be proportional to γ in

order to balance it.

Example 7.2 (Energy balance for the Brownian particle) The friction force

Ffriction(t) = −γv(t) causes the particle to loose kinetic energy at the rate of

Ploss = 〈Ffriction(t)v(t)〉 = −γ
〈

v2(t)
〉

= −γ · kT

m
= −kT

θ
.

On the other hand, the driving force Fr(t) injects kinetic energy at the rate of

Pinjected = 〈Fr(t)v(t)〉 (7.2.13)

=
〈

Fr(t)

∫ ∞

0

dτh(τ )Fr(t − τ )

〉

(7.2.14)

= 2kT γ

∫ ∞

0

dτh(τ )δ(τ ) (7.2.15)

= kT γh(0) = kT γ

m
= kT

θ
, (7.2.16)

which exactly balances the loss. Here, we used that fact that
∫ ∞

0
dτh(τ )δ(τ ) =

h(0)/2 since only “half” of the delta function is “alive” where h(τ ) > 0.2 Exercise 7.1

What happens if γ = 0, yet Fr(t) has spectral density N0? Calculate the rate of kinetic

energy increase in two different ways: (i) Show that m
2

〈

v2(t)
〉

is linear in t and find

the constant of proportionality. (ii) Calculate 〈Fr(t)v(t)〉 for this case.

These principles apply not only to a Brownian particle in a liquid, but to any linear

system that obeys a first order stochastic differential equation with a white noise

input, provided that the energy equipartition theorem applies. An obvious electrical

analogue of this is a simple electric circuit where a resistor R and a capacitor C are

connected to each other (see Fig. 7.2). The thermal noise generated by the resistor

(due to the thermal random motion of the colliding free electrons in the conductor

with extremely short mean time between collisions), a.k.a. the Johnson–Nyquist

noise, is modeled as a current source connected in parallel to the resistor (or as an

equivalent voltage source connected in series to the resistor), which generates a white

noise current process Ir(t). The differential equation pertaining to Kirchoff’s current

law is

2More rigorously, think of the delta function here as the limit of narrow (symmetric) autocorrelation

functions which all integrate to unity.
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Fig. 7.2 An R–C circuit

CV̇ (t) + V (t)

R
= Ir(t) (7.2.17)

where V (t) is the voltage across the resistor as well as the parallel capacitor. Now,

this is exactly the same differential equation as before, where Ir(t) plays the role of

the driving force, V (t) is replacing ẋ(t), C substitutes m, and 1/R is the dissipative

coefficient instead of γ. Thus, the spectral density of the current is

SIr
(ω) = 2kT

R
. (7.2.18)

Alternatively, if one adopts the equivalent serial voltage source model then Vr(t) =
RIr(t) and so

SVr
(ω) = 2kT

R
· R2 = 2kT R. (7.2.19)

This result is studied in every elementary course on random processes.

Finally, note that here we have something similar to the ultraviolet catastro-

phe: white noise has infinite power, which is nonphysical. Once again, this hap-

pens because we have not addressed quantum effects pertaining to high frequencies

(�ω ≫ kT ), which as in black–body radiation, cause an exponential decay in the

spectrum beyond a frequency of about kT/�. We will get back to this later on in

Sect. 7.5.

7.3 Diffusion and the Fokker–Planck Equation

In this subsection, we consider the temporal evolution of the probability density func-

tion of x(t) (and not only its second order statistics, as in the previous subsection),

under quite general conditions. The first successful treatment of Brownian motion

was due to Einstein, who as mentioned earlier, reduced the problem to one of dif-

fusion. Einstein’s argument can be summarized as follows: assume that all particles

move independently. The relaxation time is short compared to the observation time,

but long enough for the motions of a particle in two consecutive intervals of θ to

be independent. Let the number of suspended grains be N and let the x coordinate

change by � in one relaxation time. � is a random variable, symmetrically dis-

tributed around 0. The number of particles dN displaced by more than � but less
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than � + d� is dN = N p(�)d� where p(�) is the pdf of �. Since only small

displacements are likely to occur, p(�) is sharply peaked at the origin. Let ρ(x, t)

denote the density of particles at position x , at time t . The number of particles in the

interval [x, x + dx] at time t + δ (δ small) is

ρ(x, t + δ)dx = dx

∫ +∞

−∞
ρ(x − �, t)p(�)d� (7.3.1)

This equation tells that the probability of finding the particle around x at time t + δ

is the probability of finding it in x − � (for any �) at time t , and then moving

by � within duration δ to arrive at x at time t + δ. Here we assume independence

between the location x − � at time t and the probability distribution of �, as p(�)

is independent of x − �. Since δ is small, we use the Taylor series expansion

ρ(x, t + δ) ≈ ρ(x, t) + δ · ∂ρ(x, t)

∂t
. (7.3.2)

Also, for small �, we approximate ρ(x − �, t), this time to the second order:

ρ(x − �, t) ≈ ρ(x, t) − � · ∂ρ(x, t)

∂x
+ �2

2
· ∂2ρ(x, t)

∂x2
. (7.3.3)

Putting these in Eq. (7.3.1), we get

ρ(x, t) + δ · ∂ρ(x, t)

∂t
= ρ(x, t)

∫ +∞

−∞
p(�)d� − ∂ρ(x, t)

∂x

∫ +∞

−∞
�p(�)d� +

1

2
· ∂2ρ(x, t)

∂x2

∫ +∞

−∞
�2 p(�)d� (7.3.4)

or

∂ρ(x, t)

∂t
= 1

2δ
· ∂2ρ(x, t)

∂x2

∫ +∞

−∞
�2 p(�)d� (7.3.5)

which is the diffusion equation

∂ρ(x, t)

∂t
= D · ∂2ρ(x, t)

∂x2
(7.3.6)

with the diffusion coefficient being

D = lim
δ→0

〈

�2
〉

2δ
= lim

δ→0

〈

[x(t + δ) − x(t)]2
〉

2δ
. (7.3.7)

To solve the diffusion equation, define ̺(κ, t) as the Fourier transform of ρ(x, t)

w.r.t. the variable x , i.e.,
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̺(κ, t) =
∫ +∞

−∞
dx · e−iκxρ(x, t). (7.3.8)

Then, the diffusion equation becomes an ordinary differential equation w.r.t. t :

̺(κ, t)

∂t
= D(iκ)2̺(κ, t) ≡ −Dκ2̺(κ, t) (7.3.9)

whose solution is easily found to be ̺(κ, t) = C(κ)e−Dκ2t . Assuming ρ(x, 0) =
δ(x), this means C(κ) = ̺(κ, 0) = 1 for all κ, and so ̺(κ, t) = e−Dκ2t . The density

ρ(x, t) is obtained by the inverse Fourier transform, which is

ρ(x, t) = e−x2/(4Dt)

√
4πDt

, (7.3.10)

and so x(t) is zero–mean Gaussian with variance
〈

x2(t)
〉

= 2Dt .3 Of course, any

other initial location x0 would yield a Gaussian with the same variance 2Dt , but the

mean would be x0. Comparing the variance 2Dt with (7.2.7), we have D = kT/γ,

which is known as the Einstein relation, widely used in semiconductor physics.

The analysis thus far assumed that 〈�〉 = 0, namely, there is no drift to either the

left or the right direction. We next drop this assumption. In this case, the diffusion

equation generalizes to

∂ρ(x, t)

∂t
= −v · ∂ρ(x, t)

∂x
+ D · ∂2ρ(x, t)

∂x2
(7.3.11)

where

v = lim
δ→0

〈�〉
δ

= lim
δ→0

〈x(t + δ) − x(t)〉
δ

= d

dt
〈x(t)〉 = 〈ẋ(t)〉 (7.3.12)

has the obvious meaning of the average velocity. Equation (7.3.11) is well known as

the Fokker–Planck equation. The diffusion equation and the Fokker–Planck equation

are very central in physics. As mentioned already in Chap. 1, they are fundamental

in semiconductor physics, describing processes of propagation of concentrations of

electrons and holes in semiconductor materials.

Exercise 7.2 Solve the Fokker–Planck equation and show that the solution is

ρ(x, t) = N (vt, 2Dt). Explain the intuition.

It is possible to further extend the Fokker–Planck equation so as to allow the pdf

of � to be location–dependent, that is, p(�) would be replaced by px (�), but the

3A point to think about: what is the intuition behind the resultant Gaussianity? We have not assumed

any specific distribution in advance.

http://dx.doi.org/10.1007/978-3-319-62063-3_1
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important point to retain is that given the present location x(t) = x , � would be

independent of the earlier history of {x(t ′), t ′ < t}, which means that {x(t)} should

be a Markov process. Consider then a general continuous–time Markov process

defined by the transition probability density function Wδ(x ′|x), which denotes the

pdf of x(t + δ) at x ′ given that x(t) = x . A straightforward extension of the earlier

derivation would lead to the following more general form4

∂ρ(x, t)

∂t
= − ∂

∂x
[v(x)ρ(x, t)] + ∂2

∂x2
[D(x)ρ(x, t)], (7.3.13)

where

v(x) = lim
δ→0

1

δ

∫ +∞

−∞
(x ′ − x)Wδ(x ′|x)dx ′ = E[ẋ(t)|x(t) = x] (7.3.14)

is the local average velocity and

D(x) = lim
δ→0

1

2δ

∫ +∞

−∞
(x ′ − x)2Wδ(x ′|x)dx ′ = lim

δ→0

1

2δ
E{[x(t + δ) − x(t)]2|x(t) = x}

(7.3.15)

is the local diffusion coefficient.

Example 7.3 Consider the stochastic differential equation

ẋ(t) = −ax(t) + n(t),

where n(t) is a Gaussian white noise with spectral density N0/2. From the solution

of this differential equation, it is easy to see that

x(t + δ) = x(t)e−aδ + e−a(t+δ)

∫ t+δ

t

dτn(τ )eaτ .

This relation, between x(t) and x(t + δ), can be used to derive the first and the

second moments of [x(t + δ) − x(t)] for small δ, and to find that v(x) = −ax and

D(x) = N0/4 (Exercise 7.4 Show this). Thus, the Fokker–Planck equation, in this

example, reads

∂ρ(x, t)

∂t
= a · ∂

∂x
[x · ρ(x, t)] + N0

4
· ∂2ρ(x, t)

∂x2
.

It is easy to check that the r.h.s. vanishes for ρ(x, t) ∝ e−2ax2/N0 (independent of t),

which means that in equilibrium, x(t) is Gaussian with zero mean and variance

4Exercise 7.3 Prove it.
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N0/4a. This is in agreement with the fact that, as x(t) is the response of the lin-

ear system H(s) = 1/(s + a) (or in the time domain, h(t) = e−at u(t)) to n(t), its

variance is indeed (as we know from courses on random processes):

N0

2

∫ ∞

0

h2(t)dt = N0

2

∫ ∞

0

e−2at dt = N0

4a
.

Note that if x(t) is the voltage across the capacitor in a simple R–C network, then

a = 1/RC , and since E(x) = Cx2/2, then in equilibrium we have the Boltzmann

weight ρ(x) ∝ exp(−Cx2/2kT ), which is again, a zero–mean Gaussian. Comparing

the exponents, we immediately obtain N0/2 = 2kT/RC2.

Exercise 7.5 Find the solution ρ(x, t) for all x and t subject to the initial condition

ρ(x, 0) = δ(x). �

A slightly different representation of the Fokker–Planck equation is the following:

∂ρ(x, t)

∂t
= − ∂

∂x

{

v(x)ρ(x, t) − ∂

∂x
[D(x)ρ(x, t)]

}

. (7.3.16)

Now, v(x)ρ(x, t) has the obvious interpretation of the drift current density Jdrift(x, t)

of a ‘mass’ whose density is ρ(x, t) (in this case, it is a probability mass), whereas

Jdiffusion(x, t) = − ∂

∂x
[D(x)ρ(x, t)]

is the diffusion current density.5 While the drift current is related to the overall motion

of the object, the diffusion current is associated with the tendency to equalize the

density ρ (which is why it is proportional to the negative density gradient). Thus,

∂ρ(x, t)

∂t
= −∂ Jtotal(x, t)

∂x
(7.3.17)

where

Jtotal(x, t) = Jdrift(x, t) + Jdiffusion(x, t).

Equation (7.3.17) is the equation of continuity, which we saw in Chap. 1. In steady

state, when ρ(x, t) is time–invariant, the total current may vanish. The drift current

and the diffusion current balance each other, or at least the net current is homogeneous

(independent of x), so no mass accumulates anywhere.

5This generalizes Fick’s law that we have seen in Chap. 1. There, D was fixed (independent of x),

and so the diffusion current was proportional to the negative gradient of the density.

http://dx.doi.org/10.1007/978-3-319-62063-3_1
http://dx.doi.org/10.1007/978-3-319-62063-3_1


7.3 Diffusion and the Fokker–Planck Equation 115

Comment It is interesting to relate the diffusion constant D to the mobility of the

electrons in the context of electric conductivity. The mobility μ is defined according

to v = −μE , where E is the electric field, and the minus sign is because electrons are

accelerated in a direction opposite to that of the electric field (due to their negative

charge). According to Fick’s law, the diffusion current density is proportional to the

negative gradient of the concentration, and D is defined as the constant of propor-

tionality, i.e., Jdiff. elec. = −D∂ρ/∂x , which is Jdiffusion = Dqe∂ρ/∂x , with the sign

change, again, due to the negative charge of the electron. If one sets up a field E in

an open circuit, the diffusion current cancels the drift current, that is

J = ρqeμE + Dqe

∂ρ

∂x
= 0. (7.3.18)

This gives ρ(x) ∝ e−μEx/D . On the other hand, under thermal equilibrium, with

potential energy V (x) = qe Ex , we also have ρ(x) ∝ e−V/kT = e−qe Ex/kT . Upon

comparing the exponents, we readily obtain the Einstein relation, D = kT μ/qe.

Note that μ/qe = |v|/qe|E | is related to the admittance (the dissipative coefficient)

since |v| is proportional to the current and |E | is proportional to the voltage.

7.4 The Fluctuation–Dissipation Theorem

We next take another point of view on stochastic dynamics of a physical system:

suppose that a system (not necessarily a single particle as in the previous subsections)

is initially in equilibrium of the canonical ensemble, but at a certain time instant, it is

subjected to an abrupt, yet small, change in a certain parameter that controls it (say,

a certain force, like pressure, magnetic field, etc.). Right after this abrupt change

in the parameter, the system is, of course, no longer in equilibrium, but it is not

far, since the change is assumed small. How fast does the system re–equilibrate and

what is its dynamical behavior in the course of the passage to the new equilibrium?

Also, since the change was abrupt and not quasi–static, how is energy dissipated?

Quite remarkably, it turns out that the answers to both questions are related to the

equilibrium fluctuations of the system. Accordingly, the principle that quantifies and

characterizes this relationship is called the fluctuation–dissipation theorem and this is

the subject of this subsection. We shall also relate it to the derivations of the previous

subsection.

Consider a physical system, which in the absence of any applied external field, has

an Hamiltonian E(x), where here x denotes the microstate, and so, its equilibrium

distribution is the Boltzmann distribution with a partition function given by:

Z(β) =
∑

x

e−βE(x). (7.4.1)
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Now, let w(x) be an observable (a measurable physical quantity that depends on the

microstate), which has a conjugate force F , so that when F is applied, the change

in the Hamiltonian is �E(x) = −F · w(x). Next, suppose that the external force is

time–varying according to a certain waveform {F(t), − ∞ < t < ∞}. As in the

previous subsection, it should be kept in mind that the overall effective force can

be thought of as a superposition of two contributions, a deterministic contribution,

which is the above mentioned F(t) – the external field that the experimentalist applies

on purpose and fully controls, and a random part Fr(t), which pertains to interaction

with the environment (or the heat bath at temperature T ). The former is deterministic

and the latter symbolizes the random, spontaneous thermal fluctuations.6 The random

component Fr(t) is responsible for the randomness of the microstate x and hence also

the randomness of the observable. We shall denote the random variable corresponding

to the observable at time t by W (t). Thus, W (t) is random variable, which takes values

in the set {w(x), x ∈ X }, where X is the space of microstates. When the external

deterministic field is kept fixed (F(t) ≡ const.), the system is expected to converge

into equilibrium and eventually obey the Boltzmann law. While in the section on

Brownian motion, we focused only on the contribution of the random part, Fr(t),

now let us refer only to the deterministic part, F(t). We will get back to the random

part later on.

Let us assume first that F(t) was switched on to a small level ǫ at time −∞, and

then switched off at time t = 0, in other words, F(t) = ǫU (−t), where U (·) is the

unit step function (a.k.a. the Heaviside function). We are interested in the behavior

of the mean of the observable W (t) at time t , which we shall denote by 〈W (t)〉,
for t > 0. Also, 〈W (∞)〉 will denote the limit of 〈W (t)〉 as t → ∞, namely, the

equilibrium mean of the observable in the absence of an external field. Define now

the (negative) step response function as

ζ(t) = lim
ǫ→0

〈W (t)〉 − 〈W (∞)〉
ǫ

(7.4.2)

and the auto–covariance function pertaining to the final equilibrium as

RW (τ )
�= lim

t→∞
〈W (t)W (t + τ )〉 − 〈W (∞)〉2 , (7.4.3)

Then, the fluctuation–dissipation theorem (FDT) asserts that

RW (τ ) = kT · ζ(τ ). (7.4.4)

The FDT then relates between the linear transient response of the system to a small

excitation (after it has been removed) and the autocovariance of the observable in

6The random part of the force Fr(t) does not necessarily exist physically, but it is a way to refer

the random thermal fluctuations of the system to the ‘input’ F from a pure signals–and–systems

perspective. For example, think again of the example a Brownian particle colliding with other

particles. The other particles can be thought of as the environment in this case.
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Fig. 7.3 Illustration of the response of 〈W (t)〉 to a step function at the input force F(t) = ǫU (−t).

According to the FDT, the response (on top of the asymptotic level 〈W (∞)〉) is proportional to the

equilibrium autocorrelation function RW (t), which in turn may decay either monotonically (solid

curve) or in an oscillatory manner (dashed curve)

equilibrium. The transient response, that fades away is the dissipation, whereas the

autocovariance is the fluctuation. Normally, RW (τ ) decays for large τ and so 〈W (t)〉
converges to 〈W (∞)〉 at the same rate (see Fig. 7.3).

To prove this result, we proceed as follows: first, we have by definition:

〈W (∞)〉 =
∑

x w(x)e−βE(x)

∑

x e−βE(x)
. (7.4.5)

Now, for t < 0, we have

P(x) = e−βE(x)−β�E(x)

∑

x e−βE(x)−β�E(x)
. (7.4.6)

Thus, for all negative times, and for t = 0− in particular, we have

〈

W (0−)
〉

=
∑

x w(x)e−βE(x)−β�E(x)

∑

x e−βE(x)−β�E(x)
. (7.4.7)

Let Pt (x ′|x) denote the probability that the system will be at state x ′ at time t

(t > 0) given that it was at state x at time t = 0−. This probability depends on the

dynamical properties of the system (in the absence of the perturbing force). Let us

define 〈W (t)〉x = ∑

x ′ w(x ′)Pt (x ′|x), which is the expectation of W (t) (t > 0) given

that the system was at state x at t = 0−. Now,
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〈W (t)〉 =
∑

x 〈W (t)〉x e−βE(x)−β�E(x)

∑

x e−βE(x)−β�E(x)

=
∑

x 〈W (t)〉x e−βE(x)+βǫw(x)

∑

x e−βE(x)+βǫw(x)
(7.4.8)

and 〈W (∞)〉 can be seen as a special case of this quantity for ǫ = 0 (no perturbation

at all). Thus, ζ(t) is, by definition, nothing but the derivative of 〈W (t)〉 w.r.t. ǫ,

computed at ǫ = 0. I.e.,

ζ(τ ) = ∂

∂ǫ

[

∑

x 〈W (τ )〉x e−βE(x)+βǫw(x)

∑

x e−βE(x)+βǫw(x)

]

ǫ=0

= β ·
∑

x 〈W (τ )〉x w(x)e−βE(x)

∑

x e−βE(x)
− β ·

∑

x 〈W (τ )〉x e−βE(x)

∑

x e−βE(x)
·
∑

x w(x)e−βE(x)

∑

x e−βE(x)

= β

[

lim
t→∞ 〈W (t)W (t + τ )〉 − 〈W (∞)〉2

]

= βRW (τ ), (7.4.9)

where we have used the fact that the dynamics of {Pt (x ′|x)} preserve the equilibrium

distribution.

Exercise 7.6 Extend the FDT to account for a situation where the force F(t) is not

conjugate to w(x), but to another physical quantity v(x).

While ζ(t) is essentially the response of the system to a (negative) step function

in F(t), then obviously,

h(t) =
{

0 t < 0

−ζ̇(t) t ≥ 0
=

{

0 t < 0

−β ṘW (t) t ≥ 0
(7.4.10)

would be the impulse response. Thus, we have characterized the “linear” system that

describes the transient response of 〈W (t)〉 − 〈W (∞)〉 to a small input signal in F(t).

It is directly related to the equilibrium autocovariance function of {W (t)}. We can

now express the response of 〈W (t)〉 to a general small signal F(t) that vanishes for

t ≥ 0 to be

〈W (t)〉 − 〈W (∞)〉 ≈ −β

∫ 0

−∞
ṘW (t − τ )F(τ )dτ

= −β

∫ 0

−∞
RW (t − τ )Ḟ(τ )dτ

= −βRW ⊗ Ḟ, (7.4.11)
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where the second passage is from integration by parts and where ⊗ denotes convo-

lution. Indeed, in our first example, Ḟ(t) = −ǫδ(t) and we are back with the result

〈W (t)〉 − 〈W (∞)〉 = βǫRW (t).

It is instructive to look at these relations also in the frequency domain. Applying

the one sided Fourier transform on both sides of the relation h(t) = −β ṘW (t) and

taking the complex conjugate (i.e., multiplying by eiωt and integrating over t > 0),

we get

H(−iω) ≡
∫ ∞

0
h(t)eiωt dt = −β

∫ ∞

0
ṘW (t)eiωt dt = βiω

∫ ∞

0
RW (t)eiωt dt + βRW (0),

(7.4.12)

where the last step is due to integration by parts. Upon taking the imaginary parts of

both sides, we get:

Im{H(−iω)} = βω

∫ ∞

0

RW (t) cos(ωt)dt = 1

2
βωSW (ω), (7.4.13)

where SW (ω) is the power spectrum of {W (t)} in equilibrium, that is, the Fourier

transform of RW (τ ). Equivalently, we have:

SW (ω) = 2kT · Im{H(−iω)}
ω

= −2kT · Im{H(iω)}
ω

(7.4.14)

Example 7.4 (An electric circuit) Consider the circuit in Fig. 7.4. The driving force

is the voltage source V (t) and the conjugate variable is Q(t) the electric charge of

the capacitor. The resistors are considered part of thermal environment. The voltage

waveform is V (t) = ǫU (−t). At time t = 0−, the voltage across the capacitor is ǫ/2

and the energy is 1
2
C(Vr + ǫ

2
)2, whereas for t → ∞, it is 1

2
CV 2

r , so the difference

is �E = 1
2
CVrǫ = 1

2
Qrǫ, neglecting the O(ǫ2) term. According to the FDT then,

ζ(t) = 1
2
βRQ(t), where the factor of 1/2 follows the one in �E . This then gives

SQ(ω) = 4kT · Im{H(−iω)}
ω

. (7.4.15)

In this case,

H(iω) = (R‖1/[iωC]) · C

R + (R‖1/[iωC]) = C

2 + iωRC
(7.4.16)

Fig. 7.4 Electric circuit for

Example 7.4
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for which

Im{H(−iω)} = ωRC2

4 + (ωRC)2
(7.4.17)

and finally,

SQ(ω) = 4kT RC2

4 + (ωRC)2
. (7.4.18)

Thus, the thermal noise voltage across the capacitor is 4kT R/[4 + (ωRC)2]. The

same result can be obtained, of course, using the method studied in courses on

random processes, where the voltage noise spectrum across a certain pair of points

in the circuit is given by 2kT times the real part of the input impedance seen from

these points, which in this case, is given by

2kT · Re

{

R‖R‖ 1

iωC

}

= 4kT R

4 + (ωRC)2
. (7.4.19)

This concludes Example 7.4. �

Earlier, we have seen that 〈W (t)〉 − 〈W (∞)〉 responds to a deterministic (small)

waveform F(t) via a linear (or actually, linearized) system with an impulse response

h(t). By the same token, we can think of the random part around the mean, W (t) −
〈W (t)〉, as the response of the same system to a random input Fr(t) (thus, the total

response is the superposition). In other words, we are decomposing the total “output

signal” as

W (t) − 〈W (∞)〉 = [〈W (t)〉 − 〈W (∞)〉] + [W (t) − 〈W (t)〉],

viewing the first bracketed term as the deterministic part, responding to the determin-

istic signal F(t), and the second bracketed term as the random fluctuation, responding

to a random input Fr(t). If we wish to think of our physical system in equilibrium as

a linear(ized) system with input Fr(t) and output W (t) − 〈W (t)〉, then what should

the spectrum of the input process {Fr(t)} be in order to comply with the last result?

Denoting by SFr
(ω) the spectrum of the input process, we know from the basic of

random processes that

SW (ω) = SFr
(ω) · |H(iω)|2 (7.4.20)

and so comparing with (7.4.14), we have

SFr
(ω) = 2kT · Im{H(−iω)}

ω · |H(iω)|2 . (7.4.21)
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This extends our earlier result concerning the spectrum of the driving white noise in

the case of the Brownian particle, where we obtained a spectral density of 2kT γ.

Example 7.5 (Second order linear system) For a second order linear system (e.g., a

damped harmonic oscillator),

mẄ (t) + γẆ (t) + K W (t) = Fr(t) (7.4.22)

the force Fr(t) is indeed conjugate to the variable W (t), which is the location, as

required by the FDT. Here, we have

H(iω) = 1

m(iω)2 + γiω + K
= 1

K − mω2 + γiω
. (7.4.23)

In this case,

Im{H(−iω)} = γω

(K − mω2)2 + γ2ω2
= γω|H(iω)|2 (7.4.24)

and so, we readily obtain

SFr
(ω) = 2kT γ, (7.4.25)

recovering the principle that the spectral density of the noise process is 2kT times

the dissipative coefficient γ of the system, which is responsible to the irreversible

component. The difference between this and the earlier derivation is that earlier, we

assumed in advance that the input noise process is white and we only computed its

spectral level, whereas now, we have actually shown that at least for a second order

linear system like this, it must be white noise (as far as the classical approximation

holds). �

From Eq. (7.4.21), we see that the thermal interaction with the environment, when

referred to the input of the system, has a spectral density of the form that we can

calculate. In general, it does not necessarily have to be a flat spectrum. Consider for

example, an arbitrary electric network consisting of one voltage source (in the role

of F(t)) and several resistors and capacitors. Suppose that our observable W (t) is

the voltage across one of the capacitors. Then, there is a certain transfer function

H(iω) from the voltage source to W (t). The thermal noise process stemming from

all resistors is calculated by considering equivalent noise sources (parallel current

sources or serial voltage sources) attached to each resistor. However, in order to refer

the contribution of these noise sources to the input F(t), we must calculate equivalent

noise sources which are in series with the given voltage source F(t). These equivalent

noise sources will no longer generate white noise processes, in general. For example,

in the circuit of Fig. 7.4, if an extra capacitor C would be connected in series to one

of the resistors, then, the contribution of the right resistor referred to the left one is

not white noise.7

7Exercise 7.7 Calculate its spectrum.
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Finally, it should be pointed out that this concept of referring the randomness in

the system to the input is not always feasible, as in general, there is no apparent

guarantee that the r.h.s. of Eq. (7.4.21) is a legitimate spectrum density function,

i.e., that it is non–negative everywhere. In the absence of this condition, the idea of

referring the noise to the input should simply be abandoned.

7.5 Johnson–Nyquist Noise in the Quantum–Mechanical

Regime

As promised at the end of Sect. 7.3, we now return to the problematics of the formula

SVr
(ω) = 2kT R when it comes to very high frequencies, namely, the electrical ana-

logue to the ultraviolet catastrophe. Very high frequencies means very short waves,

much shorter than the physical sizes of the electric circuit.

The remedy to the unreasonable classical results in the high frequency range, is

to view the motion of electrons in a resistor as an instance of black–body radiation,

but instead of the three–dimensional case that we studied earlier, this time we are

talking about the one–dimensional case. The difference is mainly the calculation of

the density of states. Consider a long transmission line with characteristic impedance

R of length L , terminating at both ends by resistances R (see Fig. 7.5), so that the

impedances are matched at both ends. Then any voltage wave propagating along

the transmission line is fully absorbed by the terminating resistor without reflection.

The system resides in thermal equilibrium at temperature T . The resistor then can be

thought of as a black–body radiator in one dimension. A voltage wave of the form

V (x, t) = V0 exp[i(κx − ωt)] propagates along the transmission line with velocity

v = ω/κ, which depends on the capacitance and the inductance of the transmission

line per unit length. To assess the number of modes, let us impose the periodic

boundary condition V (0, t) = V (L , t). Then κL = 2πn for any positive integer n.

Thus, there are �n = L�κ/2π = L�ω/2πv such modes in the frequency range

between ω = vκ and ω + �ω = v(κ + �κ). The mean energy of such a mode is

given by

ǫ(ω) = �ω

e�ω/kT − 1
. (7.5.1)

Fig. 7.5 Transmission line

of length L , terminated by

resistances R at both ends
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Since there are �n = L�ω/(2πv) propagating modes in this frequency range, the

mean energy per unit time (i.e., the power) incident upon a resistor in this frequency

range is

P = 1

L/v
· L�ω

2πv
· ǫ(ω) = 1

2π
· �ω�ω

e�ω/kT − 1
, (7.5.2)

where L/v at the denominator is the travel time of the wave along the transmis-

sion line. This is the radiation power absorbed by the resistor, which must be

equal to the power emitted by the resistor in this frequency range. Let the thermal

voltage generated by the resistor in the frequency range [ω,ω + �ω] be denoted

by Vr(t)[ω,ω + �ω]. This voltage sets up a current of Vr(t)[ω,ω + �ω]/2R and

hence an average power of
〈

V 2
r (t)[ω,ω + �ω]

〉

/4R. Thus, the balance between the

absorbed and the emitted power gives

〈

V 2
r (t)[ω,ω + �ω]

〉

4R
= 1

2π
· �ω · �ω

e�ω/kT − 1
, (7.5.3)

which is

〈

V 2
r (t)[ω,ω + �ω]

〉

�ω
= 4R

2π
· �ω

e�ω/kT − 1
(7.5.4)

or

〈

V 2
r (t)[ f, f + � f ]

〉

� f
= 4R · h f

eh f/kT − 1
. (7.5.5)

Taking the limit � f → 0, the left–hand side becomes the one–sided spectral density

of the thermal noise, and so (returning to the angular frequency domain), the two–

sided spectral density is

SVr
(ω) = 2R · �ω

e�ω/kT − 1
. (7.5.6)

We see that when quantum–mechanical considerations are incorporated, the noise

spectrum is no longer flat. As long as �ω ≪ kT , the denominator is very well approx-

imated by �ω/kT , and we recover the formula 2kT R, but for frequencies of the

order of magnitude of ωc
�= kT/�, the spectrum decays exponentially rapidly. So the

quantum–mechanical correction is the substitution:

kT =⇒ �ω

e�ω/kT − 1
. (7.5.7)
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At T = 300 ◦K, the cutoff frequency is fc = ωc/2π ≈ 6.2 THz,8 so the spectrum

can be safely considered 2kT R flat over any frequency range of practical interest.

What is the total RMS noise voltage generated by a resistor R at temperature T ?

The total mean square noise voltage is

〈

V 2
r (t)

〉

= 4R

∫ ∞

0

�ωdω

e�ω/kT − 1

= 4R(kT )2

�

∫ ∞

0

xdx

ex − 1

= 4R(kT )2

�

∫ ∞

0

xe−x dx

1 − e−x

= 4R(kT )2

�

∞
∑

n=1

∫ ∞

0

xe−nx dx

= 4R(kT )2

�

∞
∑

n=1

1

n2

= 2R(πkT )2

3�
, (7.5.8)

which is quadratic in T since both the (low frequency) spectral density and the

effective bandwidth are linear in T . The RMS is then

VRMS =
√

〈

V 2
r (t)

〉

=
√

2R

3�
· πkT, (7.5.9)

namely, proportional to temperature and to the square root of the resistance. To assess

the order of magnitude, a resistor of 100 � at T = 300 ◦K generates an RMS thermal

noise of about 10 mV when it stands alone (without a circuit that limits the bandwidth

much more drastically than ωc). The equivalent noise bandwidth is

Beq = 2R(πkT )2/3h

2kT R
= π2kT

3h
= π2

3
· fc. (7.5.10)

Exercise 7.8 Derive an expression for the autocorrelation function of the Johnson–

Nyquist noise in the quantum mechanical regime.

8Recall that 1 THz = 1012 Hz.
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7.6 Other Noise Sources

In addition to thermal noise, there are other physical mechanisms that generate noise

in Nature in general, and in electronic circuits, in particular. We will only provide short

descriptions here. The interested reader is referred to the course notes “Fundamentals

of Noise Processes” by Y. Yamamoto in the following link: http://www.nii.

ac.jp/qis/first-quantum/e/forStudents/lecture/index.html

These notes contain a very detailed and comprehensive account of many more topics

that evolve around the physics of noise processes in electronic circuitry and other

systems.

Flicker Noise

Flicker noise, also known as 1/ f noise, is a random process with a spectrum that falls

off steadily into the higher frequencies. It occurs in almost all electronic devices, and

results from a variety of effects, though always related to a direct current. According

to the underlying theory, there are fluctuations in the conductivity due to the superpo-

sition of many independent thermal processes of alternate excitation and relaxation

of certain defects (e.g., dopant atoms or vacant lattice sites). This means that every

once in a while, a certain lattice site or a dopant atom gets excited and it moves into

a state of higher energy for some time, and then it relaxes back to the lower energy

state until the next excitation. Each one of these excitation/relaxation processes can

be modeled as a random telegraph signal (RTS) with a different time constant θ (due

to different physical/geometric characteristics) and hence contributes a Lorentzian

spectrum parametrized by θ. The superposition of these processes, whose spectrum

is given by the integral of the Lorentzian function over a range of values of θ (with

a certain weight), gives rise to the 1/ f behavior over a wide range of frequencies.

To see this more concretely in the mathematical language, an RTS X (t) is given by

X (t) = (−1)N (t), where N (t) is a Poisson process of rate λ. It is a binary signal where

the level +1 can symbolize excitation and the level −1 designates relaxation. Here

the dwell times between jumps are exponentially distributed. The autocorrelation

function is given by

〈X (t)X (t + τ )〉 =
〈

(−1)N (t)+N (t+τ )
〉

=
〈

(−1)N (t+τ )−N (t)
〉

=
〈

(−1)N (τ )
〉

= e−λτ

∞
∑

k=0

(λτ )k

k! · (−1)k

= e−λτ

∞
∑

k=0

(−λτ )k

k!
= e−2λτ (7.6.1)
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and so the spectrum is Lorentzian:

SX (ω) = F{e−2λ|τ |} = 4λ

ω2 + 4λ2
= 2θ

1 + (ωθ)2
, (7.6.2)

where the time constant is θ = 1/2λ and the cutoff frequency is ωc = 2λ. Now,

calculating the integral

∫ θmax

θmin

dθ · g(θ) · 2θ

1 + (ωθ)2

with g(θ) = 1/θ, yields a composite spectrum that is proportional to

1

ω
tan−1(ωθmax) − 1

ω
tan−1(ωθmin).

For ω ≪ 1/θmax, using the approximation tan−1(x) ≈ x (|x | ≪ 1), this is approx-

imately a constant. For ω ≫ 1/θmin, using the approximation tan−1(x) ≈ π
2

− 1
x

(|x | ≫ 1), this is approximately proportional to 1/ω2. In between, in the range

1/θmax ≪ ω ≪ 1/θmin (assuming that 1/θmax ≪ 1/θmin), the behavior is according

to

1

ω

(

π

2
− 1

ωθmax

)

− θmin = 1

ω

(

π

2
− 1

ωθmax

− ωθmin

)

≈ π

2ω
,

which is the 1/ f behavior in this wide range of frequencies. There are several theories

why g(θ) should be inversely proportional to θ, but the truth is that they are not perfect,

and the issue of 1/ f noise is not yet perfectly (and universally) understood.

Shot Noise

Shot noise in electronic devices consists of unavoidable random statistical fluctu-

ations of the electric current in an electrical conductor. Random fluctuations are

inherent when current flows, as the current is a flow of discrete charges (electrons).

First, some background on Poisson processes: a Poisson process {N (t)}t≥0 is a

continuous–time counting process, starting from N (0) = 0 and incremented by 1 at

random time instants T1, T2, . . .. The number of events N (t), counted up to time t ,

is distributed according to

Pr{N (t) = k} = e−λt (λt)k

k! , k = 0, 1, 2, . . . (7.6.3)

and events counted at non–overlapping time intervals are statistically independent.

Thus, over a total time interval of t0 seconds, the joint probability of N (t0) = k

together with counting event times within [τ1, τ1 + dτ1] × . . . × [τk, τk + dτk] is

given by
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Pr{T1 ∈ [τ1, τ1 + dτ1), . . . , Tk ∈ [τk, τk + dτk), N (t0) = k} (7.6.4)

�= f (τ1, . . . , τk, N (t0) = k)dτ1 · · · dτk (7.6.5)

= e−λτ1 · λdτ1 · e−λ(τ2−τ1) · λdτ2 · · · λdτke−λ(t0−τk )

= e−λt0λk · dτ1 · · · dτk . (7.6.6)

Therefore, by the Bayes theorem

f (τ1, . . . , τk |N (t0) = k) = e−λt0λk

e−λt0(λt0)k/k! (7.6.7)

= k! ·
(

1

t0

)k

. (7.6.8)

Consider k independent random variables, �1, . . . , �k , all uniformly distributed

within the interval [0, t0]. Their joint density is, of course (1/t0)
k , which is similar

to the above except the factor k!. But T1, T2, . . . , Tk are ordered in increasing order,

whereas �1,�2, . . . , �k are not necessarily so. One can think of T1, T2, . . . , Tk as a

result of ordering �1,�2, . . . , �k in increasing order, and since there are k! possible

orderings, this gives rise to the factor k! in f (τ1, . . . , τk |N (t0) = k). This means that

one can simulate a Poisson process {N (t), 0 ≤ t < t0} as follows: (i) First, randomly

select k according to the Poisson distribution (7.6.3). (ii) Draw �1, . . . , �k indepen-

dently and uniformly at random over [0, t0]. (iii) Sort �1,�2, . . . , �k in an increasing

order to obtain T1, T2, . . . , Tk . (iv) Let N (t) = ∑k
i=1 u(t − Ti ) = ∑k

i=1 u(t − �i )

for t ∈ [0, t0).

Now, consider a DC current in a device, which shoots electrons according to a

Poisson process (e.g., a p-n junction of a diode), i.e.,

I (t) =
∑

i

ie(t − Ti ), (7.6.9)

where ie(·) is the (very short) current pulse generated by the passage of a single

electron.9 The DC current is simply the average of this, which is λt0qe/t0 = λqe
�= I0.

The noise, which is associated with the fluctuations around this average, is given by

the second order statistics. Neglecting edge effects, we have:

R(s)
�= E{I (t)I (t + s)} = E{E{I (t)I (t + s)|K }} (7.6.10)

= E

⎧

⎨

⎩

K
∑

i=1

ie(t − �i )

K
∑

j=1

ie(t + s − � j )

⎫

⎬

⎭

(7.6.11)

9Note that ie(t) integrates to qe, and since it is a very short pulse, it is nearly qeδ(t) for a passage

at time t = 0.



128 7 Fluctuations, Stochastic Dynamics and Noise

= E

{

K
∑

i=1

1

t0

∫ t0

0

ie(t + s − θ)ie(t − θ)dθ

}

+ (7.6.12)

E

⎧

⎨

⎩

∑

i �= j

1

t2
0

∫ t0

0

ie(t + s − θ)dθ ·
∫ t0

0

ie(t − θ)dθ

⎫

⎬

⎭

(7.6.13)

= E{K }
t0

Re(s) + E{K 2 − K }
t2
0

· q2
e (7.6.14)

= λt0

t0
· Re(s) + λ2t2

0

t2
0

q2
e (7.6.15)

= I0

qe

· Re(s) + I 2
0 , (7.6.16)

where

Re(s) =
∫ +∞

−∞
ie(t)ie(t + s)dt. (7.6.17)

Now, the second term, I 2
0 , is the contribution of the pure DC component, i.e., the

(stationary) average current. The first term is the fluctuation noise. Note that for

ie(t) = qeδ(t), we have Re(s) = q2
e δ(s), and so, the (flat) spectrum of the noisy part

is

Sshot(ω) = I0qe, (7.6.18)

or S(ω) = 2I0qe for the single–sided spectrum. A few comments are in order:

1. By measuring the noise intensity in a diode, one can find qe experimentally.

2. In the derivation above, we assumed that ie(t) is proportional to the Dirac delta

function, which is an idealization. For a general pulse shape, Sshot(ω) would

become proportional to the Fourier transform of Re(s) as defined in (7.6.17).

Equivalently, this can be thought of as letting the white noise process derived

above undergo a linear filter whose impulse response is ie(t).

3. The result applies as long as I0 is not too large. For a strong DC current I0, there

is another effect that kicks in, namely, the spatial charge effect: if a large bulk of

electrons cross at the same time, they create a spatial charge that interferes with

the emission of additional electrons, and this causes the shot noise spectral level

to be smaller than predicted by the above derivation.

Burst Noise

Burst noise consists of sudden step–like transitions between two or more levels (non-

Gaussian), as high as several hundred micro-volts, at random and unpredictable times.

Each shift in offset voltage or current lasts for several milliseconds, and the intervals

between pulses tend to be in the audio range (less than 100 Hz), leading to the term
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popcorn noise for the popping or crackling sounds it produces in audio circuits. Burst

noise is customarily modeled as an RTS and therefore, another synonym for burst

noise is RTS noise. Accordingly, it has a Lorentzian spectrum, similarly as in (7.6.2):

Sburst(ω) ∝ 1

1 + (ω/ω0)2
, (7.6.19)

which means that the spectrum is nearly flat at low frequencies (compared to the

cutoff frequency ω0) and nearly proportional to 1/ω2 for high frequencies.

Avalanche Noise

Avalanche noise is the noise produced when a junction diode is operated at the onset

of avalanche breakdown, a semiconductor junction phenomenon in which carriers

in a high voltage gradient develop sufficient energy to dislodge additional carriers

through physical impact, creating ragged current flows.

7.7 Suggestions for Supplementary Reading

Parts of the material in this chapter are based on Beck [1, Chaps. 6 and 9] and Reif

[2, Chap. 15]. For additional recommended reading, the reader is referred to van

Kampen [3], Risken [4], and Sethna [5, Chap. 10].
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Chapter 8

A Brief Touch on Information Theory∗

8.1 Introduction – What Is Information Theory About?

Our last topic in this book consists of a very brief description on the relation between

statistical physics and information theory, a research field pioneered by Claude

Elwood Shannon (1916–2001), whose seminal paper “A Mathematical Theory of

Communications” (1948) has established the corner–stone of this field.

In a nutshell, information theory is a science that focuses on the fundamental limits,

on the one hand, and the achievable performance, on the other hand, concerning

various information processing tasks, including most notably:

1. Data compression (lossless/lossy).

2. Error correction coding (coding for protection against errors due to channel noise).

3. Encryption.

There are also additional tasks of information processing that are considered to belong

under the umbrella of information theory, like: signal detection, estimation (para-

meter estimation, filtering/smoothing, prediction), information embedding, process

simulation, extraction of random bits, information relaying, and more.

Core information theory, which is called Shannon theory in the jargon of the

professionals, is about coding theorems. It is associated with the development of

computable formulas that characterize the best performance that can possibly be

achieved in these information processing tasks under some (usually simple) assump-

tions on the probabilistic models that govern the data, the channel noise, the side

information, the jammers if applicable, etc. While in most cases, this theory does not

suggest constructive communication systems, it certainly provides insights concern-

ing the features that an optimal (or nearly optimal) communication system must have.

Shannon theory serves, first and foremost, as the theoretical basis for modern digital

communication engineering. That being said, much of the modern research activ-

ity in information theory evolves, not only around Shannon theory, but also on the

never-ending efforts to develop methodologies (mostly, specific code structures and
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algorithms) for designing very efficient communication systems, which hopefully

come close to the bounds and the fundamental performance limits.

But the scope of information theory it is not limited merely to communication

engineering: it plays a role also in computer science, and many other disciplines,

one of them is thermodynamics and statistical mechanics, which is the focus of

this last chapter. Often, information–theoretic problems are well approached from a

statistical–mechanical point of view. We will taste this very briefly in two examples

of problems.

In this book, we will not delve into information theory too deeply, but our purpose

is merely to touch upon the interface of these two fields. A more advanced exposition,

that goes much deeper than our scope here, is provided in [1].

8.2 Entropy in Information Theory and Statistical Physics

Perhaps the first relation that crosses one’s mind is that in both fields there is a

fundamental notion of entropy. Actually, in information theory, the term entropy was

coined in the footsteps of the thermodynamic/statistical–mechanical entropy. Along

this book, we have seen already three (seemingly) different forms of the entropy: the

first is the thermodynamic entropy defined, in its differential form as

δS = δQ/T, (8.2.1)

which was first introduced by Clausius in 1850. The second is the statistical entropy

S = k ln �, (8.2.2)

which was defined by Boltzmann in 1872. The third is yet another formula for the

entropy – the Gibbs formula for the entropy of the canonical ensemble:

S = −k
∑

x

P(x) ln P(x) = −k〈ln P(x)〉, (8.2.3)

which we encountered in Chap. 2.

It is virtually impossible to miss the functional resemblance between the last form

above and the information–theoretic entropy, a.k.a. the Shannon entropy, which is

simply

H = −
∑

x

P(x) log2 P(x) (8.2.4)

namely, the same expression as above exactly, just without the factor k and with the

basis of the logarithm being 2 rather than e. Indeed, this clear analogy was recognized

already by Shannon and von Neumann. According to a well–known anecdote, von

http://dx.doi.org/10.1007/978-3-319-62063-3_2
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Neumann advised Shannon to adopt this term because it would provide him with

“... a great edge in debates because nobody really knows what entropy is anyway.”

What is the information–theoretic meaning of entropy? It turns out that it has many

information–theoretic meanings, but the most fundamental one concerns optimum

compressibility of data. Suppose that we have a string of N i.i.d. random variables,

x1, x2, . . . , xN , taking values in a discrete set, say, the components of the microstate

in a quantum system of non–interacting particles, and we want to represent the

microstate information digitally (in bits) as compactly as possible, without losing

any information – in other words, we require the ability to fully reconstruct the data

from the compressed binary representation. How short can this binary representation

be?

Let us look at the following example. Suppose that each xi takes values in the set

{A, B, C, D}, independently with probabilities

P(A) = 1/2; P(B) = 1/4; P(C) = 1/8; P(D) = 1/8.

Clearly, when translating the letters into bits, the naive approach would be to say

the following: we have 4 letters, so it takes 2 bits to distinguish between them, by

mapping, say lexicographically, as follows:

A → 00; B → 01; C → 10; D → 11.

This would mean representing the list of x’s using 2 bits per–symbol. This is very

simple. But is this the best thing one can do?

It turns out that the answer is negative. Intuitively, if we can assign variable–

length code-words to the various letters, using shorter code-words for more probable

symbols and longer code-words for the less frequent ones, we might be able to gain

something. In our example, A is most probable, while C and D are the least probable,

so how about the following solution:

A → 0; B → 10; C → 110; D → 111.

Now the average number of bits per symbol is:

1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 = 1.75.

We have improved the average bit rate by 12.5%. This is fine, but is this the best one

can do or can we improve even further?

It turns out that this time, the answer is affirmative. Note that in this solution,

each letter has a probability of the form 2−ℓ (ℓ – positive integer) and the length

of the assigned code-word is exactly ℓ (for A, ℓ = 1, for B – ℓ = 2, and for C

and D, ℓ = 3). In other words, the length of the code-word for each letter is the

negative logarithm of its probability, so the average number of bits per symbol is
∑

x∈{A,B,C,D} P(x)[− log2 P(x)], which is exactly the entropy H of the information
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source. One of the basic coding theorems of information theory tells us that we

cannot compress to any coding rate below the entropy and still expect to be able to

reconstruct the x’s perfectly. But why is this true?

We will not get into a rigorous proof of this statement, but we will make an

attempt to give a statistical–mechanical insight into it. Consider the microstate x =

(x1, . . . , xN ) and let us think of the probability function

P(x1, . . . , xN ) =

N
∏

i=1

P(xi ) = exp

{

−(ln 2)

N
∑

i=1

log2[1/P(xi )]

}

(8.2.5)

as an instance of the canonical ensemble at inverse temperature β = ln 2, where

Hamiltonian is additive, namely, E(x1, . . . , xN ) =
∑N

i=1 ǫ(xi ), with ǫ(xi ) = − log2

P(xi ). Obviously, Z(β) = Z(ln 2) = 1, so the free energy is exactly zero here. Now,

by the weak law of large numbers, for most realizations of the microstate x,

1

N

N
∑

i=1

ǫ(xi ) ≈ 〈ǫ(xi )〉 = 〈− log2 P(xi )〉 = H, (8.2.6)

so the average ‘internal energy’ is NH . It is safe to consider instead, the corresponding

microcanonical ensemble, which is equivalent as far as macroscopic averages go. In

the microcanonical ensemble, we would then have:

1

N

N
∑

i=1

ǫ(xi ) = H (8.2.7)

for every realization of x. How many bits would it take us to represent x in this micro-

canonical ensemble? Since all x’s are equiprobable in the microcanonical ensemble,

we assign to all x’s binary code-words of the same length, call it L . In order to

have a one–to–one mapping between the set of accessible x’s and binary strings of

representation, 2L , which is the number of binary strings of length L , should be no

less than the number of microstates {x} of the microcanonical ensemble. Thus,

L ≥ log2

∣

∣

∣

∣

∣

{

x :

N
∑

i=1

ǫ(xi ) = N H

}
∣

∣

∣

∣

∣

�
= log2 �(N H), (8.2.8)

but the r.h.s. is exactly related (up to a constant factor) to Boltzmann’s entropy

associated with ‘internal energy’ at the level of N H . Now, observe that the free

energy of the original, canonical ensemble, which is zero, is related to the entropy

ln �(N H) via the Legendre relation ln Z ≈ ln � − βE , which is

0 = ln Z(ln 2) ≈ ln �(N H) − N H ln 2 (8.2.9)
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and so,

ln �(N H) ≈ N H ln 2 (8.2.10)

or

log2 �(N H) ≈ N H, (8.2.11)

and therefore, by (8.2.8):

L ≥ log2 �(N H) ≈ N H, (8.2.12)

which means that the length of the binary representation essentially cannot be less

than N H , namely, a compression rate of H bits per component of x. So, we have

seen that the entropy has a very concrete information–theoretic meaning, and in fact,

it is not the only one, but we will not delve into this any further here.

8.3 Statistical Physics of Optimum Message Distributions

We next study another, very simple paradigm of a communication system, studied

by Reiss [2] and Reiss and Huang [3]. The analogy and the parallelism to the basic

concepts of statistical mechanics, that were introduced earlier, will be quite evident

from the choice of the notation, which is deliberately chosen to correspond to that

of analogous physical quantities.

Consider a continuous–time communication system that includes a noiseless

channel, with capacity

C = lim
E→∞

log2 M(E)

E
, (8.3.1)

where M(E) is the number of distinct messages (and log2 of this is the number of

bits) that can be transmitted over a time interval of E seconds. Over a duration of E

seconds, L information symbols are conveyed, so that the average transmission time

per symbol is σ = E/L seconds per symbol. In the absence of any constraints on

the structure of the encoded messages, M(E) = r L = r E/σ , where r is the channel

input–output alphabet size. Thus, C = (log r)/σ bits per second.

Consider now the thermodynamic limit of L → ∞. Suppose that the L symbols

of duration E form N words, where by ‘word’, we mean a certain variable–length

string of channel symbols. The average transmission time per word is then ǫ = E/N .

Suppose further, that the code defines a certain set of word transmission times:

word number i takes ǫi seconds to transmit. What is the optimum allocation of

word probabilities {Pi } that would support full utilization of the channel capacity?

Equivalently, given the probabilities {Pi }, what are the optimum transmission times

{ǫi }? For simplicity, we will assume that {ǫi } are all distinct. Suppose that each word
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appears Ni times in the entire message. Denoting N = (N1, N2, . . .), Pi = Ni/N ,

and P = (P1, P2, . . .), the total number of messages pertaining to a given N is

�(N) =
N !

∏

i Ni !

·
= exp{N · H(P)} (8.3.2)

where H(P) is the Shannon entropy pertaining to the probability distribution P .

Now,

M(E) =
∑

N:
∑

i Ni ǫi =E

�(N). (8.3.3)

This sum is dominated by the maximum term, namely, the maximum–entropy assign-

ment of relative frequencies

Pi =
e−βǫi

Z(β)
(8.3.4)

where β > 0 is a Lagrange multiplier chosen such that
∑

i Piǫi = ǫ, which gives

ǫi = −
ln[Pi Z(β)]

β
. (8.3.5)

For β = 1, this is in agreement with our earlier observation that the optimum message

length assignment in variable–length lossless data compression is according to the

negative logarithm of the probability.

Suppose now that {ǫi } are kept fixed and consider a small perturbation in Pi ,

denoted dPi . Then

dǫ =
∑

i

ǫi dPi

= −
1

β

∑

i

(dPi ) ln[Pi Z(β)]

= −
1

β

∑

i

(dPi ) ln Pi −
1

β

∑

i

(dPi ) ln Z(β)

= −
1

β

∑

i

(dPi ) ln Pi

=
1

kβ
d

(

−k
∑

i

Pi ln Pi

)

�
= T ds, (8.3.6)
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where we have defined T = 1/(kβ) and s = −k
∑

i Pi ln Pi . The free energy per

particle is given by

f = ǫ − T s = −kT ln Z , (8.3.7)

which is related to the redundancy of the code. In [2], there is also an extension of this

setting to the case where N is not fixed, with correspondence to the grand—canonical

ensemble.

8.4 Suggestions for Supplementary Reading

In addition to the references mentioned in this chapter, the reader is referred to

[1, 4], as well as many references therein, for a much deeper exposition of the

relation to information theory. We should also mention that Sect. 8.4 above is similar

to Sect. 3.1 of [1].
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