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Foreword

The aim of this book is to present the basis for calculation of composite
structures, using continuum mechanics equations which enable the more elaborate
theories to be treated.

The first part is devoted to study of materials constituting the layers of laminated
composites. The constitutive equations for anisotropic and in particular orthotropic
materials are presented, with temperature and hygrometry effects taken into account.
Next the basic laws of mixtures are given, which enable the behaviour of
unidirectional layers to be predicted from the characteristics of their fibres and
matrix components.

The subject of the second part is multi-layer plates. We begin by presenting the
general equations of thin plates in Kirchhoff-Love analysis. Later, symmetrical
orthotropic plates are studied in detail for cases of bending, vibration and buckling.
The thermo-elastic behaviour of multi-layers plates is considered separately. Then
we tackle symmetric orthotropic moderately thick plates, using Reissner-Mindlin
type analysis. Examples of asymmetrical plates in Kirchhoff-Love theory are
analysed in detail. The cylindrical bending of laminated composites is treated in
both Kirchhoff-Love and Reissner-Mindlin type analysis, with bending, vibration
and buckling applications.

The third part of this book is devoted to beams. The first chapter of this part
treats tension-compression loading. The following chapter treats bending with
transverse shear deformations not taken in account. The last chapter of this part
presents bending taking into account transverse shear. Examples of bending,
vibration and buckling are considered for each case.

In the appendices, plate equations are developed by integrating local equations of
motion. Global equations are obtained from variational formulae of continuum
mechanics.
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Chapter 1

Constitutive relations for anisotropic
materials in linear elasticity

1.1. Introduction

Stress-strain or constitutive relations for anisotropic materials will be treated
first, and in particular the behaviour of orthotropic and transversely isotropic
materials, the latter including unidirectional composites.

Then, using tensor notation based on four indices and the conventional notation
with two indices, the expressions for changing axes in terms of stresses, strains,
stiffnesses and compliances will be detailed.

1.2. Four indices tensor notation

1.2.1. Constitutive relations

The reference state is a natural state without stress or strain, that is:

In linear elasticity theory the stress tensor o is given as a function of the strain
tensor e by the tensorial relation:

The sign : indicates a tensor product. The Cy^ elements are the 81 components

of the elastic moduli tensor or stiffness tensor C. In a homogeneous medium the 81
elastic moduli CIM are independent of the point considered.

Inversion of the constitutive relation provides the tensor expression:

The Sijft are the 81 components of the elastic compliance in the compliance

tensor S.
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4 Analysis of composite structures

1.2.2.2. Symmetry with respect to the first two indices

The stresses are given by:

1.2.2. Properties of C^y and S^i

1.2.2.1. Symmetry with respect to the last two indices

The stresses are given by:

As the strain tensor is symmetrical we have:

By identification, the symmetry property is obtained:

As the stress tensor is symmetrical we have:

By identification, the symmetry property is obtained:

1.2.2.3. Symmetry of the first pair of indices with respect to the second pair

From the application of the first law of thermodynamics to elasticity, the state
function U, the internal energy, is identified with the strain energy Wd .

The elementary strain energy per volume:

is an exact derivative:

with cry = Cykieki and cry = C^BIJ . After introduction in the equality above, we

obtain the symmetry property:

Given this property, the elementary volume strain energy:

leads to, by integration, the volume strain energy:
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Constitutive relations for anisotropic materials 5

the order of the first two indices (i, j) and the next two indices (k,l) does not affect

the modulus of elasticity values. As there are six distinct values for the group (i, j)

and six distinct values for the group (k,l), there remain 36 independent elastic

moduli.

Given the third symmetry property:

the constitutive relation can be written in the matrix form:

with the convention:

The compliances have the same symmetry properties as the stiffnesses.

1.3. Conventional two indices Voigt notation

Given the two first symmetry properties:

the permutations of the ( i , j ) and (&,/) groups do not modify the elastic moduli

values. The number of independent values is therefore reduced to 21.

Taking account of the previous remarks, we can propose:

where

and

The index relationship CTj, = C^e^ being written in the explicit form:

or in the index form:
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6 Analysis of composite structures

and:

1.4. Anisotropic material

1.4.1. Monoclinic material

The monoclinic material studied has the plane (M^.XJ) as a plane of mirror

symmetry.

Figure 1.1. Mirror symmetry axes

The two axes in (e)= (x1,x2,x3) and \e*)= (xi ,X2,x 3) = (x1,-x2,x3) are

symmetrical about the plane (M x 3 ,X j ) . The two vectors:

n = W j X j + w2x2 + «3x3, and

The constitutive relation can also be written in the form:

Similarly we have:
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Constitutive relations for anisotropic materials 7

are symmetrical.

The components nt- of n* in \e j are equal to the «, components of n in (e).

The mirror symmetry property of the two vectors n and n is written:

*
The components with the same indices a^ and <T- of stress tensor in the two

axes (e j and (e) are equal.

For the two symmetric stress vectors T\M n* j and T(M n), we have the same:

The relation T(M n) = (G(M ))n is written in index form:

and:

Given the preceding remarks, the second relation is written:

hence, by identification:

For the strain tensor we have the same:

The constitutive relation a = C: e is written in index form:

and:

Given the previous properties, the second relation is written:

hence, by identification:
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The elastic modulus C\n\ is given by the expression for changing axes:

The elastic moduli which possess the index 2 an odd number of times are zero.
The stiffness matrix in the monoclinic axes are thus of the form:

8 Analysis of composite structures

The components with the same indices C^ and C..^ of the stiffness tensor in

the two axes \e j and (e) are equal.

Designating by a, the matrix of change of axes from (e) to \e j, the expression

for the change of axes for a fourth order tensor is written:

and the mirror symmetry property requires:

The only non-zero components of the change of axes matrix:

where the second index of a^ is equal to 1, in the summation for/? only #u = 1 is

not zero, therefore we obtain:

The elastic modulus C1112 is, with the same axes change, equal to:

in the summation with as2 only a 22 = ~1 is not zero, therefore we have:

#
The mirror symmetry property C1112

 =Clll2 leads to

hence:

are:
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Constitutive relations for anisotropic materials 9

A monoclinic material is characterised by 13 elastic moduli.

With the two-index notation, for the mirror symmetry planer (M^.XJ), the

stiffness matrix is written:

1.4.2. Orthotropic material

The orthotropic material studied has the two planes (M x3,x1) and (M xl,\2)

as planes of mirror symmetry.
The non-zero components of the axes that change the matrix from

W=(x1 ,x2 ,x3) to (e*)=(Xl,x2,-x3):

are:

According to the previous results, the elastic moduli with the index 3 an odd
number of times are zero.

The stiffness matrix in the orthotropic axes has the form:
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10 Analysis of composite structures

An orthotropic material is characterised by nine elastic moduli.
In addition, it is immediately obvious that the (M|x2,x3) plane is also a plane of

mirror symmetry.
With the two-index notation, the stiffness and compliance matrices are

respectively equal to:

and

The inversion of the matrix C involves the calculation of the inverses of the two
matrices:

Putting:

we obtain:
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Constitutive relations for anisotropic materials 11

The strains are given as a function of the stresses by the matrix relation:

The elastic compliances Sy- can be expressed as a function of Young's

moduli EI , the Poisson coefficients vy and the shear moduli Gy- .

In order to reveal these different values, three simple tensile and three shear tests
are proposed.

- In the case of a simple tensile loading in the direction xl, all the ai are zero

except ol.

The strains £,-, given by the constitutive relation are equal to:

Figure 1.2. Simple tension

Young's modulus Ev in the xl direction is defined by the relation:
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12 Analysis of composite structures

The Poisson coefficients V12 and V13 are given by:

and:

By identification, we obtain:

- In the case of a simple tension loading in the x2 direction and for a simple

tension in the x3 direction, we obtain:

Figure 1.3. Simple shear

The strains €z- given by the constitutive relation are equal to:

- In the case of a simple shear in the x2 and x3 directions, all the cri are zero

except <T4.

The shear modulus G^ is defined by:
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Constitutive relations for anisotropic materials 13

hence:

- The compliance matrix is written in the orthotropic axes in the form:

and from the symmetry properties of the elastic compliances we have the following
relation between the Poisson coefficients and Young's moduli:

- The stiffness matrix is obtained by inversion of the compliance matrix and is
written, in the axes of orthotropy, in the following form:

- In the case of simple shear in the x3 and xx directions, and in the xl and x2

directions, we obtain:
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14 Analysis of composite structures

with:

and:

1.4.3. Transversely isotropic material

The transversely isotropic medium proposed here has the (M|x2,x3) plane as

the isotropic plane.
If the (M|x2,x3) plane is an isotropic plane, the elastic moduli with the same

indices in the two axes (e) = (x1,x2,x3) and (e*)= (x^x^x^j which are defined

by the following relations:

Figure 1.4. Isotropic plane

The matrix for changing the axes from (e) to \e y.

have the same value whatever the angle a.
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Constitutive relations for anisotropic materials 15

has the following non-zero components:

In the particular case where a - y, the non-zero components of a are:

The formula for changing the axes Cy^ =a
pi

aqjarkasl^pqrs leads to:

The property Cy-# = C-y provides the relations:

Given these relations, the stiffness matrix:
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16 Analysis of composite structures

involves six independent components. With the two-index notation we have:

For any angle a we have:

This relation is satisfied whatever the angle a if we have:

In the formula for changing axes €2222 = ap2aq2ar2as2^pqrs» me only non~

zero ap2 are:

so we obtain:

With C2222 = ^3333' Qzy" = 0 for i * j (no summation), and introducing the

property C^ = C..^ , we obtain:

or

The application of the formula for changing axes to other elastic moduli does not
result in new relations.
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A transversely isotropic medium is characterised by five independent elastic
moduli. Certain unidirectional fibre composites can be considered as transversely
isotropic materials. With the two-index notation we have:

1.4.4. Isotropic material

In an isotropic material all directions are equivalent.

In axes (e)=(x1,x2,x3) and \e*)= (x2,x3,x1) the Cy^/ and Cp/ components

with the same indices have the same numerical value. The only non-zero terms of
the change in axes matrix:

are:

The formula for changing axes:

Constitutive relations for anisotropic materials 17

The stiffness matrix is written in the transverse isotropy axes in the following
form:

with the property:

providing the relations:
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18 Analysis of composite structures

or:

Putting C2233 = A and C2323 = A >me relation C2222
 = ^2233 + ^2323 §ives:

An isotropic material is characterised by the two elastic moduli A and ju

termed the Lame coefficient, or by Young's modulus E and by Poisson's coefficient
v . We recall the relations:

In all axes, the stiffness matrix is written in the following form:

Determination of the compliance matrix involves the following expressions
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Constitutive relations for anisotropic materials 19

The compliance matrix is written in all axes as:

ai being the coefficient of thermal expansion in the xf direction.

The variation of humidity A 77 , equal to the relative variation of the mass of the

material, results in a strain field defined by:

1.4.5. Influence of temperature and humidity on the constitutive relation of an
orthotropic material

The variation of temperature AT results in a strain field defined by:

or:

or:

j3t being the coefficient of hygroscopic expansion in the Xj direction.

In general the elastic moduli depend on the temperature and the humidity.
When the temperature and humidity variations are small, the elastic moduli can

be assumed to be constant.
Taking into account the strains caused by the stress field due to the variations in

temperature and humidity, the constitutive relation is written as:

or:
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In the orthotropic axes the thermal and hygroscopic effects are revealed as
expansions in the Xj direction, and by the absence of angular distortion in the Xj

and Xj directions.

1.5. Matrix relations for a change of axes

In the direct orthotropic axes (e) = (X1 ,X2 ,X3), the constitutive relations are

written:

1.5.1. Change of axes for stress and strain matrices

The following formula is proposed for the change of axes matrix:

and:

20 Analysis of composite structures

Whereas in the off-axis co-ordinates (e) = (x1,x2,x3), we have:

The matrix for changing axes from (e) to (e) is represented by a:

in matrix form:

where M is a (6,6) matrix which will be determined.

The explicit expressions:
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Constitutive relations for anisotropic materials 21

enable the change of axes formula to be written in the matrix form:

The matrix M is made up of four sub-matrices (3,3) whose components can
easily be found by writing the transposed change of axes matrix:

Decomposing the matrix M in four sub-matrices (3,3):

the following rules can be proposed:
- The (i, j) component of the sub-matrix Mn is equal to the square of the (i, j)

component of ar.
- The ( i , j ) component of the sub-matrix M12 is equal to twice the product of

the two other terms of the row i of ar .
- The (i, j} component of the sub-matrix M21 is equal to the product of the two

other terms of the column j of ar .
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22 Analysis of composite structures

- The (i,j) component of the sub-matrix M22 is equal to the sum of the cross

products of the terms of the matrix obtained by removing row i and column j of ar.

In a similar manner we can develop the formula for changing the axes of the
strains:

and:

enable the formula for changing axes to be put in the form:

in matrix form:

with N being a (6,6) matrix which will be determined.

The explicit expressions:
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The matrix thus obtained is the transposed matrix N. We therefore have the
relation:

An analogous calculation, performed on the N matrix gives the equation:

Constitutive relations for anisotropic materials 23

As for the matrix M, the matrix:

consists of four sub-matrices (3,3) whose components are found as follows:

- The component (i, j) of the sub-matrix Nn is equal to the square of the

component (i, j) of ar .

- The component (z, j) of the sub-matrix N12 is equal to the product of the two

other terms of the row /of ar .
- The component (1,7) of the sub-matrix N21 is equal to twice the product of

the two other terms of the column j of ar .
- The component (/, 7) of the sub-matrix N22 is equal to the sum of the cross

products of the terms of the matrix obtained by removing row i and column j of ar.

From the matrix a, we construct the matrix M such that o = Mo . Similarly from

a"1, we can construct, in an analogous manner, the matrix M"1 such that:

O = M-V

The matrix a"1 = ar is obtained by exchanging the indices / and j of the
orthogonal matrix a. The matrix M"1 is obtained by exchanging the indices / and j
of the terms a^ which are involved in the matrix M, which results in:
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From relations [1], [5] and [4], we obtain:

24 Analysis of composite structures

1.5.2. Change of axes for stiffness and compliance matrices

We have just obtained the following relations:

In addition, the constitutive relations in the othotropic axes and off-axis are written:

Identification with [6] gives:

From relations [3], [7] and [2], we obtain in a similar way:

Identification with [8] leads to:

Multiplication of the left hand part of C = MCMr by Nr and the right hand part
by N gives:

or:

Multiplication of the members of S = NSNr by MT on the left and by M on the
right gives the equation:

hence:
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Chapter 2

Orthotropic layer behaviour

2.1. Introduction

The expressions developed in the previous chapter for the change of axes will
now be applied to an orthotropic ply of any orientation in a composite. In the plate
theories which will be presented the assumption is made that the normal stress in the
x3 direction is zero. This hypothesis leads to the introduction of column matrices of
stresses and strains with only five terms. From these we will deduce the formulae for
changing co-ordinates and the constitutive relations which will be used in the plate
theories.

2.2. Stiffness and compliance matrices in orthotropic co-ordinates

The orthoptropic layer studied here has the co-ordinate axes (0|X1,X2,x3). The

layer of thickness h is limited by the two planes perpendicular to (Ox3) which are

defined by x$ = ̂  and jc3 —~\-

Figure 2.1. Orthotropic axes

In the following, all the quantities defined in the orthotropic axes will be
overscored.
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26 Analysis of composite structures

In the orthotropic axes (?)= (X1,X2,x3) the constitutive relation is expressed

as:

The compliance matrix can be written in terms of Young's moduli Ef, the

Poisson coefficients v^ and the shear moduli Gy in the form:

with:

If the plane (X2,x3) is a plane of isotropy, then:

or:

and in the matrix form as:

or:
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A unidirectional layer in which the fibres are parallel to Xj can, for a first

approximation, be considered as transversely isotropic.
The relation 8 = So is then written as:

Similarly in the orthotropic axes (e) the constitutive relation:

In the particular case of the transversely isotropic unidirectional layer we then
have:

2.3. Conventional matrices for changing axes

The angle a between the vector xl of the off-axes (e)=(x1,x2,x3) and the

vector Xx of the orthotropic axes (e) = (Xj, X2 ,x3), is measured on x3.

Orthotropic layer behaviour 27

can be written in matrix form as:

or:
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28 Analysis of composite structures

The matrix which enables us to go from the orthotropic directions (e) to the off-

axis directions (e):

is written in the form:

with:

From the transposed matrix of the axis change

Figure 2.2. Off-axis directions

c = cos a and s = sin a.

we obtain the following two matrices M and N:
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Orthotropic layer behaviour 29

2.4. Stress and strain matrices

The formulae for changing the directions for o = Mo and o = NTo can be
written in the following forms:

and:

similarly, the formulae for changing the strain axes for strains E = Ne and £ = Mre
can be written:

and:
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30 Analysis of composite structures

In the present case it may be noted that we go from M to its inverse NT by
replacing the angle a by -a in M. One can use the same transformation to go from

N to its inverse MT .

2.5. Stiffness matrix in directions away from the orthotropic axes

The stiffness matrix C in the (e) space is given by the relationship:

C = MCMT,

which involves the matrix:

After multiplying the left-hand side by M and identification, one obtains:

that is:

The product of the latter two matrices is thus:
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Orthotropic layer behaviour 31

- the components of the first column of C:

- the components of the second column of C:

- the components of the third column of C:

- the components of the fourth column of C:
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32 Analysis of composite structures

- the components of the fifth column of C:

Note that for a - 0 or a = y, the coefficients C^, C^ , C^ and C^ are equal

to zero ( orthotropic materials whose directions of orthotropy coincide with the co-
ordinate axes).

2.6. Compliance matrix in directions away from the orthotropic axes

The compliance matrix S in (e) is given by the relationship:

S = NSNT ,

which involves the matrix:

- the components of the sixth column of C:

The constitutive relation o = Ce can then be written as:
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The product of these two matrices is:

that is:

After multiplication of the left-hand side by N and identification, one obtains:

- the components of the first column of S:
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34 Analysis of composite structures

- the components of the second column of S:

- the components of the fourth column of S:

- the components of the third column of S:

- the components of the fifth column of S:
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Orthotropic layer behaviour 35

- the components of the sixth column of S:

As for the stiffnesses, note that for the compliances S^, S^ , 536 and S45 are

zero fore* = 0 or a = y (orthotropic axes coincide with the co-ordinate axes).

2.7. Orthotropic layer loaded in tension and in shear

2.7.1. Simple tension

For the case of a layer loaded in simple tension in the Xj direction, the only non-

zero component of the matrix is o\.

Figure 2.3. Tension off-axis

The constitutive relation s = So can then be written as:
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The layer undergoes three unit extensions in the Xj, x2 and x3 directions as

well as an angular distortion in the two orthogonal directions \1 and x2.

For « = 0 (fibres parallel to Xj) or <^ = y (fibres parallel to x2), the elastic

compliance S^ is zero. The angular distortion is then zero.

The strains obtained are shown in the figures below.

Figure 2.4. Strains when 516 ^ 0

Figure 2.5. Strains when 516 = 0

36 Analysis of composite structures

The constitutive relation e = So gives:
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Orthotropic layer behaviour 37

2.7.2. Simple shear

When the layer described previously is loaded in simple shear in the two
directions x1 and X2, the only component which is not zero in the stress matrix

iscr6.

Figure 2.6. Shear in off-axis directions

The layer undergoes unit extensions in the Xj, x2 and x3 directions, and an

angular distortion in the two directions xt and x2.

For a = 0 or a = y, the elastic compliances S16, S26 and S36 are zero. The

linear expansions are therefore zero.

The corresponding strains are represented by the following figures.

Figure 2.7. Strains when 516 * 0, 526 * 0, S36 * 0

Given the constitutive relation e = So , we have:
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Figure 2.8. Strains when S16 = S26 = 536 = 0

2.8. Reduced stiffness matrix for the orthotropic layer

In this paragraph, we will describe the Q and Q of an orthotropic layer with
through thickness normal stress <J3 zero. These matrices are introduced into the
theorems of Kirchhoff-Love and Reissner-Mindlin for multi-layer materials.

2.8.1. Reduced stiffness matrix Q in orthotropic co-ordinates

In the orthotropic co-ordinates (e), the constitutive relation o = Cs is written

as:

When:

The normal stresses:
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can then be expressed only in terms of e\ and £2»using:

By putting:

the constitutive relation can be expressed in one of the following two forms:

or:

with:

In the plate theorems of Kirchhoff-Love and Reissner-Mindlin we keep the
notations o and 8 to represent the matrix columns of stress components:

which have just been introduced, and designate by Q the corresponding reduced
stiffness matrix.

and strains:
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40 Analysis of composite structures

2.8.2. Reduced stiffness matrix Q in the co-ordinates away from the orthotropic
axes

The change from the orthotropic axes (e) to the off-axis co-ordinates (e) and its

transposition are written as:

The matrix axes change with respect to the stresses o = Mo, involving the
matrix:

keeping the notation M for the two new conventional change of axes matrices
associated with the two matrices of the stress components <J\, <72, o§, o^, <75 and

&li&2>06''

can be written for this case in the form:

or:

The formula for changing the axes with respect to the strain matrices e = Ne ,
with:
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So, by designating as N the new conventional axis change matrix:

with:

can be written as:

or:

The formula for changing axes, established for the stiffness matrices
C = MCMT , leads to the relation:

Given the calculations already performed for the change of axes the reduced
stiffness matrix Q is of the form:
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It should be noted that the reduced stiffnesses Q16 > Q26 and Q45 are zero f°r

« = 0 or a = y. These relationships can be written in matrix form:

or:

42 Analysis of composite structures
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2.9. Reduced compliance matrices of an orthotropic layer

Having presented the reduced stiffness matrix Q we will now derive the

reduced compliance matrices P and P for an orthotropic layer where the through-
thickness normal stress <73 is zero.

2.9.1. Reduced compliance matrix in orthotropic co-ordinates

In the orthotropic co-ordinates we have:

with:

2.9.2. Reduced compliance matrix P in the direction away from the orthotropic axes

The formula for the change in co-ordinates for the reduced compliance matrix is
written as:

Given the preceding calculations for changing axes the reduced compliance
matrix P may be written as:
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44 Analysis of composite structures

with:

It may be noted that the terms P16, P26
 and P45 are zero f°r a = ® or a = %'

These relationships can be presented in the form:

or:
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Chapter 3

Elastic constants of
a unidirectional composite

3.1. Introduction

When an orthotropic material is in a plane stress state the relationships between
the stresses and strains involve the four elastic constants EI , £2 > V12 and^ ^12 • In

addition to these coefficients, when considering thermo-elasticity the coefficients of
thermal expansion a\ and or2 are also required.

In this chapter we are able to obtain the characteristics of a unidirectional
composite material as a function of the characteristics of the fibres and the matrix.

3.2. Density p

Designating as:

the mass of the composite is:

or:

Then:

and noting that Vj- +Vm = 1, the density of the composite is:
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46 Analysis of composite structures

3.3. Longitudinal Young's modulus £j

In the theory below we assume that, as shown in the figure, the fibres are
concentrated in the lower part of the composite and that the matrix occupies the
upper part. The composite is subjected to the longitudinal tensile force F.

Figure 3.1. Longitudinal tension

In the model adopted here, we suppose that the longitudinal extensions resulting
from the tensile force F are the same in the composite, fibres and matrix, which can
be presented as:

and that:

We designate as:

fibres and matrix.

We note that, designating by / the length of the composite:

The tensile stresses in the fibres and in the matrix are equal to:

and the tensile force is given by:
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Elastic constants of a unidirectional composite 47

The tensile stress (7\ in the composite is:

The longitudinal Young's modulus E\ of the composite is defined by:

and thus we obtain the relationship:

which provides a satisfactory value of E1. It should be noted that, for cases where

E f » Em , then as a first approximation:

3.4. Poisson's coefficient V12

With the loading described above the transverse extensions of the fibres and the
matrix are equal to:

where Vf and vm represent Poisson's coefficients of the fibres and the matrix.

The change in thickness of the laminate is given by:

where ef and em are the thicknesses of the fibre and matrix parts.

Designating by b the width of the composite, it may be noted that:

and:

The transverse expansion of the composite is:
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Figure 3.2. Transverse tension

The thickness variation is equal to:

48 Analysis of composite structures

Poisson's coefficient V12 of the composite is defined by:

From this we obtain the expression:

which provides Poisson's coefficient v12 .

3.5. Transverse Young's modulus E2

The composite is subjected to the transverse tensile force F.

With the same model it is assumed that the transverse strains in the fibres and in
the matrix are equal:

The transverse extensions in the fibres and in the matrix are:
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Elastic constants of a unidirectional composite 49

the transverse extension of the composite is:

The transverse Young's modulus E2 of the composite is defined by the

expression:

from which we obtain:

The transverse Young's modulus E2 is therefore equal to:

or:

The accuracy of the value of E2 obtained by this expression is poorer than that

for EI . When Ej- » Em , the expression for E2 becomes:

From the calculations above it may be noted that the two Young's moduli E1

and E2 are given by expressions analogous to those encountered when the

equivalent stiffnesses of two springs in parallel and in series are calculated.

3.6. Shear modulus G12

The composite is subjected to shear loading o§ as shown on the following

figure:
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50 Analysis of composite structures

Figure 3.3. Shear

Again with the same model, it is assumed that the shear stresses in the fibres and
in the matrix are equal:

The angular distortion of the composite is:

The angular distortions in the fibres and in the matrix are given by:

where Gf and Gm represent the shear moduli of the fibres and the matrix.

The displacement in the X1 direction of the upper plane of the composite with

respect to the lower plane is:

Given the displacements due to the fibre and matrix parts:

we obtain:
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the G12 of the composite is given by:

so:

Once again the accuracy of G12 is less than that for E1. When Gf » Gm, we

have, as a first approximation:

The shear modulus is:

or:

3.7. Longitudinal thermal expansion coefficient a\

The composite is not subjected to any external force but experiences a
temperature variation of:

In the model considered here we assume that the longitudinal extensions of the
fibres and of the matrix are identical, that is:

Only the longitudinal stresses due to the difference between the thermal
coefficients of the fibres, af and of the matrix am are not zero.

The longitudinal expansions of the fibres and the matrix are equal to:
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52 Analysis of composite structures

The longitudinal stresses in the fibres and the matrix are:

The resultant force of the tensile loads:

being zero, we obtain the expression:

Introducing in this expression the stress values cr{ and a™ , we obtain:

then:

The coefficient of longitudinal thermal expansion a\ of the composite being

defined by:

we obtain the following expression:

3.8. Transverse expansion coefficient a2

The transverse expansions of the fibres and matrix are equal to:

replacing the longitudinal stresses by their values determined in the previous
paragraph we obtain:

The thickness variation is given by:
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The transverse expansion of the composite is:

Introducing the values of e^ and £™ , we obtain:

As:

we have:

or:

The coefficient of transverse thermal expansion a2 of the composite given by:

is equal to:

or:
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Chapter 4

Failure criteria

4.1. Introduction

Having analysed the stresses and strains in composite materials we will now
present the main failure criteria for these materials.

The degradation of the composites is characterised by one of the following local
modes:

- damage dominated by fibre degradation (rupture, microbuckling, etc.),
- damage dominated by matrix degradation (crazing, etc.),
- damage dominated by singularities at the fibre-matrix interface (crack

propagation, delamination, etc.).

Composite failure is a gradual process, as the damage in a layer results in a
redistribution of stresses in the laminate.

4.2. Maximum stress theory

Failure of the composite occurs as soon as the stress field no longer satisfies the
following relationships:

in which <7irt (i = 1,2,3) represents the failure stresses in tension, tJirc (i = 1,2,3) the

failure stresses in compression, and air (i = 4,5,6) the shear failure stresses.

In these expressions the failure stresses in tension and shear are positive, those in
compression are negative.

When the stress state in the composite is expressed as a function of a single
parameter which depends on the external loads, it is convenient to introduce for each
expression the loading coefficient Fia associated with the stress state leading to

failure.
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56 Analysis of composite structures

This stress state defined by:

leads to the loading coefficients:

according to whether the normal stresses <7, are positive or negative and:

according to whether the shear stresses <7Z- are positive or negative.

Failure occurs for the smallest value of the loading coefficients ¥ia, calculated

above, according to the failure mode given by the index i. For / = 1, 2 or 3, failure
occurs in tension or compression in the directions X1, X2 or X3, whereas for i =4,

5 or 6, failure occurs by shearing in the planes (X2 ,X3), (X3 ,X1)or(X1 ,X2).

4.3. Maximum strain theory

Failure of the composite occurs as soon as the strain field no longer satisfies the
following relationships:

in which eirt (i =1,2,3) represent the failure strains in tension, eirc (i = 1,2,3) the

failure strains in compression and eir (i = 4,5,6) the shear failure strains.

The failure strains in tension and shear are positive, whereas in compression they
are negative.

Just as for the maximum stress theory, if the strain state only depends on one
parameter we can define for each expression the maximum strain coefficient Fi£

which is associated with the strain state leading to failure.
This strain state:

gives the loading coefficients:
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with, as for the maximum stress theory, the same remarks concerning the signs of
the sign convention and the failure modes.

4.4. Polynomial failure criteria

Composite failure occurs when the stress field no longer satisfies the expression:

The coefficients Fi, Fy- and Fjjk , ... in this criterion are found experimentally.

The different criteria described in the following paragraphs are of this type.

4.4.1. Tsai-Hill criterion

The Tsai-Hill criterion is of the form:

with Fy- = Fjt.

As for the von Mises criterion, it is assumed that a change in hydrostatic pressure
has no influence on the failure of the material.

For an orthotropic material the Tsai-Hill criterion is written as:

The six constants a, b, c, d, e and f are determined from six independent loading
cases.

For failure by extension in the X1 direction, then X2 and finally X3, we obtain

the three following expressions:

which leads to:

for which the solution is:
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For failure by shear in the plane (X 2, X 3), then (X 3, X 1) and finally (X1, X 2),

we obtain the three expressions:

which gives:

By identification of the polynomial, we obtain the following non-zero
coefficients Fy:

In the expressions above the failure stresses, air (i = 1, 2, 3) will be taken equal

to the tensile failure stress oin for <7, positive, and in compression oirc for oi

negative.
Composite failure occurs when the stress field no longer satisfies the expression:

The mode or modes of composite failure are determined from the dominant
terms in the Tsai-Hill criterion.
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When the external loads are such that the stress field is defined by a multiplying
constant the Tsai-Hill loading coefficient FTH is introduced for which failure

occurs. The stress field leading to failure of the composite is written as:

In a composite the first failure occurs in the layer with the lowest loading
coefficient. In addition, the failure mode or modes correspond to the dominant terms
in the criterion.

This is introduced into the expression for the criterion:

and the Tsai-Hill loading coefficient is obtained:

In the case of a plane stress field defined by:

the Tsai-Hill criterion is written as:

For a transverse isotropic material with the isotropic plane (X2 ,X3), the two
corresponding orthotropic directions are equivalent. The coefficients in the Tsai-Hill
criterion are then equal to:

and the criterion can be written in the form:

When the stress state is plane stress (cr3 = cr4 = <75 = 0), this reduces to:

In the latter case, designating the stress values at failure by ai = Fra<7, then the

Tsai-Hill loading coefficients at failure are:
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The constants F2 , F22,F3 and F33 are obtained from tensile and compression

tests in the X2 and X3 directions.

- In the case of a shear failure in the plane (X2 ,X3), there are two equations:

4.4.2. Tsai-Wu criterion

The Tsai-Wu criterion is written as:

where the constants Fi and Fij are determined from independent tests.

- In the case of tensile and compression failure in the direction X1, we obtain

the equations:

in which the unknowns are F1 and F11 .

The determinant of the system and the determinants associated with the two
unknowns being equal to:

we obtain:

with <T4r and -(T4r being the shear stress. From this:
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In an analogous manner we obtain the values of Fj, FJJ ,F$ and Fgg .

- The coupling term F12 can be obtained from a biaxial test but this is very

difficult to perform and in the absence of experimental results the following
expression for F12 can be used:

The expressions for F23 and F31 are analogous to that for F12.

- The other coupling terms Fu, F15, ... are taken to be zero.

The non-zero coefficients in the Tsai-Wu criterion are therefore:

and the criterion is written in the form:

If the stress field is defined by a multiplying constant we introduce the Tsai-Wu
loading coefficient F^ expressing the stresses leading to failure in the form:

Introducing this into the Tsai-Wu criterion we obtain the expression:
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which enables F^ to be calculated.

The first composite failure occurs in the layer with the smallest Tsai-Wu loading
coefficient.

For a plane stress state the criterion is written as:

The Tsai-Wu criterion is written as:

For a transversely isotropic material with the isotropic plane (X2,X3), the

coefficients are:

and for the plane stress state this reduces to:

4.4.3. Hoffman criterion

The Hoffman criterion has the form:

with the non-zero coefficients:
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It may be noted that the coefficients F\, F2, F3, F11, F22 > ^33 , F44, F55 and

F66 are identical to those in the Tsai-Wu criterion, but the coupling coefficients

F12, F23 and F31 are different.

Replacing airc by -cfirt in these coefficients, we obtain the coefficients of the

Tsai-Hill criterion for the tensile stresses.

The Hoffman criterion has the same form as the Tsai-Wu criterion:

In the case where the stress field leading to failure can be written as:

the Hoffman loading coefficient FH is given by the expression:

The composite layer where the first failure occurs is that with the smallest
Hoffman loading coefficient.

For plane stress the Hoffman criterion is written as:

For a transversely isotropic material with the isotropic plane (X2 ,X3), we have the

coefficients:
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and the criterion:

which, for the special case of plane stress is written as:

4.5. Tensile and shear strength of a unidirectional layer

4.5.1. Tensile strength

The unidirectional layer shown below with 0 <a < y, is subjected to a tensile

load in the Xj direction, in an off-axis direction with respect to the orthotropic axes.

Figure 4.1. Off-axis tension

The co-ordinate change matrix and its transposed form are:

the change of axes matrix N being written as:
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with the membrane stresses in the orthotropic axes given by:

or:

that is:

Introducing these values in the maximum stress criterion:

we obtain the following expressions:

The values of <j^ for which there is no failure are located between the curves

shown as continuous lines on figure 4.2. It may be noted that, in this case, failure
occurs gradually as the angle a increases by tensile or compression failure of the
fibres, then by composite shear failure, and finally by matrix failure in tension or
compression.
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Figure 4.2. Maximum stress criterion, simple tension

The Tsai-Hill criterion for a transversely isotropic layer with the isotropic plane
(X2,X3):

may be written for this case as:

Using this criterion the tensile and compression failure stresses are equal to:

Failure does not occur as long as the tensile-compression stress a\ is located,
for a given value of a, between the two curves shown on the following figure:
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Figure 4.3. Tsai-Hill criterion, simple tension

4.5.2. Shear strength

The fibre orientation is chosen such that: 0 < a < y.

Figure 4.4. Off-axis shear

The membrane stresses in the orthotropic axes:

are equal to:
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Introducing these values in the maximum stress criterion we obtain:

For a positive shear stress <J6, there is tension in the Xt direction and

compression in the X2 direction.

Applying the maximum stress criterion there is no failure for values of <T6

located in the grey zone represented in the figure below.

Figure 4.5. Maximum stress criterion for pure shear

When the shear stress is positive the Tsai-Hill criterion, for a transversely
isotropic later with isotropic plane (X2 ,X3), may be written, taking into account

the signs of G\ and c^ as:
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The shear stress, which leads to failure in the unidirectional layer, is:

When the shear stress is negative, there is compression in the Xl direction and

tension in the X2 direction and the failure stress is then given by:

As long as the shear stress is in the grey zone in the figure below there is no
failure.

Figure 4.6. Tsai-Hill criterion for pure shear
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4.6. Determination of failure stresses from three tension tests

The failure stress of a transversely isotropic layer, shown below, is obtained by a
tensile test in the Xj direction.

Figure 4.7. Tensile test off-axis

The tensile stress resulting in failure is, according to the Tsai-Hill criterion,
given by:

For a = 0 and for a = y, we obtain the tensile failure stresses in the Xl and

X2 directions:

For an angle a between 0 and y, the failure stress in shear is given by the

expression:

and equal to:
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Multi-Layer Plates
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Chapter 5

Multi-layer Kirchhoff-Love thin plates

5.1. Introduction

The Kirchhoff-Love theory, presented in the Appendices, which does not take
transverse shear strains into account, is used in the study of thin plates for which the
ratio of the thickness h to a characteristic dimension a of the mean surface is less
than 1/20.

In this chapter the general expressions for multi-layer plates which conform to
the Kirchhoff-Love theory will be presented.

The expressions for displacements and strains will first be recalled.
Then the plate equations will be presented for a specific case described below,

for equilibrium and vibrations.
The strains and global loads will be introduced, with the global stiffness matrix

of the composite and the classic decoupling.
Finally, the transverse shear stresses and composite strain energy will be

determined.

5.2. Kirchhoff-Love hypotheses for thin plates

The rectangular plate represented below has thickness h and transverse
dimensions a\ and a2. It is termed thin if h is small compared to a\ and a2 • The

mean plane of the plate is in the plane (Ox1,x2) of the galileen reference

(g)=(o|x1,x2,x3).

The plate is made up of N elastic, linear, homogeneous, orthotropic layers of
constant thickness. For all these layers x3 is the direction of orthotropy. The

interface between two successive layers is assumed to be perfect.
It should be noted that this plate is studied for small disturbances, i.e. small

transformations and small displacements.
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Figure 5.1. Thin plate

In the study of flexure and vibrations we assume that the displacements are small
compared to the plate thickness.

The normal transverse stress cr3 is ignored.

According to Kirchhoff-Love theory, the transverse shear strains £5, £4 and the

rotational inertia are ignored.

5.3. Strain-displacement relationships

According to Kirchhoff-Love theory, the displacement field is given by the
expressions:

and the strains by:
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The strain field can then be written as:

with the membrane strains:

and the curvatures:

5.4. Global plate equations

In the absence of buckling, the global plate equations are written in the following
form for the three sum equations:

and for the two moment equations:

From these latter relationships we obtain the global equation:

Recalling the following expressions:
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5.5. Calculation of 70

The plate being studied is made up of N orthotropic layers limited by planes
parallel to the mid-plane of the plate. For all the layers x3 is the direction of

orthotropy, the positions of the layers in the plate thickness are shown below:

Figure 5.2. Distribution of layers in the composite

The layer k is limited by the two planes of the equations *3 = z^-i and x$ = ik .

The expression which defines 70 is:

or may be written, when applying layer by layer integration:

where p is the density of the layer k, which is independent of x^ .

We thus obtain:

In the particular cases of single layer plates or multi-layer plates with layers of
the same density we have:
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5.6. Stress field

We now examine the distribution of layers presented in the previous section.
Designating by Q^ the reduced stiffness matrix of the layer k, the components

of the stress matrix are given by the expression:

which may be written as:

5.7. Global cohesive forces

The global cohesive loads are made up of global forces TV, and the global

moments Mi which are defined as:

The global force component Nt of the cohesion force is given by:

which, by layer-by-layer integration, is written as:

Introducing into the expression the constitutive relation:

we obtain:

then:

or:
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For the global moment Mz analogous calculation leads to the following

expressions:

or:

Putting:

the global cohesive forces Nf and Mz may be expressed as a function of the global

strains ef and Kt by the expressions:

and:

From the definition of the global stiffnesses of the cohesive forces, the global

stiffnesses Ay , 5y and Dy are expressed respectively in N.m"1, N and N.m .

5.8. Composite global stiffness matrix

The six expressions giving the global cohesive forces Nt and M,-, as a function

of the global strains ef and Ki, are written in the following matrix form:
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The sub-matrix A is the sub-matrix of the global membrane stiffness matrix

which relates the global membrane forces N to the global membrane strains £°.

The sub-matrix D is the sub-matrix of the global flexure stiffness matrix which
relates the global flexural moments M to the global flexural strains K .

The sub-matrix B is the sub-matrix of global stiffness of membrane-flexure
coupling which relates the global membrane forces N to the global flexural strains
K and the global flexural moments M to the global membrane strains £°.

5.9. Decoupling

5.9.1. Membrane-flexion decoupling

The terms of the sub-matrix of global stiffness for membrane-flexion coupling:

or in condensed form:

or:

indicate that the membrane forces cause flexural strains. In a similar way, flexural
forces cause membrane strains.

This coupling does not exist when the B^ are zero. If the plate shows mirror

symmetry with respect to its mean plane the By terms are zero.
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As it may be noted from the figure below showing a multi-layer plate with
mirror symmetry, for each layer k there is an associated symmetrical k' layer, with
respect to the mean plane.

Figure 5.3. Mirror symmetry

The k and k' layers have the same reduced stiffnesses <2// •

The contribution of the layer k to the global membrane-flexure coupling stiffness
is:

5.9.2. Tension-shear decoupling

The terms of the global membrane rigidity sub-matrix:

whereas the contribution of the layer A:' is:

By summation, the terms thus obtained cancel each other out in pairs.

The global coupling stiffnesses of membrane-flexure coupling of a symmetrical
composite are zero:
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imply that the tension or shear loads respectively cause angular distortions or
dilatations.

This coupling does not exist when the terms A^ and A26 are zero. These cases

are known as tension-shear decoupling or plane decoupling. If the plate is made of

layers with opposite reduced rigidities QK16 and <226, and their thicknesses are the

same, the terms <216 (zk - zk-i) and <Qk26 (
zk ~ zk-i) cancel each other out in pairs.

In a balanced laminate, with each layer k of orientation a is associated a layer k'

of orientation -a . The stiffnesses <216 and <226 are respectively the opposite of the

reduced stiffnesses Q16 and <226 •

Figure 5.4. Balanced laminate

From the expressions:

for opposite angles the reduced stiffnesses <2i6 and Qk16, and the reduced stiffnesses

Q226
 and Qk26 are opposites.

The contribution of the layer k, of orientation a to the tension-shear coupling is

whereas the contribution of the layer k' of orientation -a is:

By summation, the terms thus obtained cancel out in pairs. The position of the layers
k and k' in the composite has no influence on the values of the global membrane
stiffnesses.
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The global tension-shear coupling stiffnesses in a balanced composite are zero:

5.9.3. Membrane-flexion and tension-shear decoupling

In the case of four identical layers with the stacking sequence (a,-a,-a, a)

represented on the figure below, there is both membrane-flexure decoupling and
tension-shear decoupling. The laminate is termed balanced symmetrical.

Figure 5.5. Balanced symmetrical laminate

In this case we have:

5.10. Global stiffnesses of a symmetrical composite

5.10.1. Symmetrical laminate ((%,fi)NS

The 4N orthotropic layers are identical and distributed in the composite by
repeating N times the angular sequence (a, (3} then TV times the sequence (ft, a).

The global stiffness matrix of the composite is written as:
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The sequences are:

and so on.

The global membrane stiffnesses are equal to:

with:

we obtain:

or:

The composite being symmetrical, the global membrane-flexure coupling terms
are zero:

The global flexural stiffnesses are given by:

or, with the preceding notation:

By calling the a and /? layers located on the x3 side negative and the (3 and a

layers on the x3 side positive we obtain:
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Then putting k = 2p -1, D, is written as:

With q = N - p +1 for the first summation, and q = p - N for the second, we
obtain:

Introducing (l - 2qf = -(2q -1)3 , (- 2q)3 = -(2qf , (2 - 2qf = -(2q - 2)3,
the previous expression is written as:

The coefficients of Q? and QJ are respectively equal to:

from which we obtain the expression:

Introducing:
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we obtain:

or:

Designating by h = 4Ne the composite thickness, we have:

The membrane stiffnesses are independent of the number of layers, the flexural
stiffnesses depend on the number of layers and when the number becomes very large
they tend towards the value:

which is independent of N.

( n\5.10.2. Symmetrical cross-ply laminate 0,—
V 2JNS

By introducing the expressions:

we obtain the global membrane stiffnesses:

and the global flexural stiffnesses:
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5.10.3. Symmetrical balanced laminate (cc,-a)NS

The global stiffness matrix is written:

Since:

we obtain the global membrane stiffnesses:

and the global flexural stiffnesses:

The global stiffness matrix is then:
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5.11. Global stiffnesses for an asymmetrical laminate

5.11.1. Asymmetrical laminate (or, {$}N

The 2N orthotropic layers are identical, of thickness e and with the stacking
sequence (a, ft] repeated N times.

The sequences are:

or:

The global membrane-flexion coupling stiffnesses are equal to:

with we obtain:

and so on.

The global membrane stiffnesses are:

or:
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By dissociating the layers of orientation a and ft, we obtain:

and:

Introducing:

we obtain:

or:

The global flexural rigidities:

are, with the previous notation, given by:

Posing k = 2p -1, the previous expression becomes:

The coefficients of Q® et Q^ being respectively equal to:

we find:
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For a given thickness h, the global membrane and flexural stiffnesses do not
depend on the number of layers. When the number of layers 2N becomes very large
the global membrane-flexure coupling terms B^ tend to zero.
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The coefficients of Q^ and Q^ being equal to:

and:

we have:

With:

we obtain:

or:

Designating by h = 2Ne the composite thickness we obtain:
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The global stiffness matrix is of the form :

- the global flexural stiffnesses:

- the global membrane-flexure coupling stiffnesses:
<^

- the global membrane stiffnesses:

we obtain:

90 Analysis of composite structures

5.11.2. Asymmetrical cross-ply laminate (o,-f-L

Given the expressions:
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5.11.3. Asymmetrical balanced laminate (a,-a)N

Using the expressions:

- global flexural stiffnesses :

5.12. Examples of global stiffness matrices

5.12.1. Two layer plate

For the laminate as shown in figure 5.6:

leads to:

- global membrane stiffnesses:

- global membrane-flexure coupling stiffnesses:

The global stiffness matrix is therefore written as:
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Figure 5.6. Two layer laminate

The components of the global stiffness matrix are:

5.12.2. Three layer plate

The components of the global stiffness matrix for the plate shown below:

Figure 5.7. Three layer plate

are equal to:
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5.12.3. Four layer plate

For the plate shown below:

Figure 5.8. Four layer plate

the global stiffnesses are:

with the stacking sequence (cc,-cz, ct) : a symmetrical laminate.

- For membrane-flexure and tension-shear decoupling:

5.12.4. Examples of decoupling

The stiffness matrices of a multi-layer plate made up of identical layers takes
particular forms for some special cases considered here.

- For membrane-flexure decoupling:
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with the stacking sequence (a -a -a, a] : a balanced, symmetrical laminate.

- For tension-shear and flexure-torsion decoupling:

 crossply asymmetrical,

with the stacking sequence (a -a] or (a,-a,a,-a) : balanced asymmetrical.

- For membrane-flexure, tension-shear and flexure-torsion decoupling:

symmetrical cross-ply.with the stacking sequence

with the stacking sequence
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- For the unbalanced composite of stacking sequence (cc, cc-ct]:

5.13. Boundary conditions

5.13.1. Definition of boundary conditions

It should be recalled that the so-called Kirchhoff boundary conditions for the
edge jq = a\ of a rectangular plate, in the most usual cases are:

Figure 5.9. Loading boundary conditions
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5.13.2. Effective global transverse shear load

The global cohesive forces provoke the five loadings A^, N$ , N^, MI and

M6 on the edge x\ =a\. The zero condition for these five terms leads to a greater
number of conditions than those required by Kirchhoff-Love theory, which is four as
in the case of a simply supported or a built-in edge.

For the edge considered we will calculate the global moment associated with the

acting surface forces. On this edge we consider the point M to belong to the mean
plane, and the point M is defined by:

- free edge:

- built-in edge:

- free edge in x2 direction:

- free edge in xx direction:

- simply supported edge:

96 Analysis of composite structures
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The global moment in M° of the cohesion forces on the edge x1 = a1 is defined

by:

the global torsion moment

Considering the rotation due to the global torsion moment -M6 measured on

Xj, Kirchhoff proposed replacing the moment -M6<^c2x1, acting on the element of

the edge of length dx2 , by the two forces M6x3 and -M6x3 acting on the ends of

the element considered.

For the following element, of the same length dx2 taken in the sense of

increasing x2, we replace the moment by the two forces

and and so on.

As shown in the following three figures, we can substitute from one to the next

by the linear force density equal to

Figure 5.10. Couples acting on two elements next to the edge
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Figure 5.11. Equivalent forces acting on two elements next to the edge x1 = a1

Figure 5.12. Linear equivalent force density acting on two half-elements
next to the edge x1 = a1

which leads, for the free edge case, to the condition:

The edge element shaded grey made up of the two preceding contiguous half

to which is added the forceelements is subjected to the force

caused by transverse shear.

Following the Kirchhoff-Love theory, we replace the global forces N5 and M6

by the effective global transverse shear force defined by:

For the edge jc2 = a2, we have the same:
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An analogous study to the preceding one leads, as shown in the following three
figures, to the effective global transverse shear force:

Figure 5.13. Couples acting on two contiguous edge elements x2 - a2

Figure 5.14. Equivalent forces acting on two contiguous edge elements x2 = a 2
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Figure 5.15. Equivalent linear force density acting on two
contiguous edge half elements x2 =a2

5.14. Determination of transverse shear stresses

The transverse shear stresses <74 and &5 in the layer k can be obtained after

determination of «j, w2
 and w3 , from the two local equations of movement:

Layer-by-layer integration leads to the expression:

The introduction of the displacements:

which may be put in the form:

The transverse shear stress cr* , in the layer k, is given by the definite integral:

with
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After integration, we obtain the following expression for the transverse shear
stress o\:

and the stresses:

enables us to write:

In a similar way from the expression:

we obtain:

then:

with
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Figure 5.16. Transverse shear stress distribution

These transverse shear stresses satisfy the boundary conditions on the two outer
faces of the plate and the continuity conditions at each of the N-1 interfaces:

The transverse shear stresses thus obtained, a\ and <J\, vary according to a
parabolic law with the thickness of each layer.
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5.15. Strain energy

The strain energy of the plate:

According to Kirchhoff-Love theory, the strains e3, e4 and e5 are ignored and the

strain energy reduces to:

then:

Given the symmetry of the reduced stiffnesses <2y . we have:

from which:

can be written in the form:

with the usual notation.

By calculating the triple integral as the superposition of the single integral in the
thickness and a double integral following the mean plane, we obtain:

Introducing the strains:

and the stresses:

in the strain energy we obtain:
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The introduction of the global membrane Ay-, flexural Dy and coupling B^

stiffnesses leads to the expression:

After integration through the thickness, we obtain:

In the case of a composite without membrane-flexure coupling, the strain energy
expression reduces to:

www.TechnicalBooksPdf.com



Chapter 6

Symmetrical orthotropic
Kirchhoff-Love plates

6.1. Introduction

Since multi-layer plate calculations are complex we will limit ourselves, in the
present chapter, to symmetrical orthotropic plates which conform to the Kirchhoff-
Love theory.

In a symmetrical laminate the global coupling stiffnesses B^ are zero.

In a cross-ply laminate the x1 and x2 directions are the directions of orthotropy

of the different layers. The reduced stiffnesses Q16 and Q26 are zero, which results

in the global tension-shear coupling stiffnesses A16 and A26 being zero, as well as

the global flexure-torsion coupling terms D16 and D26 •

For a cross-ply laminate we always have:

can be decomposed into the two expressions:

It is for this particular case of symmetrical orthotropic plates that the analytical
methods of resolution are the easiest to apply. As indicated above, for a laminate
with mirror symmetry there is decoupling between membrane and flexure so that the
global constitutive relation for the composite:

It is therefore possible to study separately the plate loaded in its mean plane
(membrane load) and the plate loaded transversely (flexural loading).
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6.3. Plate loaded in the mean plane

The global equations of motion of the plate are reduced when the volume effects
are zero for the two equations:

The global constitutive relation for the composite is written, in this case, in the
form:

the global membrane stiffnesses being equal to:

The global compliance matrix of the composite is found by inversion of the
constitutive relation:

6.2. Global plate equations

The global plate equations according to Kirchhoff-Love theory are written as:

and the compatibility equations:
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Putting this expression in the form:

which correspond to the Young's moduli and shear and to Poisson's coefficients of a
single layer, orthotropic plate which has the same membrane behaviour as the multi-
layer plate considered here.

6.4. Plate loaded transversely

The global equation of the motion of plates loaded transversely is:

involves the global flexural stiffnesses:

reveals the equivalent characteristics:
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Introducing these in the plate global motion equation we obtain:

In the following section we will consider the case of a single layer, elastic, linear,
homogeneous, isotropic plate. When the transverse normal stress is zero the
constitutive relation may be written as:

The stiffness matrix of the material being

the global flexural stiffnesses are:

Introducing the expressions:

and the curvatures by:

we obtain the global cohesive moments:
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Introducing the flexural stiffness modulus of the plate:

The equation of motion of plates loaded transversely becomes:

or:

where:

We find, with 70 = ph , the classical equation for isotropic plates.

6.5. Flexure of a rectangular plate simply supported around its edge

The rectangular plate represented in figure 6.1, with dimensions a1 and a2, is

simply supported around its edge. It is only subjected to the surface force density

the global flexural stiffness matrix of the plate may be written as:

The global equilibrium equation is written:

The edge conditions of displacement and load are:
- for Xi = 0 and ;q = a^:
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Figure 6.1. Transversely loaded plate

The load acting on the plate can be written using a double Fourier series:
oo oo

Multiplying the two parts of this expression by:

and integrating over the mean plane of the plate we obtain:

Given the expression:

the preceding equation becomes:
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where:

with:

The coefficients of the double Fourier series are equal to:

For fixed values of m1 and m2, that is for a given double-sinusoidal loading, the

solution to the global equilibrium equation:

which satisfies the edge conditions for displacement and force is of the form:

Writing in the equilibrium equation and simplifying by the sine product we obtain:

The transverse displacement is then:

For any loading it is given by:

The non-transverse displacements given by:
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from which:

or:

The stresses are given by:

or:

The strains are equal to:

are equal to:
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The transverse shear stresses obtained by integration through the thickness of the
first two local equilibrium equations are given by:

with from which:

so after integration:

The moments of the global cohesion loads are equal to:
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- for the strains:

- for the displacements:

the previous results become:

In the particular case of a square orthotropic single layer plate subjected to a
double sinusoidal loading:

or:

114 Analysis of composite structures
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- for the stresses:

The maximum deflection at the centre of the plate is:

These conditions are illustrated in the following figures.

It may be noted that M1,M2^i»^2'6 '6'<Ti'<72 an^ a(, varv linearly through the

plate thickness, whereas u^ is constant and <J4 and cr5 vary in a parabolic manner

with the thickness.
Also, u3,el,e2,o'i and <72 are zero around the edge, whereas u2 and cr4 are

zero for xl = 0, xl = a and x2=j. We note that u\ and cr5 are zero for

KI = 0, x2 = a and xl = •j-, and that £ 6 and <T6 are zero for xl=-& and x2=j.

- For the displacements:

Figure 6.2. Variations in displacements
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Figure 6.3. Zero displacement

- For the strains:

Figure 6.4. Strain variations

Figure 6.5. Zero strain

www.TechnicalBooksPdf.com



Symmetrical orthotropic Kirchhoff-Love plates 117

- For the stresses:

Figure 6.6. Stress variations

Figure 6.8. Transverse shear stress variations

- For the transverse shear stresses:

Figure 6.7. Zero stresses
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Figure 6.9. Zero transverse shear stresses

6.6. Free vibrations of a rectangular plate freely supported at its edge

The free vibrations of a symmetrical orthotropic plate are governed by the
equation:

is of the form:

By introducing into the global vibration equation and after simplification by:

The solution to this equation, which satisfies the boundary conditions around the
edge in displacement and load:

- for X1 = 0 and x1 = a1:
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or:

with:

we obtain the equation:

or:

with:

which provides the natural frequencies:

• "

The natural frequencies of a square plate of side a are given by:

For a symmetrical orthotropic plate such that:

the natural frequencies are equal to:
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with:

The influence of orthotropy on the order of appearance of the first four modes of
vibration is shown in the table below:

Figure 6.10. Order of appearance of natural modes

Its influence on the representation of the modes, and in particular the nodal lines
(lines of zero transverse displacement), appears in the figure below:

Figure 6.11. Nodal lines

For an isotropic plate, we have:
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In the case of a symmetrical, orthotropic plate, it may be noted that the mode
mj = 1, m2 = 3 appears before the mode m\ = 2, w2 = 2, the opposite order to that

for an isotropic plate.

6.7. Buckling of a rectangular plate simply supported at its edge

6.7.1. General case

The rectangular plate of transverse dimensions a\ and a2 i§ simply supported at

its edge. It is loaded in compression -Nf and - #2 , with A/f > 0 and N® >Q .

in which we have:

The global buckling equation:

Figure 6.12. Buckling loads
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is written as:

The boundary conditions for a simply supported plate are:

These conditions are satisfied by:

which, after introduction into the global buckling equation and simplification, gives:

o

The critical buckling loads, corresponding to U non-zero, are given by the
yHifTl'y

expression:

which in the particular case where #2 = kN\ , gives:
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6.7.2. Case ofk=0

The plate is subjected to a compression load - N® in the xl direction.

or:

The critical buckling load is given by the expression:

Figure 6.13. Compression loading in one direction

If, in addition the plate is square we have:

We will now examine different special cases.
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For m2 = 1, this expression gives the series of curves plotted on the figure

below.

For a given width a2
 anc* fixed values of m^ and m2 the value of the ratio -^-

which cancels the derivative of the critical buckling load:

is:

For this value, the critical buckling load is:

Figure 6.14. Critical buckling loads

The buckling of a plate loaded in compression in the Xj direction occurs in such

a way that there can be several half-waves in the compression direction and only one
in the perpendicular direction (w2 = 1).

The critical buckling load is then given by the expression:

The critical buckling load thus obtained is independent of m^ and its minimum

value is found for m2 = 1.

and the minimum obtained for:
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The intersection of the two plots of critical buckling load, relative to the two
successive values m^ and m\ +1, is found by equating:

or:

This expression enables the length a\ to be calculated for a given value of a2,

for which the critical buckling load is identical for the modes mj and m1 +1.

When a plate is subjected to a compression load - N® in the \1 direction, the

buckling of the plate occurs such that there exists:
- in the xx direction: a single half-wave (ra2 = l),

-in the x2 direction:

is equal to:

which gives successively:

- a half-wave for:
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- two half-waves for:

- mi half-waves for:

The critical load corresponding to this intersection is given by:

For the special case of a plate for which:

we have:

the critical buckling load, obtained for m2 = 1, is equal to:

The minimum critical load:

is obtained for:

or, for the first two modes:

The intersection of the plots mi = 1 and m^ = 2 is obtained for:
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6.7.3. Case ofk=l

The plate is subjected to the same compression load -A^ in the Xj and x2

directions.

Figure 6.15. Identical compression loads in two directions

In the case where:
Dn=9D22,

D12+2D66=3D22,

The critical buckling load is then given by the smallest value of:

If the plate is square (a\ =a2 = & X the critical buckling load obtained for

and then corresponding critical load equal to:
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we have:

6.7.4. Case ofk= -1/2

The plate is subjected in the \l direction to the compression load - N® and in

the x2 direction to the tensile load

Figure 6.16. Compression and tension loads

The critical buckling load, obtained for w^ = m^ = 1, is equal to:

and for a square plate:
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The critical buckling load is equal to the smallest value of:

For the particular case already described we have:

and for a square plate:

The tensile load in the x2 direction increases the critical buckling load; with

k = -1/2 it is twice as high as in the case of k = 0 and four times as high as the
case of k = I.

The critical buckling load, obtained for m\ = m2 = 1, is:
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Chapter 7

Thermo-elastic behaviour of composites

7.1. Introduction

The important roles played by a temperature variation AT and by the absorption
of humidity A 77 were noted previously in the presentation of the laws of the

behaviour of an orthotropic material. Both effects work in the same way, so the
discussion here will be limited to a temperature variation AT .

In composites cured above room temperature there appear, on return to their
normal temperature of use, residual stresses which may be large. These originate
from the different values of the thermal expansion coefficients for the fibres and
matrix.

After having presented the constitutive relations of an orthotropic material in its
orthotropic axes and off-axis we examine the definition of these expressions in
matrix form in plate theory for which the transverse normal stress is zero.

Then we introduce the global constitutive relation of the composite in thermo-
elasticity which allows the study of the behaviour of a multi-layer plate in tension,
flexure, vibration and buckling.

7.2. Constitutive relation for an orthotropic material

7.2.1. Constitutive relation in orthotropic axes

The thermal strains, resulting from the change in temperature AT and noted £ ',-

in the orthotropic axes (e), are:

The strains £.- due to the stresses cr,- and to the thermal dilatation £.-' are given

with

by:

These may be expressed as a function of the variation in temperature AT using the
expressions:
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In an explicit manner we have:

The stresses <7; are given as a function of £j and of s/' by:

or:

The matrix C'= Ca is equal to:

or:

The constitutive relation may be written in the form:

and as a function of the variation in temperature A!T by:

These two latter expressions can be written in the form:
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7.2.2. Constitutive relation in orthotropic off-axes

By introducing the conventional matrices for changing the axes M and N, the
strains in the base (e] off-axis of orthotropy are:

with:
S'=Na.

The matrix S' is given by:

or:

in an explicit form we have:

The strains can be written as:

or:
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The stresses are given by:

or:

The matrix C' given by the product:

is equal to:

The constitutive relation is written as:

with:
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7.3. Constitutive relation when the normal transverse stress is zero

7.3.1. Constitutive relation in orthotropic axes

Given the notations introduced above we have the expression:

or:

which is written as :

7.3.2. Constitutive relation in orthotropic off-axes

The conventional formulae for changing axes and the preceding expressions
allow us to write:

The constitutive relation is now in the form:

where the matrix:

The constitutive relation is written in the form:

or:
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is equal to:

or:

7.4. Global cohesion forces

The resultants of the global cohesion forces are equal to:

or:

The Constitutive relation is written as:
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Introducing:

the resultant of the global cohesion forces is written as:

Nt = Aye? + BijKj - A',. Ar (/, j = 1, 2, 6).

The moments of the global cohesion loads are given by:

from which:

By putting:

the moments of the global cohesion loads may be written in the form:

and in conventional form as:

7.5. Global composite constitutive relation

The global composite constitutive relation is written in explicit matrix form as:
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or:

of the global composite constitutive relation are zero.
This, which may then be written as:

or:

shows that a plate, which is not loaded by external forces, will only show membrane
strains.

7.6.2. Balanced composite

In the case of a balanced composite we have seen previously that the global
stiffnesses A and A are zero.

shows that a plate, which is not loaded by external forces, will only show membrane
strains.

or:

with

7.6.Decoupling

7.6.1. Composite with mirrir symmetry

In the case of mirroe symmetry the terms:
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For two layers of the same thickness and with opposite angles the values of:

Q\ = cs(<2n - 0i2 )al + cs(<212 - <222 )a2 ,

are opposite and the term:

of the global composite constitutive relation is zero.
This is written as:

7.6.3. Balanced symmetrical composite

Given that A16 = A26 = 0 , By: = 0 and A'6 = 0, B\ = 0 , the constitutive

relation is written as:

7.7. Balanced symmetrical composite loaded in the mean plane

For such a composite the global constitutive relation which is written as:

gives:

are opposite and the term:
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or:

Designating by Ay the term of row i and column j of A , the preceding

expression is written as:

The global constitutive relation for the composite is written as:

or:

This expression can be written in the form:

with the equivalent characteristics:

The membrane strains are written as:
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Chapter 8

Symmetrical orthotropic
Reissner-Mindlin plates

8.1. Introduction

Exact theories for a multi-layer rectangular plate, simply supported around its
edge, loaded in flexure, vibration and buckling, were developed by N. J. Pagano and
S. Srinivas. They enable the areas of application of plate theories to be defined. The
Kirchhoff-Love theory only provides acceptable deflections, natural frequencies and
critical buckling loads for thin plates whose ratio of thickness to the characteristic
dimension of the mean surface is less than 1/20. Reissner-Mindlin theory, in which
the transverse shear strains are constant through the plate thickness, gives
satisfactory results for flexure, vibration and buckling of moderately thick plates
whose ratio of thickness to the characteristic dimension of the mean surface is
between 1/5 and 1/20.

8.2. Moderately thick plate, Reissner-Mindlin assumptions

As indicated in the Appendix, in Reissner-Mindlin theory the hypotheses of
Kirchhoff-Love theory are used without ignoring the transverse shear strains.

8.3. Displacements, strains and stresses

The displacement field:

leads to the strain field:
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f

which given the notations introduced above can be written in the form:

The stresses in the k layer are given by the expression:

8.4. Global plate equations

The global plate equations according to Reissner-Mindlin theory are written as:

8.5. Calculation of /^and /2

For these calculations, we retain the layer distribution in the plate thickness
adopted previously. With this distribution we obtained:

www.TechnicalBooksPdf.com



Symmetrical orthotropic Reissner-Mindlin plates 143

In addition, we have the rotational inertias:

from which:

In the case where the plate is a single layer or multi-layer with layers of the same
density, the preceding expressions are equal to:

8.6. Global cohesive forces

As with Kirchhoff-Love theory we have the expressions:

to which we add:

The transverse shear stresses in the k layer are given by:

or:

and:

then:

or:
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where £ ,• is constant throughout the plate, and the transverse shear stresses are

therefore constant through the thickness of the k layer.
In order to take account of the variation in transverse shear stresses throughout

the thickness the global transverse shear force is taken to be equal to:

the summation convention does not apply to the underlined indices i and j, they have
the same values as the indices / and j not underlined.

The global transverse shear loads are written as:

with:

where the KIJ are correction coefficients for the transverse shear, the effective

calculation of which will be described in a later paragraph.

8.7. Global stiffness matrix of the composite

The global constitutive relation for the composite is written in the following
matrix form:

where:
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in the case where K^ = K4$ = K^ = K , this latter expression becomes:

8.8. Transverse shear correction coefficient

In the case of an orthotropic monolayer plate Uflyand, Reissner and Mindlin

respectively proposed for K the values -|, -| and -^-.

8.8.1. Uflyand coefficient

The transverse shear stress cr4 from the global equilibrium equation:

is equal to

In the case of a single layer orthotropic plate, loaded in flexure, the expression:

gives:

Included in the expression for 0*4 , we have:
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since:

we obtain:

From the global constitutive relation of the orthotropic plate we have:

with:

we obtain:

The stress 0^4 is written as:

Given the global equilibrium equation:

the transverse shear stress a^ is equal to:

similarly:
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From the global composite constitutive relation we have:
W4 = KA^e^ - KhQ44£4 ,

and from the material constitutive relation we have:

The transverse shear stresses are thus given by:

By identification with the maximum transverse shear stress calculated above we
obtain the Uflyand transverse shear correction coefficient:

introducing:

we obtain:

By identification with the maximum transverse shear stress calculated above we
obtain the Uflyand transverse shear correction coefficient:

8.8.2. Reissner coefficient

The transverse shear strain energy is equal to:

Symmetrical orthotropic Reissner-Mindlin plates 147

The maximum transverse shear stresses, obtained for jc3 = 0 , are equal to:

and from the material constitutive relation we have:

we have:

With the values of the transverse shear stresses already obtained:

www.TechnicalBooksPdf.com



148 Analysis of composite structures

with:

we find:

Introducing

equal to:
and A55 = hQ55 , the transverse shear strain energy is

Putting this into the general formula for the transverse shear strain energy we
obtain:

The global transverse shear forces being equal to:

the transverse shear strain energy is written as:

The transverse shear correction Reissner coefficient, obtained by equating the
two strain energies calculated above, is equal to:
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8.9. Boundary conditions

The Kirchhoff boundary conditions, for the edge JCj = a\ of a rectangular plate,

are:

- for a simply supported edge:

- for a simply supported edge in xl direction:

- for a simply supported edge in x2 direction:

- for a built-in edge:

- for a free edge:

8.10. Symmetrical orthotropic plate

The global constitutive relation of a symmetrical orthotropic plate is written as:
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For such a plate we therefore have:

8.11. Flexure of a rectangular orthotropic symmetrical plate simply supported
around its edge

The multi-layer plate studied here, of dimensions a\ and a2 is subjected to the

surface force density of q(x^, x2 )x3 .

Figure 8.2. Transversely loaded plate

The equilibrium equations are:
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with the global cohesion forces:

is of the form:

and the boundary conditions:

the solution which satisfies the equilibrium equations:

For a double sinusoidal loading:
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The three coefficients Y1 , Y and U are solutions to the system:
vn^n^ m^rn^ m^n^

with:

For the loading:

Including this in the equilibrium equations and changing the sign, we obtain:
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8.12. Transverse vibration of a rectangular orthotropic symmetrical plate
simply supported around its edge

The rectangular plate of dimensions a{ and a2 is simply supported around its

edge and not subjected to any given force.
In the case of a symmetrical plate, we have 7t = 0. The equations of global

vibration are written as:

with the global cohesion forces:

we obtain the solutions:

with:
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Including the latter in the global equations we obtain the three expressions:

The solution which satisfies these conditions at the edges:

- for *! = 0 and xl=al:

is of the form:
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Putting these values into the global vibration equations and after simplifying we
obtain the system:

This homogeneous algebraic system in *Fmm , vif
mm and Umm has a solution

c3 ^ •/ mif7i2 "*1̂ 2 "*l"*2

other than the trivial solution for the £tf solution of the third degree equation in

with :

For the fixed values of mj and w2 , we obtain three antisymmetric modes of

vibration.

8.13. Buckling of a rectangular orthotropic symmetrical plate simply supported
around its edge

The rectangular plate of dimensions at and a2 is simply supported around its

edge. It is subjected to the membrane loads - N® and - N2 .

with:
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with:

are written:

Figure 8.3. Buckling loading

The global buckling equations:
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The boundary conditions, for a simply supported plate are:

These conditions are satisfied by:

Putting these into the global buckling equations and changing the sign we obtain:
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form:

with:

In the particular case where #2 = kNi , this system has a solution other than the

trivial solution for the N® solution of the equation:

or:

The algebraic system in *F , *F and U thus obtained is written in the0 J - mlm2

The critical global buckling force is given by:
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Chapter 9

Asymmetrical multi-layer
Kirchhoff-Love plates

9.1. Introduction

In a previous chapter we studied symmetric multi-layer plates using the
Kirchhoff-Love theory. In this chapter we will look at the behaviour of asymmetric
plates in flexure, vibration and buckling. We will limit the discussion to cross-ply or
balanced antisymmetric plates.

9.2. Flexure of a cross-ply asymmetrical plate

The rectangular plate of dimensions a\ and a2 is freely supported in the

direction orthogonal to its perimeter. It is only subjected to the distributed surface
force q(xl, x2 )x3 on its upper face.

Figure 9.1. Cross-ply asymmetrical plate in flexure
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Figure 9.2. Schematic diagram of edge of a cross-ply asymmetrical plate

The global stiffnesses of the composite satisfy the expressions:

The global constitutive relation for the composite:

provides the global membrane cohesion forces:

with, according to Kirchhoff-Love theory:
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Asymmetrical multi-layer Kirchhoff-Love plates 161

which, introduced into the global equilibrium equations:

gives the expressions:

The boundary conditions for a freely supported plate in the direction at right
angles to the edge are written:

- for xl - 0 and xl=al:
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The displacement field, which satisfies both the boundary conditions and the
global equilibrium equations of the plate, subjected to the double sinusoidal loading:

is of the form:

Introducing these into the global equilibrium equations we obtain, after

simplification, the following system for
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which may be written in the form:

with:

The determinant of the system and the determinants associated with the three
unknowns are equal to:
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We therefore obtain:
1

from which we can determine the strains and stresses.
When the number of layers is large, we can take B^ = 0. The previous

expressions become:

we obtain the displacements:
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In the case of a square plate of edge a subjected to the loading:

we obtain:

When we take 5^ = 0 , we have:

9.3. Vibration of a cross-ply asymmetrical plate

The rectangular plate of dimensions av and #2 *s freely supported in the

direction orthogonal to its perimeter. It is not subjected to any given volume or
surface loading.

Introducing the global membrane loads:
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and the flexural moments:

into the equations for global vibration:

gives the three equations:

The boundary conditions for a supported plate free to move in the direction
normal to the edges are:

www.TechnicalBooksPdf.com



Asymmetrical multi-layer Kirchhoff-Love plates 167

The displacement field defined by:

which can be written in the following matrix form:

satisfies the boundary conditions at the edges and the global vibration equations
which, after simplification, lead to the system:
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with:

This algebraic system has a solution other than the trivial solution

Ul =U2 =f/3 =0 for the values of co which cancel the
m\m2 mlm2 /n1m2 m^n^

determinant:

which is written in the form:

with:

or:

www.TechnicalBooksPdf.com



Asymmetrical multi-layer Kirchhoff-Love plates 169

For each couple (mj ,m2) , we obtain three natural frequencies.

32M° d2«°
In the case when the membrane inertias 70 —^- and 70 —r2- are neglected,

the previous system can be written, with the same notation, in the form:

and the determinant becomes:
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or:

with:

9.4. Buckling of a cross-ply asymmetrical plate

The rectangular plate of dimensions a\ and a2 is supported freely in the

direction orthogonal to its perimeter. The edges ^ = 0, jq = a\, x2 = 0 and

jc2 =#2 are respectively subjected to the loads N®, -N®, N® and -N®, with

A^! and 7V2 being positive.

For each couple (m^, m^), we obtain the natural frequency:

When BH is negligible, we have:
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Figure 9.3. Buckling asymmetrical cross-ply plate

By introducing the global membrane loads:

and the flexural loads:

into the global buckling equations:
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The boundary conditions for a plate freely supported in the direction normal to
its edges are:

- for xl = 0 and xl = al\

The displacement field, which satisfies the boundary conditions and the global
equations, has the form:

Mi =U COS

By introducing this into the global buckling equations we obtain, after
simplification, the system:

we obtain:
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of the form:

with:
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The critical buckling loads are the values of N® and N® for which

Ul
mitrh, C/^ms and U^^ are not simultaneously zero, i.e. the values which cancel

the determinant of the system:

or:

from which:

The critical buckling loads are given by:

with:

www.TechnicalBooksPdf.com



Asymmetrical multi-layer Kirchhoff-Love plates 175

In the case when W2 = kNi , we obtain the critical buckling loads:

with:

When the number of layers is large, BH is negligible and the critical buckling

loads are given by:

9.5. Flexure of a balanced asymmetrical plate

The rectangular plate of dimensions a\ and a2 is freely supported in the

direction of its perimeter. It is only subjected on its upper face to the surface force
q(xl,x2)a3.
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Figure 9.4. Asymmetrically balanced plate in flexure

Figure 9.5. Schematic representation of edges of a balanced asymmetrical plate

The global stiffnesses of the composite are such that:

The constitutive relation of the composite is written:
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with:

By introducing the global cohesion loads:

and:

into the global equilibrium equations:

we obtain:
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The boundary conditions for an edge freely supported in the edge direction are:
- for x{ - 0 are x1 = a^:

The displacement field for the plate subjected to a double sinusoidal load:
.

which satisfies the global equilibrium equations and the boundary conditions is of
the form:

Introducing these expressions in the global equilibrium equations we obtain,
after simplification, the system for U , U and U :
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which can be written as:

with:
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The determinant of the system and the determinants associated with the three
unknowns are:

or:
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The displacements are given by:

For a load of the type:

we have the displacements:

from which we obtain the strains and stresses.

When the number of layers is large, we can take #15 = #26 = 0 • The previous

expressions then give:
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The previous results for a square plate of side a and for a load:

When fijg and fi26
 are very small we have:

9.6. Vibration of a balanced asymmetrical plate

The rectangular plate of dimensions a{ and a2 is freely supported in the

direction of its perimeter. It is not subjected to any given external loading.

By introducing the global membrane loads:

become:

and:

www.TechnicalBooksPdf.com



Asymmetrical multi-layer Kirchhoff-Love plates 183

and flexural loads:

into the global vibration equations:

we obtain the three equations:

The boundary conditions for a plate freely supported in the direction of the
perimeter are:
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satisfy the boundary conditions and the equations of motion.

Introducing these expressions in the global vibration equations, we obtain, after

simplification, the following system in Um m , Um m and Um m :

The displacement fields defined by:
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which are written as:

with:

This algebraic system has a solution other than the trivial solution

Ul =U2 =C/3 = 0 for the values of (Om m which cancel the determinant:
mlni2 mlni2 m^m-i m\m>i
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which is written in the form:

with:

or:
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For each value of the couple (m^ ,ra2), we obtain the three natural frequencies.

r)2 ° r)2 °
In the case where the membrane inertias I0 —^- and I0 —r2- are negligible,

dr dt2

the previous system is written as:

with the previous values of //,-,-. The determinant becomes:
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or:

with:

For each couple (m^, m 2 ) , we obtain the natural frequency:

When 516 and fi26
 are negligible, the previous expression reduces to:
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9.7. Buckling of a balanced asymmetrical plate

The rectangular plate of dimensions a{ and a2 is freely supported in the

direction of its perimeter. The edges x\ = 0, jq = a\, x2 = 0 and x2 = a2 are

respectively subjected to the loads N®, - N®, N® and -N$, with N° and N®

positive.

Figure 9.6. Buckling of balanced, asymmetrical plate

By introducing the global membrane loads:

and flexural loads:

into the global buckling equations:
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we obtain:

The boundary conditions for an edge freely supported in the direction of the
perimeter are:

The displacement fields which satisfy the boundary conditions and the global
equations are of the form:
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By introducing these into the global buckling equations, we obtain after
simplification, the system:

which is written in the form:
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with:

or:

The critical buckling loads are the values of N± and N2 for which
1 9 ^

U ,U and U are not simultaneously zero, i.e. for values which cancel
mlm2 mjn2 mlm2

 J

the determinant of the system:
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with:

In the particular case where N® = kN® , we obtain the critical buckling loads:

from which:

The critical buckling loads are given by:

with:
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When Bj5 and #26 are verv small> the critical buckling loads are given by the

expression:
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Chapter 10

Cylindrical flexure of
multi-layer Kirchhoff-Love plates

10.1. Introduction

An infinitely wide plate is said to be in cylindrical flexure when the
displacements, strains and stresses are independent of the cartesian co-ordinate *2 .

In this chapter we will study, based on the Kirchhoff-Love theory for which
transverse shear strains are neglected, the static, vibration and buckling behaviour of
an infinitely wide plate.

10.2. Strain-displacement relationship

In cylindrical flexure the displacement field is of the form:

The displacements are given by the expressions:

and the strain field is written:

In Kirchhoff-Love theory the transverse shear strain e5 is zero, which gives:
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the strains:

involve, as non-zero terms, the membrane strains:

and the curvature:

10.3. Global constitutive relation

This is written:

and gives the global membrane loads:
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and flexure:

10.4. Global plate equations

In the case of cylindrical flexure the global equations:

give the following expressions:
- static:

-vibration:
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10.5. Flexure

In the particular case where the volume loads are zero, by putting into the global
equilibrium equations:

- buckling:

the global cohesion loads:

we obtain the three equations:
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10.5.1. Elimination of wj and 1*2

2 0 2 0

The first two equations, which have just been written, enable ^- and •£-
dx{ dx{

,3 0

to be expressed as a function of ^-, with the help of the two expressions:
dxf

The integration of this equation and taking into account the boundary conditions

allows us to determine u® . U® and wf are then f°und by integration of:

with:

which has the form:

Putting these into the third equation, we obtain the expression:
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10.5.2. Simply supported plate subjected to a sinusoidal load

10.5.2.1. General case

The plate is simply supported on two edges xl = 0 and xl = al, and is

subjected to the loading:

Figure 10.1. Plate under cylindrical flexure

The boundary conditions at the edges Jtj = 0 and xl =al are:

The displacement field defined by:
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we have:

10.5.2.3. Asymmetrical balanced composite (oc,-(x)N>

The following global stiffnesses being zero:

we obtain:

10.5.2.2. Asymmetrical cross-ply composite (p,yL,

The following global stiffnesses being zero:

the maximum deflection, obtained at jq = -y, is equal to:
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10.5.2.4. Symmetrical composite

As the membrane-flexure global coupling stiffnesses are zero:

10.5.2.5. Displacement field

Given the values of U^ , U^ and U^ obtained previously, we have the

following expressions for the displacements:

10.5.2.6. Strain field

The non-zero strains are then given by the following expressions:

we obtain:
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10.5.2.7. Stress field

The stresses in layer k are given by:

10.6. Vibrations

10.6.1. General case

we have three equations of motion:

the global cohesion loads:

The plate studied is supported on two supports separated by a\.

Putting into the global vibration equations:

where the <2// are the reduced stiffnesses of layer k. We then obtain:
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is of the form:

Putting these expressions into the global equations of motion and after
simplification, we obtain the system:

which is written in the following matrix form:

The solution, which satisfies the boundary conditions at x± = 0 and jq = a\:
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This system has a solution other than the trivial solution U = U =U =0J m\ ml ml

for the values of com which cancel its determinant, that is for the comi solution to

the equation:

of the form:

with:

For each value of Wj, we obtain three natural frequencies.

10.6.2. Asymmetrical cross-ply composite (O, y j ,

We have:

The coefficients A, B, C and D are equal to:
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In this particular case, the equation for the natural frequencies is:

or:

r\

The discriminant of the equation in I^co :

is always positive.
So we obtain, for each value of mi, the following three natural frequencies:
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10.6.3. Balanced asymmetrical composite (a,-cx)N,

We have:

In this case the determinant is written:

The coefficients A, B, C and D are equal to:
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from which:

For each value of mj, we obtain the following three natural frequencies:

10.6.4. Symmetrical composite

We have:

and the equation for the natural frequencies is written :

The coefficients A, B, C and D have the values:
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or:

For fixed m±, the three natural frequencies are:

If the composite shows tension-shear decoupling we have:

and:

For an isotropic mono-layer plate we have the following particular values:
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Figure 10.2. Plate subjected to buckling

Introducing into the global buckling equations:

10.7. Buckling

10.7.1. General case

The plate studied lies on two simple supports x\ = 0 and x\ = a\, and is only

subjected to compression loading - N®, with N® > 0.

The natural frequencies are written:
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the global cohesion loads:

we arrive at the three equations:

The displacement field:

satisfies the previous equations as well as the boundary conditions at
jCj = 0 and jq = a^:
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Introducing this into the global buckling equations we obtain the set of
equations:

The critical buckling loads, which correspond to the out-of-plane equilibrium

configuration, are the values of NI which cancel the determinant of the previous

system:

For each value of mi, the critical buckling load N. of the mode raj is given
I/M!

by:

which, after simplification, can be presented in matrix form:
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The critical buckling load for the first mode 1 is:

10.7.2. Cross-ply asymmetrical composite (0,yj

10.7.3. Balanced asymmetrical composite (a,-a)N,

We have:

The critical buckling load is given by:

10.7.4. Symmetrical composite

We have:

In this case the critical buckling load value is:

For a single layer isotropic plate we have:

We have:

The critical buckling load is:
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Chapter 11

Cylindrical flexure of multi-layer
Reissner-Mindlin plates

11.1. Introduction

After having studied one-dimensional cylindrical flexure according to the
Kirchhoff-Love theory, we will now examine the use of Reissner-Mindlin theory, in
which the transverse shear strains are taken into account, for the study of the
cylindrical flexure of an infinitely wide plate in flexure, vibration and buckling.

11.2. Strain-displacement relationship

In cylindrical flexure we have a displacement field of the form:

11.3. Global constitutive relation

From the expressions:

which leads to the strains:
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11.4. Global plate equations

In the case considered here for cylindrical flexure the global equations:

and transverse shear:

with flexure:

we obtain the global membrane loads:
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In this chapter we will limit ourselves to the case of an asymmetric cross-ply

laminate (o,-y) , for which the following global stiffnesses are zero:

- buckling:

- vibration:

lead to the following expressions:
- static:
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11.5. Flexure

The plate rests on two simple supports at xt = 0 and xl = a\, the volume forces

are zero and the loading is defined by:

Figure 11.1. Plate in cylindrical flexure

Introducing:

as well as:

and:
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in the global equations:

we obtain the four equations:

The boundary conditions at jq = 0 and jCj = a^ are:

The displacement field:
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satisfies the boundary conditions and the global equilibrium equations. Introducing
the displacements in the global equilibrium equations, we obtain the system:

9 0The second equation immediately gives Um = 0, from which w2 = 0 .

After simplification, the three remaining equations lead to a matrix set:

The determinant of the set:

and the determinants:
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provide the solution:

We then obtain:
- for the displacements:

- for the stresses in layer k:

- for the strains:
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11.6. Vibrations

The plate studied, subjected to no loads, is resting on two simple supports
separated by a\.

Introducing the global loads:

into the global equations of motion:

we obtain the five equations:
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The boundary conditions at xl = 0 and x{ = a\ are:

The displacement field:

satisfies the boundary conditions and the global equations of motion. Introducing the
displacements into the global equations and after simplification, we obtain:
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ij f\
From the fourth equation, we have Um = 0, from which u2 = 0.

The three other equations can be put in the following matrix form:

This set has a solution other than the trivial solution Ul = f / 3 =0, T1 =0Wj m\ mj

for the values of (Om^ which cancel its determinant, from which the equation for the

natural frequencies in com^:

of the form:
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with:

are derived.
For each value of mi we obtain three natural frequencies.

11.7. Buckling

The plate studied, resting on two simple supports at xl - 0 and xl=al, is only

loaded in compression - N®, with N® > 0.

Figure 11.2. Plate in buckling situation

By introducing the global loads:
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we obtain the four equations:

into the equations for global buckling:
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satisfies the boundary conditions and the global buckling equations. By introducing
the values of u^u^u^ and ^ into the equations of global buckling, we obtain the

set:

9 0The second equation gives Um = 0, then u2 = 0 .

The displacement field:

The boundary conditions at xl = 0 and x} - a{ are written:
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After simplification, the three remaining equations provide the following matrix
set:

The critical buckling loads are the values of N® which cancel the determinant of

the homogeneous system, hence the equation:

which is written as:

and for which the solution is:

The critical buckling loads are given by:
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Multi-Layer Beams
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Chapter 12

Symmetrical multi-layer beams
in tension-compression

12.1. Introduction

In this and the two following chapters we will study multi-layer symmetric
beams, which are composites for which the ratio of width over length is small.

The determination of equivalent stiffnesses allows us to use the formulae and
methods currently used in strength of materials studies.

The present chapter is devoted to the longitudinal behaviour of multi-layer
symmetric beams in static and vibration loading.

12.2. Strains, stresses, global equation of tension-compression

The global constitutive relation for a symmetrical plate subjected to membrane
loads may be written as:

or, after inversion:

In the case of tension loading in the xl direction, we have:

or:

and the global strains are equal to:
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and:

The stresses in layer k are determined from the expressions:

232 Analysis of composite structures

or:

From these calculations, the boundary conditions at the free edges of each layer

<T2 =cr6 =0 are not satisfied. However, globally they are satisfied. The stresses

obtained from the theory developed above are not correct near the free edges where
the stress state is three-dimensional. To minimize the influence of the free edges, the
ratio of width over height of the section should be sufficiently large.

By introducing the expression:

or:

into the global equation:

we obtain the equation:
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with:

The membrane strains are equal to:

12.3. Single layer orthotropic beam

In this particular case, the global membrane stiffnesses may be written:

with:

The global compliances are given by:
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and putting N = N^b, qQ = p{b and S = bh, we derive the classic equations:

12.4. General equations for beams in tension-compression

By introducing, for multi-layer symmetric beams, the equivalent characteristics:

Multiplying by b the two members of the following equations:

as well as:

we obtain, in tension-compression, the following global equations:

Also, we have:

and the stresses to:
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12.5. Built-in beam under its own weight and subjected to a force

The beam OA of length /, mean plane (o|x1,x2), built-in at O is subjected at A

to the force Fx1 and to the action of its weight, xt is descending vertical.

with:

or:

where Ek is Young's modulus in the direction of orthotropy x^ of layer k.

The axial load is then given by:

For an orthotropic beam we have:

If we assume, as we do in the classical approach for beam theory in tension-
compression, that the displacement «j only depends on x± and on t, we have:
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Figure 12.1. Beam in tension

gives, in the case where qQ is constant, the displacement uv :

The displacement wf and the axial load N are therefore equal to:

The integration of the equation of equilibrium:

and the axial force:

The two integration constants C and D are obtained from the two conditions:

from the system

the second equation of which gives:
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The elongation of the beam is equal to:

We can find the expression for U® by integrating the expression:

The expression for the axial force is:

so we obtain:

The built-in condition gives C = 0.

12.6. Vibration of a built-in beam

The beam OA, of length /, mean plane and subjected to no external

load, is built-in at O and at A.

Figure 12.2. Beam under longitudinal vibrations

The longitudinal vibrations of the beam are governed by the equation:

The solution to this equation, which satisfies the displacement boundary
conditions:
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is of the form:

Introducing this into the equations of motion we obtain the expression:

which, after simplification provides the natural frequencies:
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Chapter 13

Symmetrical multi-layer beams in flexure
without transverse shear strain

13.1. Introduction

In this chapter we will develop the theory of beams in flexure neglecting
transverse shear strains. We will examine flexure, vibration and buckling.

Bernoulli's theory, used in the strength of materials approach, will be applied
here.

13.2. Strains, stresses, equations of motion

The global constitutive relation of a symmetric plate subjected to flexural loads
is written as:

after inversion it is written as:

In the case of flexure in-plane we have:

as well as the curvatures:

or:
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with:

and:

The expressions:

show that depends on the two variables and

The term D12 is at the origin of a curvature of the mean surface of the beam in

the transverse plane which is orthogonal to the axis of the beam. The contact of a
beam resting on two simple parallel supports is not a line contact.

When D16 is not zero, bending-twisting appears which is superposed on the

previous phenomenon. This bending-twisting is zero for symmetric cross-ply beams.
These two actions mean that rectilinear contact cannot be maintained across the

whole width of the beam when it is loaded.
These phenomena can be neglected when the ratio of width over length is small.

In this case we can assume that u3 only depends on x1 and t.

The stresses in layer k are calculated from the expression:

or:
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These expressions show that the free edge boundary conditions are not satisfied;
they are only globally satisfied. To minimize the influence of the free edges the ratio
of height over width must be sufficiently small.

The transverse shear stress in layer k, is obtained by integration of the first

equation of local motion.

In the case of flexure, the first equilibrium equation:

is written, if we assume that u3 only depends on x1:

for <J6 is independent of x2 , hence:

The layer by layer treatment enables the stress <J5 to be written in the form:

From the expression:

and the global equilibrium equation:

we obtain:

The transverse shear stress 05 can therefore be written as:
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or:

The global plate equation:

reduces, for beams, to the following:

with:

By introducing the global flexural moment:

we obtain the equation:

which in the following particular cases becomes:

- flexure:

- vibration:

- buckling:
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13.3. Monolayer orthotropic beam

The global flexural stiffnesses are equal to:

with:

The corresponding global compliances are equal to:

The strains are given by:

and the stresses by:

Multiplying by b the two parts of the following equations:
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and putting:

we obtain the following well-known expressions:

13.4. General beam equations

In this section, we will write the global equations for beams in flexure with the
notations used for isotropic beams. We will detail these equations in the case of
flexure in the plane (0x1,x3) and in the plane (Ox1,x2). It will be assumed, as for

the classic flexural theory of beams, that the transverse displacement only depends
on x1 and t.

13.4.1. Flexure in the plane (O xl, x3)

Introducing, for symmetrical monolayer beams, the equivalent characteristics:

as well as:
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we obtain, in flexure, the global equations:

This case corresponds to that we used in the general composite theory.

Figure 13.1. Beam element deformed in the plane (0|x1, x3 )

In addition, starting from the displacement field defined by:

with:

we obtain the displacements:

The strain tensor therefore has the components:
"4 _.

The hypothesis that gives from which:
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The axial stress in layer k of an orthotropic beam:

where Ek is Young's modulus in the direction of orthotropy x1 of layer k.

By definition, the flexural moment is equal to:

or:

from which:

with:

A positive flexural moment results in a negative curvature.

The global beam equations are written:

The shear force is given by:

and the flexural moment by:
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The global beam equation can be presented in the form:

13.4.2. Flexure in the plane

This is the case generally used to present beam theory in strength of materials
studies.

i i

Figure 13.2. Beam element deformed in the plane

The displacement field is expressed:

where:

The displacement vector has the components:
/ i \

and the corresponding strains are equal to:

The assumption e§ = 0 leads to:

as well as:
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i
The axial stress in layer k, of an orthotropic beam is equal to:

and the flexural moment to:

or:

with:

Contrary to the previous case, here the flexural moment and the curvature have
the same signs.

Since:

the global beam equations are given by the following expressions:

where the flexural moment and the shear force are given by the expressions:
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The global equation is written therefore:

13.5. Simply supported beam subjected to sinusoidal loads

The beam OA of length / rests at O and A on two simple supports. The beam, of

mean plane (o|x1,x2) is subjected to a sinusoidal load:

Figure 13.3. Beam subjected to a sinusoidal load

The global equilibrium equation is written:

and the boundary conditions are:

with:

The transverse displacement:

satisfies the boundary conditions and the global equilibrium equation. By
introducing it into the latter we obtain the expression:
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which has as solution:

hence:

13.6. Vibrations of a simply supported beam

The beam OA, of length / and mean plane (o|x1,x2), rests at O and A on two

simple supports.
The transverse vibrations of the beam are governed by the equation:

The boundary conditions are:

with:

The boundary conditions and the global equation of vibration are satisfied by:

The equation of motion which becomes:

provides the natural frequencies:

with :
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13.7. Buckling of a simply supported beam

The beam OA of length /, has the mean plane (o|x1,x2). It is articulated at O

and rests at A on a simple support without friction. The beam is only subjected at A
to the compression force -Fx1, with F > 0 .

Figure 13.4. Beam buckling

The differential equation of global buckling is:

A i

and the boundary conditions are written as:

with:

The transverse displacement:

satisfies the differential equation of global buckling and the boundary conditions.
The buckling equation which becomes:

leads to the critical buckling forces:

x /

For the first buckling mode the critical force is:
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Chapter 14

Symmetrical multi-layer beams in flexure
with transverse shear strain

14.1. Introduction

Having considered beams neglecting the transverse shear strains, we will now
examine the influence of these strains on the transverse displacements, the natural
frequencies and the critical buckling load.

The theory presented in this chapter corresponds in strength of materials to the
Timoshenko beam theory for flexure.

14.2. Strains, stresses, global equations

The global constitutive relation for a symmetric plate in flexure is written:

and after inversion:

with:

and:
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In the case of flexure in the x2 direction, we have:

and

hence:

and:

with:

and:

From these expressions and depend on and

As in the previous chapter, when the ratio of length over width is large, we can
assume that yl and u® only depend on x1 and on t.

The stresses in layer k, determined with the help of:
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are written:

and:

The boundary conditions for stress at the free edges of the beam are not satisfied.
Their influence is minimized when the ratio of height to width is sufficiently small.

The global plate equations in flexure reduce to two equations:

which, after the introduction of:

are written

In the following particular cases we have:

- flexure:
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- vibration:

- buckling:

14.3. Monolayer orthotropic beam

In addition to the global stiffnesses:

we have:

The strains are equal to:

and the stresses to:
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Multiplying by b the two members of:

and introducing:

we obtain the following expressions:
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14.4. General beam equations

As in the previous chapter, we will detail the equations for flexure in the planes
and

14.4.1. Flexure in the plane

Introducing, for multi-layer, symmetric beams, the equivalent characteristics:

as well as:

with:

and:

we obtain, in flexure, the following global equations:
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With the following expressions for the displacements:

we obtain:
- the strains:

- the stresses in layer k of an orthotropic beam:

- the flexural moment:

- the shear force:

with :

The global beam equations:

are written, after introduction of the expressions for M f2 and T3 , in the following

form:
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14.4.2. Flexure in the plane

From the expressions:

we obtain:

as well as:

N /

The flexural moment is equal to :

or:

with

and the shear force to:

or:

The global beam equations can be written:

with
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or:

14.5. Simply supported beam subjected to a sinusoidal load

The multi-layer beam OA, with mean plane (O X1,x2) and of length l, rests at O

and A on two simple supports. It is subjected to a sinusoidal load:

Figure 14.1. Beam subjected to a sinusoidal load

The global equilibrium equations are written:

and the boundary conditions are:

with:
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The displacements field defined by:

satisfies the equilibrium equations and the boundary conditions. The two
equilibrium equations provide the system:

which can be presented in the form:

Given the values of the determinant of the system:

and of the determinants relative to the two unknowns and

the solution to the system is:

Finally, the displacement field is defined by:
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The maximum deflection, obtained at is equal to:

If we ignore the transverse shear strains, it is equal to:

and the relative variation of the deflection is:

14.6. Vibration of a simply supported beam

The beam OA of length / and mean plane (o|x1,x2), rests on two simple

supports at O and at A. It is not subjected to any given load.
The transverse vibrations of the beam are governed by the two equations:

The boundary conditions are written:

with:

The following expressions for and
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satisfy the boundary conditions and the global equations of motion which become:

After simplification, we obtain the system:

which has a solution other than the trivial solution T^ = 0 and U^ = 0 for the values

of 0)n which cancels the determinant of the system. The equation for the natural

frequencies:

is written:

or:
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The discriminant of this equation:

or:

is positive.

The natural frequencies are equal to:

For each value of n, there are two natural frequencies.

If we neglect the inertia of rotation, the two global vibration equations may be
written:
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With:

we obtain the system:

and the equation for the natural frequencies:

for which the solution is:

The values of natural frequencies thus obtained are lower than those calculated
neglecting the transverse shear strains:

the corresponding relative error is equal to:

14.7. Buckling of a simply supported beam

The beam OA, of length l and mean plane is subjected at A, as shown

in figure to the force
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Figure 14.2. Beam buckling

The differential equations for global buckling are written:

and the boundary conditions:

with:

The buckling equations and the boundary conditions are satisfied by:

Introduction into the buckling equations leads to the two expressions:

and the system:
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which has a solution other than the trivial solution for the values of F which cancel
its determinant, that is for the F solution of the equation:

The critical force of the buckling mode n is equal to:

These values are lower than those obtained when we neglect the transverse shear
strains:

The corresponding relative error is:

The first buckling mode is characterized by the critical force:
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Chapter 15

Global plate equations
neglecting large transverse displacements

15.1. Introduction

In this appendix, we present the plate analysis equations, integrating the local
equations when the three absolute values of displacements are low in comparison
with the plate thickness, and when the absolute values of the components of
displacement vector gradient are much lower than one.

We will limit this study to the resultant forces and moments and the inertia
forces in the Reissner-Mindlin and Kirchhoff-Love type analyses.

15.2. Hypothesis relating to plates

A plate is a continuum limited by two parallel planes corresponding to the lower
and top surfaces of the plate, and by a cylindrical surface (edge of the plate)
orthogonal to the faces of the plate.

The middle plane of the plate is equidistant from the lower and upper surfaces
and these are separated by a distance h.

The middle plane of the plate is located in the plane (Oxl,x2) of the reference

axes (Ox1,x2,x3).

The rectangular plate as shown below has the middle surface represented by a
rectangle, the dimensions of which are a1 and a2 respectively.

The plate is specified as "thin" if the thickness is small in comparison with the
middle surface dimensions, which is the case when the thickness to characteristic
dimension of the middle surface ratio is lower than 1/20. The term "moderately
thick" is used when the ratio is between 1/5 and 1/20.
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Figure 15.1. Thin plate

In this appendix, we assume that the absolute values of displacements ui are

small in comparison with h and that the absolute values of the partially derived

functions -3 -̂ are less than 1.
dXj

15.3. Reissner-Mindlin and Kirchhoff-Love plate theories

In these two plate analyses, we are assuming that ul and u2 depend on x1, x2,

x3, and t, and u3 depends on x1, x2 and t only. The chosen displacement field is

written as:

The strain field is then defined by:
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We consider the set of particles M placed on a line segment AB, which is

orthogonal to the middle surface of the plate and goes through particle M placed
in the centre.

With the chosen displacement field, the particles placed on the line segment AB
are placed on the line segment A 'B' after deformation of the plate as shown below:

Figure 15.2. Displacement field

The particles placed on the line segment AB are defined by:

with and

Starting from the relation:

M°'M' = M°'M° + M°M + MM' ,
and introducing the displacement vectors of particles M and M, we obtain:

so:

This last equation shows that the particles placed on a line segment AB remain
aligned after deformation of the plate and are placed on the line segment A 'B'.

This displacement field chosen corresponds to the moment field:

with:

we obtain the relation:
, •. i
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which, identifying the chosen displacement field, gives the two relations:
&! =-\l/2 , Q2 =^i,

which represent the two infinitesimal rotations of the line segment AB measured
respectively on xl and x2 . These two rotations are shown in the figure below:

Figure 15.3. Infinitesimal rotations

The middle surface of the plate is defined by the vectorial equation:
/ . \ -. « / ^ . \

The two partially derived functions of f with respect to x1 and x2 :

correspond to the tangential plane of the middle surface of the plate which goes

through M° .

The principal parts, i.e. the first order terms, of the scalar products of the two

previous vectors with the vector M°'M' are respectively equal to:
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The hypothesis in the Kirchhoff-Love analysis is to say that the transverse shear
strains £13 and e23 are zero, so the infinitesimal rotations are expressed in terms of

«3 with the two following relations:

Putting these values into the two previous scalar products, we obtain the following
equations:

L 4,

which show that the line A 'B' is orthogonal to the middle surface of the plate.

Figure 15.4. Displacements in Kirchhoff-Love type analysis

In Reissner-Mindlin type analysis, we have the displacement field:

^ ~j •

separated into the membrane displacement field:

and the bending displacement field:
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In a similar manner, the strain field:

is separated into a membrane displacement field:

and bending:

In Reissner-Mindlin type analysis, the membrane displacements and strains

depend only on the two functions u\ (x1,x2)?) and M^fa'^lO' while the bending

displacements and strains depend only on the three functions ^ri(jc1,x2|?),

But in Kirchhoff-Love type analysis, we have the displacement field:

separated into a membrane displacement field:
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and bending:

Similarly, the non-zero components of the strain tensor:

are separated into the membrane strains:

and bending:

These last expressions present the curvature of the middle surface:
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In Kirchhoff-Love type analysis, the membrane displacements and strains

depend only on ^(x1,x2?) and u2(xi,x2t), but the bending displacements and

strains depend only on u® (x{,x2 t).

15.4. Global plate equations

15.4.1. Force equations

The resultant forces are defined as:

and they satisfy the symmetry condition N^ = N^.

Multiplying the two members of the motion equations:

by Che?,, and integrating through the thickness from - - to -, the three force

equations are obtained:

- For / = !, the equation is:

The first term of this equation is equal to:

in a similar manner, the second term is equal to:
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The third term becomes:

The boundary conditions applied on the upper and lower surfaces give the two
relations:

in which T^ and r13 are the surface forces applying on the two faces respectively.

From this:

For the body forces:
z.

the following equation is obtained:

- For i = 2, the following equation:

which with the previously introduced notation will be written as:

- For i = 3, in a similar manner:

and:
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15.4.2. Moment equations

The resultant moments are equal to:

and satisfy the condition M{j = M j{.

Multiplying the two members of the motion equations by x3dx^ and integrating

through the thickness of the plate, we obtain the moment equation:

- For i = l, the equation is written as:

from the first term:

and the second term:

The third term is equal to:

so, using the previous notation:

Let, for the relative integral of the body forces:
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we then obtain the equation:

- For / = 2, in a similar way we obtain the equation:

which can be written as:

using the previous notation.
The equation written with i = 3 has no physical application.

15.5. Plate equations in Reissner-Mindlin analysis

15.5.1. Calculation of second members

The Reissner-Mindlin displacement field is:

By introducing:
Ii

and:
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the second members of the three force equations are equal to:

By introducing:

î

the second members of the two moment equations are equal to:

15.5.2. Global plate equations

In the case where the //, are equal to 0, and also T,^ and T^ are zero except

T33 = #3' me plate equations are written as:
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15.5.3. Boundary conditions

n and s are respectively the local normal and tangential co-ordinates on the plate
edge, and the conditions around the perimeter of the middle surface of the plate, for
an edge in the following case:

- simply supported:

- hinged free in the normal direction:

- hinged free in the tangential direction:

- clamped:

- free:

15.6.1. Calculation of second members

With the Kirchhoff-Love displacement field:

the second members are obtained:
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and:

As in Kirchhoff-Love type analysis, the rotation inertia where I1and I2 appear

are neglected and the second members are written as:

and:

15.6.2. Global plate equations

In the particular case where except for we
have:
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Differentiating the two members of the last two equations respectively with
respect to x1 and x2, we obtain the two equations:

leading to the following relation:

15.6.3. Boundary edge conditions

In the particular case previously considered, we have for an edge:

- simply supported:

- hinged free in the normal direction:

- hinged free in the tangential direction:

- clamped:

- free:
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Chapter 16

Global plate equations

for large transverse displacements

16.1. Introduction

We will now derive the global plate equations by integrating the non-linear
equations of motion that the Kirchhoff stress tensor satisfies, for the case where the
absolute value of u3 is not small in comparison with the plate thickness.

This configuration allows the buckling of plates to be studied. In addition, the
absolute values of u1 and u2 are small in comparison with the plate thickness, and

the absolute values of partially derived functions of u1 and u2 with respect to x1,

x2 and x3 are less than 1.

We will clarify these relations in both Reissner-Mindlin and Kirchhoff-Love
type analyses.

16.2. Local plate equations

The components o^ of the Kirchhoff stress tensor are written in this appendix

In the present plate analysis, we consider the displacement field to be written as:

and in the local plate equations, we only conserve as non-linear terms those
containing the partially derived functions of u3 with respect to x1 and x2.

Under these conditions, the local equations of movement are written as:

and satisfy the local relations:

www.TechnicalBooksPdf.com



288 Analysis of composite structures

16.3. Global plate equations

16.3.1. Global plate summation equations

Multiplying the two members of the local equation of movement i = l by dx3

and integrating through the thickness of the plate from - - to —, we obtain the

relation:
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including the following integrals:

From the edge boundary conditions on the top and lower surfaces, we have:

let:

we now obtain the equation:

An analogous transformation of the local equation i = 2 gives:

then:

from which the second equation:

www.TechnicalBooksPdf.com



290 Analysis of composite structures

From the local equation i = 3 , we obtain by integrating through the thickness of
the plate the following relation:

in which the following terms appear:

because u3 does not depend on x3 ,

or:
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or:

let:

we thus obtain the third summation equation:

16.3.2. Global plate moment equations

Multiplying the two members of the local equation of movement i = 1 by x3dx3
h h

and integrating through the thickness of the plate from - - to —, we obtain the

relation:

in which the following terms appear:
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In other respects, we let:

x,
The first moment equation is written as:

The second moment equation is obtained in the same manner by multiplying the
two members of the local equation i = 2 by x3dx3 and by integrating through the

thickness of the plate, which gives:

with:

from which the second moment equation:
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16.4. Global plate equations for static, vibration and buckling cases

16.4.1. Global plate equations

In the particular case where:

the five equations of the plate analysis involve:

- the three summation expressions:

- the two moment equations:

16.4.2. Global plate equilibrium equations

The non-linear terms are neglected and the five global equations of equilibrium
are written as:
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The elimination of N13 and N23 in the last three equations gives:

16.4.3. Global plate vibration equations

Neglecting the non-linear terms, we thus obtain the global plate vibration
equations:

Eliminating N13 and N23 in the three last equations, we have:
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16.4.4. Global plate buckling equations

The global plate buckling equations which involve the non-linear terms of the
equations of plate analysis, are written as:

where the first two equations have been used to write the third one. The elimination
ofA^3 and N23 in the last equations gives the following relation:

16.5. Reissner-Mindlin global plate equations

Taking account of the calculations of the second member developed in the
previous chapter, the global plate equations are written as:
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16.6. Kirchhoff-Love global plate equations

The simplifying hypothesis of Kirchhoff-Love type analysis and the previous
calculations enable us to write the global equations of the plate analysis in the
following form:

Alternatively, we have the equation:
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Global plate equations:

Kirchhoff-Love theory

variational formulation

17.1. Introduction

The object of this appendix is to present the Kirchhoff-Love plate theory, in
which the transverse shear is not taken into account.

From the Kirchhoff-Love displacements u1, u2 and u3, we calculate the Von

Karman strains used when the transverse displacement u3 is higher than u1

and u2 .

The plate equations are obtained from variational formulation. From these
equations, we write the relations for bending, vibration and buckling of plates.

17.2. Von Karman strains

The components of the Green-Lagrange strain tensor:

provide a linear part:

and a non-linear part:

When the transverse displacement u3 is higher than u1 and u2 , the non-linear

term:
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can be neglected with respect to:

Under these conditions, the Green-Lagrange strains are reduced to Von Karman
strains:

The displacement field of Kirchhoff-Love theory:

leads to the Von Karman strain field:

We can introduce in the strain relations:

the expression:

which leads to:
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so:

For the case:

we have:

and:

Taking into account these inequality relations, we can neglect

and compared to

The Kirchhoff-Love displacement field gives the partial derivatives

from which we can calculate:

and:

If the transverse displacements are significant, the ft>12 component of

infinitesimal rotation is neglected compared to &>23 and ^31 •
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Thus the Von Karman strains are obtained:

The Von Karman strains etj are as follows:

The Kirchhoff-Love virtual displacement field:

is associated with the Von Karman virtual strains:
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17.3. Variational formulation

The variational formulation of a problem with fixed surface efforts is written:

17.3.1. Virtual work of internal forces

The virtual work of the internal forces SWi is given by:

Decomposing the volume integral into a simple integral and a double integral,
we obtain the following relation:

Replacing the virtual strains with this expression, we obtain:

By introducing the resultant forces and moments:

we have:
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Using the derivative formula uV'= (MV)'-u'V , we obtain the following relations:
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allowing us to write the virtual work of body forces as below:

Taking into account the formula:

the virtual work of the internal forces is also written:
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17.3.2. Virtual work of transverse surface forces

The virtual work developed by the transverse forces

the top surface of the plate is equal to:

applied on

in fact, the integration applied on the top surface of the plate is reduced to an
integration applied to the middle plane of the plate.

17.3.3. Virtual work of external lateral surface forces

The virtual work of the external lateral surface forces applied to the perimeter of
the plate is given by the following relation:

Decomposing the surface integral to a simple integral applied on the thickness of
the plate and to a simple integral applied to the outline of the middle surface of the
plate, the previous relation is written:

On introducing the virtual displacement Sui, this relation becomes:

Let:

the virtual work developed by the surface forces applied on the outline of the plate is
written:

or:
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17.3.4. Virtual work of body forces

The virtual work developed by the body forces is obtained using the relation:

which, decomposing the triple integral to a simple integral applied to the thickness
of the plate and to a double integral applied to the middle surface, is written:

The introduction of virtual displacements leads to:

Let:

the virtual work developed by the body forces is written:

The differentiation formula uV'= (MV)'-u'V allows us to write:

With:

the virtual work developed by the body forces is as written below:
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17.3.5. Virtual work done by inertial forces

The virtual work done by inertial forces is written as:

which, on decomposing the volume integral to a simple integral and a double
integral, becomes:

On introducing the virtual displacement, we obtain:

Let:

thus we obtain:

Kirchhoff-Love analysis neglects the terms I1 and I2 compared with I0 . The

virtual work developed by the inertia forces is reduced to the following relation:
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17.3.6. Variational formulation

Taking into account the previous relations, the variational formulation of plates
in Kirchhoff-Love type analysis is written as:

where and satisfy the relation and

Or:
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where and satisfy the relation

17.4. Global plate equations, boundary edge conditions

17.4.1. Global plate equations

The relation just obtained is satisfied, whatever the values of

it is still true if these values are imposed as zero on the perimeter

of the middle surface S of the plate.
From the variational formulation:

and

where and satisfy the relation and

we obtain, for all the middle surface, the following equations:
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17.4.2. Boundary edge conditions

Taking the three equations in the variational formulation, we obtain the
following formulation:

where u10, u20 and u30 satisfy the relation

from which we deduce the edge boundary conditions:

Subsequently in this appendix, the particular case is applied where:

and
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Figure 17.1. Local axes associated with the edge

The partial differential functions of Su^ , with respect to x1 and x2, and in

relation to n and s , are linked by:

The simple integral in the virtual work of internal forces:

310 Analysis of composite structures

On introducing for all M points of the perimeter F the direct local co-ordinates:

where n is orthogonal and external to the edge, and where T is tangential to it and:

The components of the virtual displacement vector:

are linked by:
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is written as:

The resultant forces and moments do not have the following components in the
local axes (b):

The virtual work of internal forces is as written below:

The virtual work developed by the surface forces applied on the edge of the plate
is given by:

•dS.

By introducing:
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By introducing the virtual displacements:

we obtain:

Let:

thus the virtual work developed by the surface forces applied on the outline of the
plate is written as:

The boundary edge conditions are written as:

In Kirchoff-Love type analysis, the third and fifth conditions are combined into a
single condition that includes the transverse shear effort that we obtain when we
transform the following term:
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which is present in the virtual work of the internal forces. Using the differentiation
formula for a product, we obtain:

The last term between the brackets is zero when the edge F has no angular points,
otherwise there is a transverse force acting at the point being considered.

The virtual work of internal forces is written as:

and the virtual work of effort applied at the edge is written as below:

The edge boundary conditions are written as:

The last condition only applies for the rough points.

17.5. Global plate equations in static, vibration and buckling cases

The global plate equations:

www.TechnicalBooksPdf.com



314 Analysis of composite structures

are written as:
- static:

- vibration:

- buckling:

taking into account the first two relations, the third equation is reduced to:
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Global plate equations:

Reissner-Mindlin theory

variational formulation

18.1. Introduction

This appendix, which refers to different subjects to the previous one, presents the
Reissner-Mindlin theory of plates taking into account transverse shear.

18.2. Von Karman strains

Including the Reissner-Mindlin displacement field:

in Von Karman strains:

leads to:
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With the virtual displacements of Reissner-Mindlin plate theory:

are associated the virtual strains:

18.3. Variational formulation

The variational formulation of the elasto-dynamic problem with surface forces
applied is written as:
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18.3.1. Virtual work of internal forces

The virtual work of internal forces SW^ is presented by the relationship:

which can be written as:

Including the virtual strains within the virtual work of the internal forces gives:

and the introduction of the resultant forces and moments allows the following
expression to be written:
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With the following relationships:

we obtain:
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The relation:

allows the virtual work of the internal forces to be written as:
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18.3.2. Virtual work of transverse surface forces

The virtual work developed by the surface forces

top surface of the plate is equal to:

operating on the

or:

18.3.3. Virtual work of external lateral surface forces

This virtual work is given by the expression:

or:

or:

With:

we obtain the relation:

18.3.4. Virtual work of body forces

The virtual work is obtained from:
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or:

or:

Let:

thus we obtain:

18.3.5. Virtual work done by inertial forces

The virtual work done by inertial forces is:

or:

With:
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we obtain:

18.3.6. Variational formulation

The variational formulation of the Reissner-Mindlin theory of plates is given by:
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where and satisfy the relation and

Therefore:

where and satisfy the relation and

18.4. Global equations, boundary edge conditions

18.4.1. Global plate equations

Taking the variational formulation previously presented:
onand

we obtain:
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where and satisfy the relation and and on

Thus, the global equations of plates can be written:

In the following part of this appendix, we take
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18.4.2. Boundary edge conditions

Substituting the five global equations of plate analysis in the variational
formulation, we obtain:

From which we get the boundary edge conditions:

Introducing the local axes where n and are respectively

orthogonal and tangential to F, enables us to write:

Figure 18.1. Local axes attached to an edge

In addition:
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and:

The following integral in the virtual work of the internal forces:

becomes:

The introduction of:

allows us to write:
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The virtual work developed by the surface forces, which are applied to the plate
edge, is:

with:

from which:

Let:

thus we obtain:

The boundary conditions are written as:

ds .
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with:

18.5. Global static, vibration and buckling equations

The global plate theory equations:

are written as:

- static:
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- vibration:

- buckling:
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