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Preface

Bridges consist of super- and substructures. Superstructures, often called
bridge deck structures, are traditionally analyzed by the deck itself for
load-distribution behavior. With the invention of computers and the cre-
ation of bridge-related software, the approximation can be minimized
and tedious processes can be streamlined. It is now possible to change the
structural parameters, even structural types, during the design process,
because the computer program can now recalculate stresses, deflections,
and internal forces in seconds. Through the advances in computer graphic
capabilities, meshing in the preprocess and contour displaying on the fly
in the postprocess are the norms of almost all bridge analysis and design
computer programs. With today’s power of both hardware and software,
more sophisticated three-dimensional (3D) finite element models have been
used in the design of many major structures, in part or all. Based on current
availability and future potential, high-performance computer hardware
and advanced software technologies can even provide an unprecedented
opportunity to develop a new generation of integrated analysis and design
systems with roads and bridges to benefit not only new bridge design but
also routine load rating and maintenance of existing bridges, which will be
discussed more in Chapters 1 and 18.

However, no matter where the computer technology leads, a bridge engi-
neer needs fundamental knowledge of bridge behavior under the combina-
tions of different types of loads during various construction stages. This
book serves the role of transferring the fundamental knowledge of bridges
to a novel approach of all major bridge types. Several computer programs
were used to analyze the illustrated bridge examples throughout this book.
We intend to show the principle rather than the capability of each pro-
gram, so limited details on the data input and the code specifications are
provided. The distinctive features are the presentation of a wide range
of bridge structural types that are yet fairly code-independent. With this
intent, this book is aimed toward students, especially at the master of sci-
ence (MSc) level, and practicing professionals at bridge design offices and
bridge design authorities worldwide.

Xix



xx Preface

This book is divided into three parts: Part I covers the general aspects of
bridges, Part II covers bridge behavior and modeling of all types of bridges,
and Part IIT covers special topics of bridges. In Part I, Chapter 1 provides
an introduction and Chapter 2 covers the methods of computational anal-
ysis and design suitable for bridge structures. These methods vary from
approximate to refined analyses depending on the size, complexity, and
importance of the bridge. With rapidly improving computer technology,
the more refined and complex methods of analyses are becoming more and
more commonplace. Chapter 3 provides the background and approaches of
numerical methods specifically for bridges.

The scope of Part IT is to provide information on the methods of analy-
sis and the modeling technique suitable for the design and evaluation of
various types of bridges. Chapters include illustrated examples of bridges
all over the world, especially in the United States and People’s Republic of
China. We started from deck-type, especially beam-type, bridges. Chapters
4 through 6 discuss concrete bridges. Chapters 7 and 8 examine steel
bridges. The remaining four chapters, 9 through 12, discuss arch bridges,
truss bridges, cable-stayed bridges, and suspension bridges, respectively, of
which, except for truss bridges, which are mostly built in steel, the other
three bridge types can be built in either concrete or steel.

In Part III, for the purpose of analysis, several special topics, such as
strut-and-tie modeling (Chapter 13), stability analysis (Chapter 14), redun-
dancy analysis (Chapter 15), integral bridges (Chapter 16), dynamic/
earthquake analysis (Chapter 17), and bridge geometry (Chapter 18), are
covered to complete the book. In this part, models may include super- and
substructures. Some may even need the 3D finite element method of nonlin-
ear analysis. The major issues of recent developments in bridge technology
are also discussed in those chapters. The focus is mainly on highway bridges,
although some information is also provided for railway bridges.

Overall, this book demonstrates how bridge structures can be analyzed
using relatively simple or more sophisticated mathematical models with
the physical meanings behind the modeling, so that engineers can gain
confidence with their modeling techniques, even for a complicated bridge
structure.
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Introduction

1.1 HISTORY OF BRIDGES

Throughout the late nineteenth and early twentieth centuries, both
structural analysis and material science have undergone tremendous
progress. Before that time, man-made structures, such as bridges,
were designed essentially by art, rather than by science or engineer-
ing. Theory of structures did not exist, and structural knowledge was
extremely limited. Therefore, bridges designed in that period were based
almost entirely on the empirical evidence of what had worked previ-
ously. As the principles governing the structural behaviors were better
understood, computations of those principles came to serve as a guide
to decision making in structural design. Simultaneously, with the pro-
gression in production of the main bridge material, concrete and steel,
bridge design has become more science than art.

In ancient times, bridges were built from easily accessed natural resources
such as wood, stone, and clay with very limited span lengths, until mortar,
the early form of Portland cement, was invented. With mortar material
and the arch structure shape, Romans were able to build strong and light-
weight bridges and even long viaducts, such as the one shown in Figure 1.1,
which is built in the first century. In the seventh century, China was able
to employ cast iron as dovetails to interlock stone segments during the
construction of the Anji Bridge as shown in Figure 9.1, which is still in use
after surviving numerous wars, flood, and earthquakes. Techniques did
not improve until the eighteenth century when new scientific and engineer-
ing knowledge was more widely known. New construction material, iron,
especially the cast iron in mass production, enabled the creation of new
bridge systems such as trusses. The world’s first cast iron truss bridge was
built in Coalbrookdale, Telford, England, in 1779, shown in Figure 1.2.
This bridge is still in use carrying occasional light transport and pedestri-
ans. Modern bridges are the evolution of the early bridges using modern
materials, concrete, and steel. With the aid of modern technology, espe-
cially after the invention of the computer and the associated computational
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Figure 1. Roman viaduct, Pont du Gard, France. (Courtesy of http://en.wikipedia.org/
wiki/File:Pont_du_Gard_BLS.jpg.)

tools, bridges can be built with incredible span lengths. Roman viaducts
inspired the building of another incredible Roman viaduct structure,
Millau Viaduct (Figure 1.3), a cable-stayed bridge in Southern France. It
is the tallest bridge in the world with one of the masts standing at 343 m
(1125 ft) above the base of the structure. Currently, the longest span bridge
in the world (1991 m or 6532 ft) is the Akashi Kaikyo Bridge, a suspension
bridge linking the city of Kobe on the mainland of Honshu to Iwaya on
Awaji Island, Japan (Figure 1.4).

Although extra-long span bridges, like cable-stayed and suspension
bridges, are the marvels of bridge structures, medium to short span bridges
are the norm. In the United States, the most important transportation net-
work is the Interstate Highway System composed of over 44,000 miles
(70,800 km) of roadway and around 55,000 bridges. The development of the
Interstate Highway System after World War Il also propelled the growth of
bridge engineering in the last century. The advent of the Interstate Highway
System led to the adoption of uniform design standards in the United States
and eventually the science of bridge engineering. During this era of the larg-
est public works project, inorder to mass-produce building materials and
construct bridges, simplified procedures and simple analysis models were
generated and used. The development of the Interstate Highway System
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Figure 1.2 The first cast iron truss bridge at Coalbrookdale, Telford, England. (Courtesy
of Tata Steel European Limited.)

Figure 1.3 The tallest mast: Millau Viaduct, France.
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Figure 1.4 The longest span bridge: Akashi Kaikyo Bridge, Japan. (Courtesy of Yokogawa
Bridge Corporation.)

created a workable and efficient method of erecting bridges in a manner
that was both consistent and manageable (Tonias 1994). However, with the
progress of computational methods and computer tools, more refined and
sophisticated methods of analyses have become more common nowadays.

1.2 BRIDGE TYPES AND DESIGN PROCESS

Even though fiber-reinforced polymer (FRP) composites have gradually
come to play some roles in civil infrastructures, concrete and steel are still
the main materials for bridges. Concrete and steel can form different shapes
and build different structural types. According to the U.S. National Bridge
Inventory (NBI), as of 2012, the United States has 607,379 highway bridges
where 403,072 bridges (72.12%) are slab-, beam-, or frame-type bridges,
10,649 (1.75%) are truss-type bridges, and 7125 (1.17%) are arch-type
bridges. Only 45 (0.01%) are stayed-girder bridges and 96 (0.02%) are sus-
pension bridges. Another unique type of bridge popular in the coastal area
is the moveable bridge. The moveable bridges are lift-, bascule-, or swing
type, and there are 840 (0.14%) of these types of bridges in the United States.
The average age of a U.S. highway bridge is about 43 years old, whereas the
average age of the 76,000 + U.S. railroad bridges is much older.

For new bridge construction, there are four basic stages for the design
process: conceptual design stage, preliminary design stage, detailed design
stage, and construction design stage. The conceptual design stage is a pro-
cess meant to develop a few feasible bridge schemes and decide one or
several concepts for further consideration. In the preliminary design stage,
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the best scheme is selected and cost estimates are conducted. The detailed
design stage is a process in which all the details of the bridge structure for
construction are finalized. Finally, the construction design stage is the pro-
cess in which the step-by-step procedures for the building of the bridge
are provided. Each of the earlier design stages must carefully consider the
requirements of the subsequent stages. For example, the bridge constructa-
bility must be considered during the detailed design stage; in addition, costs
and construction schedules as well as aesthetics must be considered during
the preliminary design stage. An existing bridge in the United States goes
through the inspection and load-rating cycles every two years.

Bridge structural analysis, the main subject of this book, is essential for
all four stages. Different stages can adopt different modeling techniques,
varied from hand calculation to the approximate method and then to the
refined method. In this book, constructability, especially constructability
of extra-long span bridges, is discussed and demonstrated. Various issues
such as deflection, strength of concrete and steel, and stability during critical
stages of construction are covered in Chapters 4 through 12, 14, 15, and 17.

In the United States, the load and resistance factor design (LRFD)
method is the latest advancement in transportation structures design prac-
tice (AASHTO 2013). The combination of the factored loads, termed limit
states in LRFD, cannot exceed the strength of the material multiplied by a
resistance factor less than unity (1.0). Several limit states are included for
service, strength, and extreme event considerations. The limit state concept
has been universally accepted by many different codes worldwide. A graphi-
cal representation of the LRFD process is shown in Figure 1.5a with load
(Q) and resistance (R) and later evolved to Figure 1.5b in terms of (R — Q).
The reliability index B, which shares a similar idea with the safety factor
in allowable stress design method, was set at a target of B = 3.5 in the
LRFD code (AASHTO 2013). As can be seen in both figures, the factored
safety margin is small, but when the theoretical actual loads and nominal

Load (Q) Resistance (R)

Jwo Yy | Prv
Bs
lo, ®=Qr]l RQ
R >
Each variable is represented by mean R-Q (R-Q
(a) and standard deviation. (b)

Figure 1.5 Concept of load and resistance factor design. (a) Probability of occurrence
based on R and Q. (b) Probability of occurrence based on (R — Q).
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X=X,

Figure 1.6 Statistical comparison of various methods with exact value.

resistances are observed, the actual safety margin is actually much wider.
LRFD also accounts for the different probabilities of occurrence for loads
and resistances.

Due to the limitations and assumptions in an analysis, it is not sta-
tistically possible to get exact results by any analytical method. In the
AASHTO LRFD code, both the approximate method and the refined
method, which will be covered in more detail in Chapter 2, are accepted.
It is noted that the bias values, the difference between the means of the
expected result and the exact value (X; and X, in Figure 1.6), of the
approximate and refined methods, however, are both close to 1.0. The
coefficient of variation (CV), defined as the ratio of the standard devia-
tion 6 to the mean L, is lower with the use of the refined method (shown
as the solid line curve versus the approximate method shown as the
dotted line curve, respectively, in Figure 1.6). The lowest CV, which
means the closest to the exact results, of all methods results from the
field load test, which is 4, the least variation. But a field test is costly and
time consuming, so oftentimes it is conducted for a few cases and then
validated by numerical methods. In these situations, numerical meth-
ods are used to simulate all cases. Figure 1.7a shows the side view of a
simple-span steel girder bridge on the U.S. Interstate Highway System.
Figure 1.7b shows that accelerometers are deployed to detect the modal
frequencies (shown in Figure 1.7c) and their associated modes. The
results are then compared with the numerical results from the finite ele-
ment model as shown in Figure 1.8. This process is repeated several times
until modal results based on the test and numerical method are close.
This technique is called updating. Finite element model updating is the
process to ensure that the finite element analysis (FEA) model results bet-
ter reflect the measured data than the initial models.
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Figure 1.7 Field test by accelerometers. (a) View of the bridge; (b) placement of the
accelerometers; (c) first model frequency from the field test.

1.3 LOADS AND LOAD FACTORS

There are two types of loads on bridges: permanent and transient loads.
The most common permanent loads are dead and earth loads. Dead loads
include the weight of all components of the structure, appurtenances/util-
ity, wearing surface, future overlays, and future widening. Earth loads
include earth pressure, earth surcharge, and down-drag loads.

The most prominent transient load, not necessarily the most damaging one,
is the live load: vehicular, rail transit, or pedestrian live loads. Live loads,
dynamic impact, centrifugal, braking, and extreme cases such as vehicular
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Figure 1.8 The schematic view of a truck on the Middlebrook Bridge finite element model.

collision, have also to be considered in the design process. Definitions of live
loads used for bridge designs are different from one specification to another,
and usually they are subjected to be amended when traffic demands change
years later. For example, HL-93 as shown in Figure 1.9a and b, which is cur-
rently used in the U.S. bridge design, specifies two different vehicular loads
combined with a lane load, and the extreme values should be taken as the
maximum of these two combinations. After 2004, a more simplified live load
definition was adopted in China’s highway bridge designs, in which one class
of live load, for example, class I as shown in Figure 1.10a and b, contains
lane load and one single vehicle load, and the extreme values should be taken

32 kips 32 kips 8 kips

145 kN 145 kKN 35 kN
(MBIN) 1y goq  (95MN) q (5IN)

(4.3-9.0 m) (4.3 m)

q =0.64 kips/ft

S S S T A S

25 kips 4ft 25 kips

< Lg

(110kN) | (1.2m) | (110kN)

q =0.64 kips/ft

v Y
Y v .Y v Y v v v v y G3W

(b)

Figure 1.9 U.S. bridge design live loads (US HL-93). (a) Design truck and design lane;
(b) design tandem and design lane.
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Figure 1.10 China (highway class I) bridge design live loads. (a) Design lane; (b) design truck.

as the maximum of these two combinations (JTG D60-2004). In Europe,
Eurocode (EN 1991-2) defines traffic load models for road bridges as LM 1-4,
where load model 1 (LM1 shown in Figure 1.11a) and load model 2 (LM2
shown in Figure 1.11b) are considered normal loads. Ontario highway bridge
design code (OHBDC 1991), similar to the AASHTO code, is using the maxi-
mum of two loads, truck load (Figure 1.12a) and lane load (Figure 1.12b). In
live load applications, various dynamic impact amplification factors, discount
due to multiple lanes and load factors, should be employed according to their
respective specific design codes. For further study of the live load effect of
various codes, refer to Bridge Loads: An International Perspective (O’Connor
and Shaw 2000). Bridge load rating, other than the bridge design, is a proce-
dure to evaluate the adequacy of various structural components of an existing
bridge to carry predetermined live loads (Jaramilla and Huo 2005).

Qur=67.4kips Qyu=45.0kips Qy;=22.5kips
(300 kN) (200 kN) (100 kN)

Qik th
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90 kips (400 kN)
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Figure I.11 Eurocode bridge design live loads. (a) Load model | (LMI); (b) load
model 2 (LM2).
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Figure 1.12 Ontario bridge design live loads. (a) Truck load; (b) lane load.

Other types of loads acting on bridges are water loads (buoyancy, stream
pressure, and wave), wind loads (on structure and on vehicles as well as
aeroelastic effect), ice loads, and earthquake loads. Various codes define
load combinations with different load factors. In the design process, it is
necessary to go through all load combinations to assume that components
and connections of bridges satisfy all the strength, service, and even require-
ments of extreme events, such as earthquakes, ice load, vehicles and vessel
collision. To satisfy specific requirements for bridge design, software that
is capable to take care of all load combinations is necessary. In this book,
multiple computer software programs, specific or nonspecific for bridges,
are used, mainly to demonstrate the modeling technique, not necessarily
the capability of the software.

1.4 CURRENT DEVELOPMENT OF ANALYSIS
AND DESIGN OF BRIDGES

Structural analysis and computer-aided design (CAD) of bridge structures
have long been developed side by side with the development of computer
technologies. Many fundamental analysis methods or algorithms were
developed based on mainframe and/or minicomputers in the 1970s. When
the finite element method was introduced to structural engineering, espe-
cially when microcomputer-based FEA packages were available in the
1980s, bridge structural analysis methods and tools advanced a great deal;
thus many complicated problems that could not be resolved without taking
approximation or simplification assumptions were no longer an obstacle for
bridge engineers. After computer graphics and database technologies were
widely available in the 1990s, the computer applications in bridge engineer-
ing extended even further to computer-aided construction drawing as well,
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in which a set of detailed drawings could be produced in addition to a set of
text reports of structural analysis and design code checking.

In the first decade of the twenty-first century, technologies including
computer hardware or software, wide area network (WAN) communica-
tion, and parallel computing advanced greatly. As a result, bridge analy-
sis and design tools have advanced from two-dimensional (2D) simplified
methods to three-dimensional (3D) detailed methods, from plain console-
type operations to intuitive graphical user interfaces (GUIs). Many non-
linear problems are now commonly addressed in routine bridge structural
analyses. Detailed construction processes are able to be simulated step by
step. Many big commercial FEA vendors have had their general-purpose
FEA systems expanded to cover special issues found in bridge analysis and
design. More sophisticated 3D graphical modeling tools are now available
in bridge design firms and institutes.

In recent years, the swift advancement of computer and graphics hard-
ware, such as multiple processing cores, 3D rendering or visualization,
fast float-point calculation speed, and vast memory capacity, has dras-
tically increased the potential of computer technology application in
bridge engineering. At the same time, fundamental software technolo-
gies, including system development and integration, parallel program-
ming, 3D graphics modeling and virtual reality, database and geographic
information system (GIS), Internet communication, and cloud comput-
ing, have long been ready for a revolution in engineering application
development. Although computer applications in bridge analysis and
design have greatly progressed, its advancement falls far behind the prog-
ress of fundamental technologies and is not in pace with applications in
other fields. Current bridge software packages provide engineers a typi-
cal process of analysis and design (1) to establish and analyze a bridge’s
mechanical model, (2) to check design code for each component based on
analysis results, and (3) to resize components or adjust structural dimen-
sions and repeat the earlier process if necessary. A new era of computer
technology applications is in demand by bridge engineers and transporta-
tion administrators.

1.5 OUTLOOK ON ANALYSIS AND DESIGN
OF BRIDGES

Based on the current availability and future potential, high-performance
computer hardware and advanced software technologies provide an unprec-
edented opportunity to develop a new generation of analysis and design
systems so as to benefit not only new bridge design but also routine load
rating and maintenance of existing bridges. There will be several aspects in
the analysis and design of bridges that demand great enhancements.
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First, the tedious routine work of establishing the mechanic models of a
bridge should be completely automated. Bridge engineers should be relieved
for more creative works. Taking advantage of modern database and visual-
ization technologies, establishing an engineering model of a true bridge proj-
ect should be the centerpiece of a bridge software system. It is true that an
engineering model is much more complicated than an abstracted mechanical
model; however, the goal is achievable when a commonly used bridge type
is the focus. Having the engineering model as the core, the engineers’ inter-
face will only be editing parameters in a 3D scene that reflects parameter
changes in real time as a virtual bridge project. As illustrated in Figure 18.26,
engineers should be able to describe a bridge project starting from roadway
geometry to girder profiles. Modern visualization technologies should pro-
vide engineers instant realization of dimension changes in a virtual project.
The design or description process will be interactive and intuitive. For exam-
ple, an engineer can click a steel plate as shown in Figure 18.26 to pop up
a data form that allows verification or changes in its definitions on the fly.
When there is a need to perform a certain type of analysis, the questions
that need to be asked, such as “what type of analysis model is appropriate”
and “how do we establish the required FEA model,” will no longer be the
direct interest of engineers. The establishment of a required FEA model from
the engineering model should be automatic and instant. The analysis result
should be directly and instantly represented into the engineering model in
terms of engineering meanings, such as color-coded surface rendering that
reflects load ratings, rather than ordinary mechanical values. Figure 1.13
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Figure 1.13 A hybrid view of a bridge model and its FEA model.
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illustrates the idea to blend one of its FEA model and analysis results into the
virtual bridge project scenes.

Second, as a part of critical infrastructures, the whole life cycle manage-
ment and tracking of each individual component are crucial to a bridge
structure. Based on the above-mentioned engineering model, history of
dead loading, component geometry and position changes, dimension and
deterioration changes, and retrofitting of any component should be estab-
lished since it was built. Operational live loads should be simulated based
on real traffic volume and speed. In addition to the regular extreme values
obtained by design live load analyses, each point of interest should have
statistical peak values obtained by simulating operational traffic. Local
fatigue should be rated by the stress analyses of traffic simulations. Having
accumulated the history of a bridge in a certain amount of time, bridge
engineers, inspectors, and project managers should be able to obtain a pre-
diction of the imminent actions so as to avoid disastrous failure or high-
cost maintenance repairs.

Lastly, as critical points of a national surface transportation network,
engineers and/or administrators should be able to overview health con-
ditions of bridges in a large geographic area. Modern GIS technologies
including mapping, satellite or aerial imaging (Figure 18.26), spatial data
processing, and large area traffic networking should be integrated into a
bridge health monitoring system. As each individual bridge structure has
had an engineering model associated with real-time history, special queries
from an administrative level should be able to be processed, for example,
a query for the best routing in terms of structure safety for transporting a
special load from place A to B or for the most vulnerable bridges within a
certain area of a truck bomb attack. Administrative information including
health conditions of bridges, funds allocated for maintenance of bridges,
and predictions of future repairs should be able to be displayed on a map
overlaid with other traffic volume. Advancement of cloud computing tech-
nologies will also greatly impact computer applications in bridge engineer-
ing in the near future.
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Chapter 2

Approximate and refined
analysis methods

2.1 INTRODUCTION

This chapter will serve as the introduction of succeeding chapters, especially
chapters in Part II—Bridge Behavior and Modeling. Brief discussion of
various bridge structural forms will be made first in this chapter, whereas
more details on each bridge type will be covered in their individual chapters
(Chapters 4 through 12). Approximate and refined analysis methods with
their advantages and disadvantages will then be briefly mentioned (Coletti
and Pucket 2012). Although all methods can be categorized as finite element
method (FEM), levels of approximation and accuracy are different among
various modeling methods. With today’s advancing of computer analysis
tools, there is a certain advantage to a adopting two-dimensional (2D) model
in grillage or three-dimensional (3D) model, as called refined analysis mod-
els, over one-dimensional (1D) model, as termed approximate analysis model.
Subsequently, the principle of FEM of all types will be presented in Chapter 3.

2.2 VARIOUS BRIDGE STRUCTURAL FORMS

Bridge systems consist of super- and substructures. The structural model
may couple them together where the effect of substructure is essential to
the whole analysis, such as earthquake analysis, or have them decoupled at
the bearing where the substructure does not affect much on the superstruc-
ture behavior, except drastic movement, such as support settlement. This
bridge system can be analyzed as a 1D model, which AASHTO termed
approximate analysis model, 2D model in grillage, or 3D model, where
the latter two can be categorized as refined analysis models. This chapter
identifies bridge deck structural forms and basic characteristics of these
different types of bridges. More details on all types of bridges and their
analyses will be covered in the Chapters 4 through 12 and 14 through 17.
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2.2.1 Beam deck type

A bridge can be considered as a beam when the ratio of width to length of
the whole bridge is within a certain amount so that the applied loads cause
the bridge to bend and twist along its length while the cross sections do
not change shape. The most common beam bridges are pedestrian bridges
made of either steel, reinforced concrete, or prestressed concrete. Many
long-span bridges also behave as beams with dominant concentric loads so
that while calculating principal bending stresses the distortion of the cross
section under eccentric loads should be considered in the analysis.

Several span arrangements of beam-type bridges and their statical deter-
minacy in bending are shown in Figure 2.1. Continuous bridge with its
indeterminacy has many advantages over simple span bridge. Modern steel
bridges are usually continuous over the piers and can be considered as con-
tinuous for dead and live loads. However, for a precast, prestressed concrete
bridge, it is common to be simply supported or cantilevered during construc-
tion and then made partially or totally continuous for live loads and long-
term movements. The various arrangements of this two-stage analysis are
shown in Figure 2.2. With both bending and torsion taken into account, the
statical determinacy of the bridge can be determined as shown in Figure 2.3.
A beam-type bridge, if there is no skew angle at support, can be simplified
to a 1D model with only in-plane shear and bending moment considered.

Frame-type bridges can be regarded as simplified arch structures. The
most common types of frame-type bridges are portal frame or slant-leg
frame as shown in Figure 2.4. As materials for frame-type bridges are used
more efficiently, they can be designed to appear lighter and more slender

e T ——

(b)

Figure 2.1 Bridge span arrangements and their determinacy: (a) statically determinant
structure; (b) statically indeterminant structure.



Approximate and refined analysis methods |9

~— Deck slab and joint cast simultaneously

L & & § ]
_— S [ Sy o

(@) | From simple support spans to continuous spans
ﬁ

rau o o - 158

(b) ) ) . ) . .

Continued with post-tensioning or Continued with normal reinforcement
. # * .
Cast-in-place concrete Cast-in-place concrete
f — Post-tensioning tendons ~— Mild reinforcement

ot T e T T T R

Cast-in—place joint

Prestressing tendons

(©

Prestressing tendons

Figure 2.2 Two-stage construction and analysis—from simple support to continuous.
(a) Simple support stage; (b) continuous stage; (c) continued with post-tensioning
option; and (d) continued with reinforcement option.

N

(9

Figure 2.3 Statical determinacy of bridges: (a) simple span with determinate for bending
and torsion; (b) simple span with determinate for bending only; (c) multiple sim-
ply supported spans with determinate for bending only; (d) continuous spans
with indeterminate.

than simply supported bridges, especially when the girder is haunched. A
frame-type bridge can be simplified to a 2D model with axial force coupled
with in-plane shear and bending moment.

2.2.2 Slab deck type

A slab bridge is usually made of concrete and behaves like a flat plate. The
slab is isotropic if its stiffness properties are the same in all directions and



20

Computational analysis and design of bridge structures

(@)

Y

Column: Moments + axial forces Column: Axial forces
Deck: Moments Deck: Moments

(b)

()

Column: Moments + axial forces Column: Moments + axial forces
Deck: Moments + axial forces Deck: Moments

(d

Figure 2.4 Frame-type bridges and internal forces under main loads.

is orthotropic if its stiffness properties are different in two perpendicular
directions. The slab bridges based on their composition can be divided into
the following types:

1. Solid Slab (Figure 2.5a). Concrete solid slabs are commonly used where

the spans are less than 15 m (50 ft). A solid slab is acting and can be
assumed as an isotropic plate, even though the reinforcement may be
different in two perpendicular directions.

. Void Slab (Figure 2.5b and c). For spans greater than 15 m (50 ft),

the dead load of solid slabs becomes excessive and the structure can
be lightened by incorporating cylindrical or rectangular voids. It acts
as an orthotropic plate and is treated customarily as one unit. If the
void size exceeds 60% of the depth, the deck is generally considered as
cellular (box) construction. For the type with large void, the distribu-
tion of the loads transversely is by transferring vertical shear through
webs; the cross section distorts like a Vierendeel truss.

. Corrugated (Coffered) Slab (Figure 2.5d) or Precast Beam Slab

(Figure 2.5e). Precast beams of various cross-sectional shapes of

Figure 2.5 Slab bridge types: (a) solid slab; (b) circular void slab; (c) rectangular void slab;

(d) corrugated slab; (e) precast beam slab; (f) shear-key slab.
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constant or varying depth are joined together contiguously by the
cast-in-place reinforced concrete and are transversely prestressed to
make them act effectively as a void or solid slab with orthotropic
properties.

4. Shear-Key Slab (Figure 2.5f). A shear-key slab is constructed of pre-
stressed beams or reinforced concrete beams connected along their
length by cast-in-place concrete to form joints but which are not pre-
stressed transversely. The name shear key is used because the joints
are not fully continuous for transverse moments. The distribution of
loads between beams is by the torsional stiffness of individual beams
and vertical shears between key joints.

The slab bridge can be simplified as a strip beam 1D model, 2D grillage
model, or 3D plate/shell FEM model.

2.2.3 Beam-slab deck type

A beam-slab bridge consists of a number of longitudinal beams connected
either compositely or noncompositely across the tops by a continuous slab.
It is the most popular type for the small- to medium-span bridges.

Spaced beam-slab bridges, as shown in Figure 2.6, are usually made of
beams spaced between 2 m (7 ft) and 4 m (13 ft) apart. The bridges can
be designed with precast, prestressed concrete beams or steel beams acting
compositely with the concrete deck. The deflection behavior is different
from that of orthotropic plate. Beams along the longitudinal direction are
taking most of the loads. Diaphragms are usually placed in the middle/end
or other places to help distribute live loads laterally. When dead loads are
the only concern, a 1D beam model can be used in analysis. When analyz-
ing live loads, a 1D beam model (with two degree-of-freedom beam ele-
ment) employed by live load distribution factors on influence lines can be
used. However, with advanced computer technologies and widely available
comprehensive analysis tools, a completed 2D grillage model with influ-
ence surface loading is preferred, which will be more accurate in live load
analysis and also simplifies the procedures of live load distribution factor
calculations.

2.2.4 Cellular deck type

Box (also called cellular) deck-type bridges consist of a box or boxes
enclosed by slabs and webs. They contain one or a few large cells, attached
or detached. Small- and medium-span concrete bridges are usually cast in
situ or precast in segments. Long-span concrete or steel bridges are fre-
quently constructed as segmented cantilevers. In addition to the less mate-
rial used, light weighed, and high longitudinal bending stiffness, box girder
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Figure 2.6 Beam-—slab bridges: (a) steel composite; (b) cast-in-place concrete; (c) precast
concrete.

()

Figure 2.7 Box-girder bridges: (a) rectangular attached multicell bridge; (b) detached
multicell box girder bridge; (c) trapezoidal attached multicell bridge.

bridges have the advantage of high torsional stiffness. Load distribution of a
box girder bridge, with its strong torsional stiffness, is usually more uniform
across the bridge width than that of an I-type beam-slab bridge with the
same span length and width.

Figure 2.7 shows some box girder bridges as examples. Figure 2.7a shows
a void slab with large attached cells (over 60% void ratio). Figure 2.7b is a
detached multicell box girder bridge. Figure 2.7c is a void slab with inclined
webs on the sides. If a single cell is used for this type of bridges, distortion
should be considered in the analysis.
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2.3 APPROXIMATE ANALYSIS METHODS

2.3.1 Plane frame analysis method

For the approximate analysis method (or so-called simplified method), a
longitudinal girder, or a strip of unit width as in the case of a slab bridge,
is isolated from the rest of the bridge and can be treated as a 1D beam or a
plane frame structure in general.

For long-span bridges, the whole bridge may be considered as a 1D
beam model. For straight multigirder bridges, this simplified method can
also be adopted for determining the controlling force and longitudinal
moments. A girder, plus its associated portion (effective width) of the slab,
is subjected to dead and live loads where dead loads can be approximated
by their tributary. However, live loads have to be maximized by loads’
lateral position and girder influence lines, which are called live load enve-
lopes. A study was made and summarized in the AASHTO load and resis-
tance factor design (LRFD) code (2013) as live load distribution factors.
Live loading results of one lane of design vehicles and/or lane load must be
multiplied by live load distribution factors to consider the lateral distribu-
tion of live loads. Usually different specifications have different calcula-
tion methods for live load distribution factors. Some may have the same
procedures. For example, AASHTO LRFD code (2013) and Ontario code
(OHBDC 1991) are using the similar approach.

Bridge deck—1It is structurally continuous in the orthogonal directions
on the plane. The applied load on the deck will have 2D distributions of
shear forces, moments, and torques. If 2D distribution is considered, it is
definitely more complex than the one modeled as a 1D continuous beam.

In a refined analysis method, the transverse flexural stresses on the slab
can be found from the computer results. However, if a simplified method
is used, the transverse flexural stresses have to be checked separately. To
check the transverse flexural stresses on the bridge slab, Westergaard equa-
tions are always referenced.

In AASHTO LRFD Specifications (2013), width of the equivalent strip,
as shown in Figure 2.8, is taken as specified. Unlike fully and partially
filled grids, where live load moments may be determined by an empiri-
cal formula, the strip of concrete deck slab shall be treated as continuous
beams or simply supported beams between girders with dual wheels of
design truck applied.

The following equivalent strip width for concrete deck (Equations 2.1a
and 2.1b) is from AASHTO LRFD Specifications. It is a modified
Westergaard equation in SI units for calculating transverse flexural stresses
between girders.

+M: > E=660+0.55S (2.1a)
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Minimum distance from wheel center to curb
=300 mm ($3.6.1.3)
Minimum distance between wheels of two trucks =1200mm ~_ _-

————

Equivalent strip width

Figure 2.8 Transverse live load moments of a bridge deck.

-M:—» E=1220+0.25S (2.1b)

where:
E is the equivalent strip width in mm
S is the stringer spacing
+M is the positive moment region
-M is the negative moment region

The dead load effect can be obtained by treating dead load as stationary
load acting on a continuous beam. Trucks, as the live load, have to be
moved laterally to determine the maximum positive and negative moments.
Multiple presence factor (1.2, 1.0, and 0.85 for one, two, and three trucks,
respectively, as per AASHTO LRFD) shall be considered in the analysis.
Figure 2.8 shows the lateral loading for determining transverse moments
on a bridge deck.

The dominant failure modes of a bridge deck are either flexure shear
or punching shear. The punching shear is not obtained easily by even the
refined analysis method, such as FEM, unless a very fine meshed model
is built around the critical location. Figure 2.9 adopted from laboratory
tests by Hwang et al. (2010) shows the footprint of a truck wheel and its
punching shear critical locations. As specified in the AASHTO LRFD
Specifications (2013) for punching shear, the shear strength V,, multiplied
by the strength reduction factor @, shall be larger than the ultimate shear
produced by the wheels (Equation 2.2).

V, <oV, (2.2)

Without shear reinforcement, the shear strength of concrete V, in Equation
2.3 is governed by AASHTO Equation 5.13.3.6.3-1 in metric form
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Figure 2.9 Footprint of a truck wheel and its associated punching shear failure mode.
(a) Laboratory static test; (b) punching failure on the top of the deck. (Data
from Hwang, H. et al., Engineering Structures, 32, 2861-2872, 2010.)
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0.33 ; ;
vn=£0.17+Bj\/Zbodso.33\/fTbod (2.3)
where:
B. is the ratio of long side to short side of concentrated load or reaction
area

b, is the perimeter (= 2[(b + d) + (c + d)], as shown in Figure 2.9b)
of the critical section defined in AASHTO LRFD Specifications
(2013)

Live load distribution factors—When a single-beam model is used for
analyses of a multiple girder bridge, unlike dead loads that usually distrib-
ute equally, live loads of one lane is not necessarily carried by one girder
or one girder may carry more than one lane of live loads, depending on
girder spacing and lateral distribution components such as diaphragms.
Lateral distribution factors, which define the portion of live loads carried
by an individual girder, simplify the analysis process to a beam analysis.
Instead of modeling the bridge in both longitudinal and transverse direc-
tions, a single girder is isolated and subjected to loads comprising one
line of wheels of the design vehicle multiplied by the distribution factor.
Previously, AASHTO defined wheel load distribution factor as S/D, where
S is the girder spacing and D, which uses units of length, is specified to a
certain value according to the bridge type. In recently developed LRFD
Specifications (2013), even though the form of S/D is still maintained for
certain bridge types, the definition of distribution factor is modified drasti-
cally to include in the formula, besides girder spacing, deck thickness, span
length, depth of beam, and number of beams. Another improvement is to
distinguish the definition of exterior beams from interior beams, multilane
from one design lane loaded, shears from moment, and correction factors
for skew bridges.

Lateral live load distribution theories were developed before 1970s to pro-
vide engineers a practical way to count the uneven distribution of live loads
in single-beam model analyses. The intent of applying live load distribution
factors is to provide an envelope for all possible live load cases so the results
may be conservative or, in some special occasions, even unconservative.
As 3D spatial modeling, analyses and influence surface loading are widely
available nowadays; a refined 3D analysis with influence surface loading is
encouraged in modern bridge engineering practices.

Effective flange width (shear lag)—When a girder cross-section is under
flexural stress, shear deformation on top plane will happen in flange, unlike
the beam theory assumed. The thinner the flange, the bigger the shear
deformation, and the farther away from the web, the bigger the longitudi-
nal displacement of flange accumulated by shear deformation. This shear
deformation will cause flexural stress changes along a flange. The local
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Each hatched area equals to half of shaded area
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Figure 2.10 Shear lag effect on stress distribution and equivalent effective width.

increase/decrease of the deck longitudinal flexural stress near the intersec-
tion to the beam web is called shear lag effect (Figure 2.10). This effect
can be taken into account during the stress calculation by assuming only a
portion of flange working to resist bending moment, or so-called effective
flange width. In AASHTO, the effective flange width is assumed constant
along the bridge, although some may assume otherwise. The prior-to-2008
AASHTO LRFD Specifications for interior beam’s effective flange width
take the least of

* One-fourth of the effective span length (the effective span length
may be taken as the actual span for simply supported spans and the
distance between points of dead load contraflexure for continuous
spans).

® 12 times the average slab thickness, plus the greater of web thick-
nesses, or one-half the width of the top flange of the girder.

® Average spacing of adjacent beams.

For exterior beam, the effective flange width may be taken as 1/2 the effec-
tive width of the adjacent interior beam, plus the least of

* One-eighth of the effective span length.

® 6 times the average slab thickness, plus the greater of one-half the web
thickness, or 1/4 the width of the top flange of the girder.

e Width of the overhang.

The current AASHTO LRFD Specifications (2013) are using the full tribu-
tary areas of the girder, which is the third criterion shown previously.
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Live load influence line—An influence line is defined as the variation of
function, such as reaction, shear, bending moment, or stress, when a unit
load is moving over the structure. Figure 2.11 shows examples of influence
lines for a three-span continuous bridge.

Usually, influence line results from analyzing a beam model, with x as
the distance and y as the ordinate. The influence lines of moment, shear, or
reaction are recorded at a small interval. Having an influence line defined,
a standard live loading process can determine the positions of a live load
specified by a specification and thus the extreme live load results. Different
specifications have different live load definitions and combinations. For
example, AASHTO LRFD Specifications (2013) define the following load-
ing combinations:

® Design tandem with design lane load

® One design truck with variable axle spacing with design lane load

* 90% of two design trucks with axles from two trucks spaced mini-
mum 15,000 mm (two 145-kN axles spaced 4300 mm) with 90% of
the design lane load

The illustrations of the live loading application and combinations are
shown in Figure 2.12 with loads positioned longitudinally for extreme
effect.

(a) A three-span continuous bridge

il .

e I N N B B e [ S N L I I e

(b) Moment influence line

il e

e S N N N O ey H/U)J/‘/

(c) Shear influence line

R

d) Reaction influence line

Figure 2.11 (a—d) Examples of influence lines for a three-span continuous bridge.
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(a) Moment influence line
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(b) Reaction influence line
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Figure 2.12 (a—c) Evaluation of extreme live loads.
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2.4 REFINED ANALYSIS METHODS

2.4.1 Grillage analogy method

Grillage (or grid) analysis has been used by the bridge engineers for quite
some time and is in the same category as the FEM (see Section 2.4.5).
Grillage method can be regarded as a special case of FEM (Jategaonkar
et al. 1985) with deck slab structure idealized as a 2D model consisting
of beam elements. In this type of model, the deck is cut, theoretically, into
pieces in both directions with each piece considered as a beam element
(Hambly 1991). Choice of these imaginary cuts is based on experience and
should be made with caution.

The general approach for the grillage analysis is to model the longitudi-
nal girders as beam elements, straight or curved. If the intermediate dia-
phragms are present within the spans, the transverse beam elements are
placed at the same locations as the diaphragms. If intermediate diaphragms
are far apart or not present, deck slab is modeled as transverse beam ele-
ments with deck’s moment of inertia based on a certain effective width. In
this grillage model, each node has three degrees of freedom, one vertical
translational and two planar rotational degrees of freedom.

2D grillage analysis is simulated by 2D grillage of beams with different
section properties. The basic principle is the same as defined in Section 2.4.5.
The difference from a generic type of finite element is that only vertical flexure
and torsion of a beam are considered in a grillage element, as how most decks
behave. Therefore, each node in a grillage model has a vertical translational
displacement and two rotational displacements along axes in deck plane,
and a grillage element has only vertical bending moment, vertical shear, and
torque defined. When the grillage model is used, a suitable grillage mesh
should be defined to get meaningful results. Figure 2.13 shows examples for
four different types of bridges. Figure 2.13a shows stiffness to be about equal
along the longitudinal and transverse directions and the beam elements coin-
cide with the real longitudinal and transverse beams. Figure 2.13b shows
longitudinal beams that are more predominant and coincident with the beam
elements. The placing of the transverse beam elements is recommended that
a proper aspect ratio be maintained between transverse and longitudinal ele-
ments, at diaphragm locations if diaphragms are present and at equal spacing
to simulate the plate transverse distribution if no diaphragms are present.
Figure 2.13c¢ is a bridge with closely spaced beams. For practical purposes,
each longitudinal beam element can represent more than one beam. The rule
of thumb is to place longitudinal beam elements no farther apart than about
one-tenth of the span (Hambly 1991). Figure 2.13d has wider beams with
two longitudinal members per beam. Usually for this type of structure, the
longitudinal members are much stiffer than the transverse members, which
may be representing just the thin slab on top.
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Figure 2.13 (a—d) 2D grillage meshes.

2.4.2 Orthotropic plate method

The orthotropic deck bridge is a special kind of deck, which can be solved
by the orthotropic plate theory. The general differential equation given for
the orthotropic plate can be found in any book discussing plate bending
theory and is listed in Equation 2.4.

8w 8w
w8 24
5%y D 5y plx,y) (2.4)

4
w
Dx 27 + (ny + Dyx)

where:

w is the deflection of the plate at any point (x,y)

D,, D, D,, and D, are stiffness of the longitudinal flexure, the
transverse flexure, longitudinal torsion, and transverse torsion,
respectively

p(x,y) is the loading intensity of any point

A simplified analysis is made by assuming;:

* For decks with closed ribs: D, = 0
* For decks with open ribs: D, = 0, D,, = D

xy yx

IR

0

Based on Hambly (1991), the moment and flexure relationships are shown
in Equation 2.5a and principle stresses are shown in Equation 2.5b.
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As engineers usually deal with stresses, principal stresses and Mohr’s circle
of stresses are expressed in Equation 2.5b and illustrated in Figure 2.14.
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(a) Moments and stresses in a unit area of (b) Principle stresses and Mohr’s
an orthotropic plate circle of stresses
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Figure 2.14 (a, b) Moment and stress relationships of an orthotropic plate.
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When applying orthotropic plate model in deck analyses, deck is meshed
into regular plate elements. However, unlike an isotropic plate element, a
local coordinate system is required so as to define two directions that have
different bending stiffness.

2.4.3 Articulated plate method

When the transverse distribution of loads is only through shear forces
with no transverse prestressing forces, it is defined as articulated plate
or shear-key slab with idealized articulated plate model, as shown in
Figure 2.15. For this type of bridge that has small transverse bending stiff-
ness, the transverse flexural and torsional stiffnesses, D, and D,,, respec-
tively, in Equation 2.4 would approach zero; the longitudinal bending and
torsional stiffnesses, D, and D,,, respectively, are defined for different
types of bridges as (Jategaonkar et al. 1985; Bakht and Jaeger, 1985):

1. Slab bridge with solid block

E3
szé (2.6)
3
Dy GTt if S>t

(b)

Figure 2.15 Articulated plate model. (a) Plates connected by shear keys and (b) articu-
lated plate numerical model.
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where:

S is the girder spacing for multigirder bridges or unit width for slab

bridges
t is the thickness of the solid slab
t, is the diameter of the circular hole of a void slab

t, and H are the thickness of the wall and median height of the rectan-

gular void slab, respectively

I, and A are moment of inertia and cross-sectional area of the box

girder, respectively

Articular plate is a special case of orthotropic plate and can be solved using
the same method as defined for the orthotropic plate theory. If a bridge
with shear key is modeled as a beam, shear keys are considered when calcu-
lating live load lateral distribution factors. For example, AASHTO LRFD
Specifications (2013) indicate that the factors for bridges with shear keys
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are different from the factors obtained for bridges with monolithic deck or
with transverse post-tensioning.

2.4.4 Finite strip method

A simplified finite element with bridge deck modeled end to end is called
finite strip (Figure 2.16). The displacement functions for in-plane and out-
of-plane deformation of the strip are of the form

w,u,v = Zf(y)sin(nzxj (2.10)

where:
x is the direction along the structure
y is the direction across the strip

The harmonic analysis is then performed. Further development on the finite
strip analysis extends to the curved circular structures with harmonic func-
tion (Fourier series) used for variations along circular arcs. As finite strip
method involves fewer nodes and a smaller matrix to solve, it is sometimes
more economical than other methods such as finite element. There are several
variations of finite strip method, semianalytical, spline, and boundary ele-
ment. The conventional finite strip method, because of its formulation, may
be very slow to converge with concentrated load and needs many series of
terms to achieve acceptable accuracy. With today’s available computer speed
and memory, finite strip method is a plausible way to handle bridge problems.

Longitudinal
nodes

End
diaphragm
(a) (b)

Figure 2.16 Finite strip model. (a) Strip division of a box girder and (b) a closeup of strip
division of an I-girder.
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2.4.5 Finite element method

The mathematical theory and formulation of the FEM are well docu-
mented in many textbooks, and they are not in the scope of this chapter.
Regarding element types, a structure can be modeled using 1D, 2D, or 3D
elements or even the combinations of these three elements (Jategaonkar
et al. 1985).

Line elements—Line elements for modeling the bridge members include
two main types. The first is the bar type with only axial tension or compres-
sion with one degree of freedom at each node; usually it is used for modeling
a truss member, a bearing, or an individual member of the cross-frame. The
second type is the beam element, as shown in Figure 2.17, which has six
degrees of freedom. It is used usually to model the beam or column that has
axial stiffness as well as bending stiffness. For more simplified line elements,
certain degrees of freedom can be excluded for cases where only others are
of concern or predominant. For example, a 3D frame element can be ret-
rograded to a 2D beam element in cases that only two degrees of freedom,
vertical translational and rotational displacements, are considered.

A grillage model, in Section 2.4.1, is another example of this simplifica-
tion. For a grillage model, another degree of freedom, torsion, is added back
into the model. Because of the translational bending of the slab and dia-
phragm action, the main beams will be under torque. For highly skewed,
curved bridges, or with long overhang, this torsional action may be signifi-
cant. Therefore, displacements of vertical translational, vertical flexural rota-
tion, and axial torsional rotation are dominant in deck behavior, and when
only these displacements are considered, a 3D frame element is retrograded
to a grillage element. In this aspect, a grillage model and a plane frame model
are the same, except that the exclusion of displacements is different.

Beam element
Six degrees of freedom
at each node

Figure 2.17 Degrees of freedom of a 3D frame element.
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Area elements—Area elements in the finite element analysis also include
two types, elements with in-plane effects only and elements with both
in-plane and out-of-plane effects. The in-plane element, which is often
referred as membrane element, may be either plane stress or plane strain
element. Each node of a membrane element has two degrees of freedom
(u, v) in the element plane. It has been used less than the second plate element
type, which is used to simulate not only in-plane (membrane) action with
degrees of freedom (u, v) but also plate bending (flexural) action with an
additional three degrees of freedom (w, 0,, 6,) at each node. This type of
combined plate element is often referred to as plane shell element, to dif-
ferentiate a pure bending plate element. Plane shell element is so called as
it can be used to assembe a true shell structure. As shown in Figure 2.18,
these area elements may be triangular or rectangular in shape. The shell
elements can be used to model many parts of bridge structures. Figure 2.19
shows the nodes and elements of a deck modeled by shell elements, and
Figure 2.20 illustrates an actual structure with its idealized model.

/> x
\ Membrane-flexural
element

ex —%—» u
" ’%_b x " (Five degrees of freedom

per node)
v
1)

Figure 2.18 Degrees of freedom of a plane shell element.
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Figure 2.19 Finite element example of nodes and elements (numbers in circles) of a slab
model.
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a

Figure 2.20 ldealized model using area elements: (a) actual structure; (b) structure ideal-
ized by 3D plane shell elements.

When applying plane shell elements in bridge analyses, it should be noted
that each node has only five, rather than six, degrees of freedom. The rota-
tional displacements along axis perpendicular to plate plane output from
a finite element analysis are faked by a technique avoiding ill-conditioned
stiffness matrix. The sixth rotational displacements are meaningful only at
nodes connecting kinked plates, and these displacements are caused only
because of geometric transformation from bending rotations in other planes.

Volume elements—A volume element is sometimes called solid element
with three, four, eight, or more nodal points. Figure 2.21 shows an eight-
node volume element as an example. In bridge superstructures, the model
usually can be built up from line or area elements or combinations of these
two types of elements. Volume elements are used rarely except for the sub-
structures with massive concrete piers or abutments. Even for the substruc-
tures, the line (beam) elements are used more frequently than the solid
elements because of easier usage and interpretation. If massive concrete is
used, it may be modeled by rigid link elements to simulate the rigid body
motion between two points.

For a typical 3D model of a slab—beam bridge, the slab is modeled as plates
(area elements) with thicknesses equal to the slab thicknesses. If the beam is
widely spaced, more nodes should be assigned between beams to simulate the
higher shear-lag effects between beams and slab deck. A good representation

GZ
Typical at all nodes A, I 1
1 %
Ty
% le—l

(@) (b)

Figure 2.21 Finite element volume element. (a) Node displacements and (b) element
stresses.
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Figure 2.22 Beam on slab modeling. (a) Bridge cross section; (b) two-dimensional CGM
finite element model cross section; and (c) three-dimensional EGM finite
element model cross section.

for the beam itself is to use plane shell elements for both the web and the
flanges. To get meaningful results along the beam web, at least three plate
elements should be used for modeling the web. For the beam flanges, two
plane shell elements on each side of the web are sufficient for good modeling.
When the lateral distribution of longitudinal stress is of concern, more ele-
ments may be needed on flanges. Another requirement for the finite element
mesh is to maintain a certain aspect ratio (close to unity) between the ele-
ments. Figure 2.22 shows several different modeling techniques for a beam—
slab bridge, which can be in 1D, 2D (Figure 2.22b), or 3D (Figure 2.22¢)
model. Details will be discussed further in Chapters 4 through 8.

The advantage of using finite element is that the analysis can be carried out
for a transition area, such as welds between the steel girder and the transverse
stiffener. A local area can be finely modeled separately from whole model
in brief so that efforts can then concentrate on the problem area in detail.
This technique is called subdivision method (or substructuring method) and
is used more in other industries, such as aerospace or ship structure. For
bridge structures, it is useful for failure analysis but not recommended in
rapid design work. Principles of finite element analysis and strategies to apply
it in different situations are discussed in Chapter 3 in detail.

2.4.6 Live load influence surface

If a refined analysis method, as any method defined in Section 2.3, is used,
influence surfaces are then generated, with x and y as the surface coordi-
nates and z as the ordinate. To apply the live loads, influence surfaces of
all sorts (moment, shear, torsion, deflection, reaction) are formed, such as
the moment influence surface shown in Figure 2.23a. The conventional
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Figure 2.23 Live load on an influence surface: (a) moment influence surface; (b) place-
ment of vehicles on an influence surface.

technique of using influence surface directly projects the ordinates of the
axles’ footprints, as shown in Figure 2.23b. A technique called compos-
ite influence line can be used in influence surface loading of 2D grillage
model discussed in Chapter 7 (Fu 1994, 2013). Composite influence line
is used to suppress the associated influence lines of adjacent girders to the
primary girder. Before suppression, distribution factors are multiplied by
their respective girder influence ordinates. Here, distribution factor is
defined as the fraction of the wheel load, not from the S/D method defined
by AASHTO. The advantages of using composite influence lines are in
the saving of computer memory for influence surface and in easy access
for future use (Fu 1994, 2013). Other than the composite influence lines
method, a more sophisticated 3D FEA influence surface method will be
discussed in Chapter 3 in detail.
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2.5 DIFFERENT TYPES OF BRIDGES WITH THEIR
SELECTED MATHEMATICAL MODELING

If bridge structures need to be mathematically modeled, any piece-wise
approximation needs to be established first. An approximate solution is
reached by subdividing the structure into regions of interest. Substructure
and superstructure can be decoupled into two different analyses if they are
not constructed integrally.

Methods of analysis of highway bridges range from the simplified beam
model with live load distribution factors defined by a design specification
to the complicated 3D finite element model with influence surface loading.
The simplified beam model, with the newly developed distribution factor
(AASHTO 2013), is supposed to close the gap between these two extremes,
but it is still on the conservative side. Unless a more accurate method is
needed for rating or posting, the AASHTO method is still the most popular
method used in design of bridges.

As for the refined analysis, several methods have been mentioned in
Section 2.4. Among the methods, grillage analogy method is the most popu-
lar and 3D generic finite element is the most detailed. Comparing these two
methods, there are two important differences mentioned by Jategaonkar
et al. (1985), which are briefly discussed here:

1. Conservative/nonconservative results. The 3D generic finite element
analysis is an approximation to the exact solution. It can be shown
that as the number of finite elements in the model increases, provided
that a conforming type of elements is used, the convergence to the
exact solution is from below and the solution obtained from it is lower
bound to deflection and stresses, which is not conservative. A grillage
analysis, on the other hand, gives a theoretical solution based on the
assumption of the grillage model and is not so critical of the mesh size.

2. Accuracy. The 3D generic finite element analysis can refine the mesh
to obtain the local stress near the critical location, such as holes or
sharp turns, or heavily loaded location, such as the position of the
concentrated load. Grillage analysis can give accurate analysis results
in terms of overall moments and shears (and thus the overall stresses)
but not local stresses. In such cases, local stresses can be obtained by
handbooks, such as design aids for concentration factor, or closed form
solution, such as Westergaard method for deck bending in Section 2.1.

With this in mind, several mathematical models are suggested for different
types of bridges, and they are listed in the following sections.

When modeling and analyzing a bridge, it should be noted that 3D model-
ing with influence surface live loading may produce more accurate results for
a middle- or short-span bridge than a long-span bridge such as cable-stayed
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or suspension bridge. When nonlinear effects are of concern, material non-
linear effect may play an important role for a middle- or short-span bridge,
whereas geometric nonlinear effect may be essential for a long-span bridge.
As modern modeling technique and analysis tools are widely available, 3D
modeling with influence surface loading is always encouraged. For a long-
span bridge, geometric nonlinear analysis should be considered in most cases.

2.5.1 Beam bridge and rigid frame bridge

To simplify the analysis, a beam-type bridge can be simply modeled by 2D
beam elements, and a rigid frame-type bridge can be modeled by 2D frame
elements. With this simple model and quick turnout, the model can be used
to analyze construction staging (Figure 2.24), thermal loading due to differ-
ential temperature (Figure 2.25), prestressing loading as equivalent applying
forces (Figure 2.26), and loading due to support movement (moment redis-
tribution in Figure 2.27b for nonsettlement case versus Figure 2.27¢ for dif-
ferential settlement case). Bridge with different soil conditions to simulate the
support movement (Figure 2.28a) can be modeled as a three-spring founda-
tion (Figure 2.28b). A frame structure with soil springs and their effects are
shown in Figure 2.29, where the three-spring constants can be represented by

0.5
Vertical spring: K, = 25GA™
(1-v)
Horizontal spring: K, = 2G(1 +v)A%’ (2.11)
Rock spring: K, = 2.5GZ
(1-v)

Figure 2.24 (a, b) Bridge construction staging.
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Figure 2.25 Bridge thermal loading due to differential temperature.
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Figure 2.26 (a, b) Bridge prestressing loading as equivalent applying forces.

where:
E = Young’s modulus of soil
G = Shear modulus of soil = E/[2(1 + V)]
v = Poisson’s ratio of soil
A = Foundation area
Z = Foundation section modulus (Richart et al. 1970)

Structures with soil spring will be applied to earthquake analysis covered
in Chapter 17.

2.5.2 Slab bridge

In the AASHTO LRFD Specifications (2013), a beam model with equiva-
lent strip width can be built for the slab bridge. With one-lane loaded, the
equivalent width of longitudinal strips is (AASHTO Equations 4.6.2.3-1
and -2)

E=250+0.42 JL,W, (2.12)

and with multilane loaded,

E=2100+0.12/1,W, s% (2.13)
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Figure 2.27 (a—c) Bridge loading due to support movement.
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Figure 2.28 Bridge soil foundation with (a) support movements and (b) modeled as a
three-spring foundation.
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Figure 2.29 (a—f) 2D frame structure modeled with soil springs.

where:

E is the equivalent width (mm)

L, is the modified span length taken equal to the lesser of the actual
span or 18,000 mm

W, is the modified edge-to-edge width of bridge taken equal to the
lesser of the actual width or 18,000 mm

W is the actual edge-to-edge width of bridge

L is the physical length of bridge

N is the number of design lanes

If a bridge is skewed, the longitudinal force effects may be reduced (AASHTO
2013). The simplified beam model yields reasonably good results for the
bridge design work.

If a refined model, such as grillage analogy method, is used, a bridge may
be divided into strips of equal widths, with idealized longitudinal beams
lined up as shown in Figure 2.13a. For each longitudinal beam, the assign-
ment of rigidities can be found using Equations 2.6 through 2.9.

2.5.3 Beam-slab bridge

Beam-slab bridge is the most popular bridge group and is well defined
in the AASHTO LRFD Specifications (2013). Section 2.2 describes the
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approximation of the beam model by using the effective width, live load dis-
tribution factors, and influence lines. There are several examples in Chapter
4 for RC beam bridge, Chapter 5 for PC beam bridge, and Chapter 7 for
steel I-girder bridge using this method.

There are several conditions to be met for a beam—slab bridge, and they
are defined in the AASHTO LRFD Specifications (2013) as

Width of the bridge is constant.

Number of beams is not less than four.

Beams are parallel and have approximately the same stiffness.
Roadway part of the overhang does not exceed 1 m (3 ft).

Curvature in plane is less than the limit specified in the AASHTO
LRFD Specifications (2013).

e Cross section is consistent with one of the cross-sections shown in the
AASHTO LRFD Specifications (2013).

If earlier conditions are violated, the refined methods, such as grillage anal-
ogy or FEM, are recommended. If the grillage analogy is used, the same
procedures defined for beam model can be used for each longitudinal beam,
and the transverse stiffnesses, D, and D,,, for the solid slab, as defined in
Section 2.4.2, can be used for the transverse beam element. If more detailed
information is required, finite element is a practical method. When applying
finite element, however, it has to be cautious that mesh size, coordinates,

loading directions, and boundary conditions affect on getting good results.

2.5.4 Cellular/box girder bridge

The beam model of this type can be built just like the beam—slab bridge
with the effective widths defined for each web. For segmental concrete box
and single-cell cast-in-place box beams, effective width is defined more
elaborately. As defined in the AASHTO LRFD Specifications (2013), a
beam model can be used as an approximate method with appropriate effec-
tive width and distribution factor, as mentioned in Section 2.2.

One of the differences between the detached box bridge and other girder-
type bridges is distortion of the box due to eccentric loading (Figure 2.30a);
the effect can be substantial for flexible section, such as steel. The EBEF
(equivalent beam on elastic foundation) approach (Figure 2.30b) provides
good approximation of the moments and stresses due to distortion and
warping around the box section (Heins and Hall 1981). If distortion and
warping are predominant, use of a more refined model, such as 3D FEM
model, is suggested.

For a cellular deck, where the cells are either attached or detached, the
principal modes of deformation are due to longitudinal bending, transverse
bending, torsion, and distortion. If grillage analogy method is adopted,
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Figure 2.30 Distortion of the box girder and its analysis approach: (a) box due to eccen-
tric loading; (b) equivalent beam on elastic foundation analysis.

to simulate the action, proper mesh has to be established with the grillage
points subjected to continuity and equilibrium. If there is no diaphragm
or cross-bracing, the transverse elements are formed by the slab, and they
should be spaced with at least four elements between the dead load points
of contraflexure. If internal or external diaphragms exist, the mesh joints
should coincide with the locations of the diaphragms. The function of the
internal diaphragms is maintenance of the shape of the box and reduction
of distortion. The function of the external diaphragms is reduction of the
differential displacement between boxes. Figure 2.31 shows different types
of multicell deck and their mesh definitions with longitudinal lines along
their respective ribs.

If finite element is adopted for the analysis, the same principle is applied
as stated for the grillage analogy method. To obtain meaningful results,
at least two elements should be used for the vertical or inclined web and at
least two (maybe more, if the flange is wide) elements should be used for
the top and bottom flanges. Figure 2.32 shows an example of using finite
element modeling for a box girder bridge. More detailed coverage for steel
box girder bridge is in Chapter 8.

2.5.5 Curved bridge

Horizontally curved bridges are commonly used. It has often been used in
complex, multilevel interchanges, where the geometrics of a bridge struc-
ture are dictated by the roadway alignment.

There are two approximate methods that have been used to analyze
curved girder bridges. The first method, called V-Load method, is used
for curved I-girder bridges. The second method, called M/R method, is
used for curved box girder bridges (FHWA/University of Maryland 1990).
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Figure 2.31 Types of cellular deck and their mesh definitions. (a) Mesh of a attached mul-
ticell box girder; (b) mesh of an detached multicell box girder; (c) mesh of a
trapezoidal attached multicell box girder; and (d) mesh of multicell voided slab.

The theory of the V-Load method for curved I-girder bridges (Figure 2.33)
is based on the statics of a curved flange carrying an axial stress or force.
This then results in a radial distribution force on the flange, and this
radial force is converted to a shear force across the diaphragms. Thus, it is
called V-Load method. The M/R method (Figure 2.34) establishes three
equilibrium equations first. These two methods are approximate and were
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Figure 2.32 Finite element model of a box girder bridge.
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Figure 2.34 M/R method for curved box girder bridges.



50 Computational analysis and design of bridge structures

used to analyze and design curved bridges in the past. They may be used
in the preliminary design but are not recommended for the final design,
especially for heavily skewed support(s) and/or sharply curved span(s).

Currently, the most popular modeling method in applying finite element
analysis is either 2D grillage analogy method or generic 3D modeling. When
using 2D grillage analogy method, as discussed in Section 2.4.5, only verti-
cal translational and planar rotational displacements are considered in an
element, but geometry of an element could be straight or curved. When using
a generic 3D modeling method, all displacements are considered and differ-
ent types of elements can be used in a model. The same principle is defined
for the beam—slab and box girder bridges. One exception is that shell ele-
ments have to be used for the web to follow the curved profile of the girders.
Curved beam elements are also recommended (Hsu et al. 1990; Fu and
Hsu 1995) for the grillage analogy method to eliminate the incompatibility
and unbalanced forces at the joints. Curved concrete bridges are covered
in Chapter 6, whereas curved steel bridges are discussed in Chapter 7 for
I-girder and Chapter 8 for box girder, respectively.

2.5.6 Truss bridge

Truss members are joined by gusset plates at the panel joints, and their con-
nections can be made by riveting, bolting, or welding. Usually, trusses are
designed assuming that the members carry direct axial stresses only, which
are termed primary stresses. However, bending stresses, referred to as sec-
ondary stresses, are also produced by truss distortion and joint rigidity.
The axial forces in a pin-jointed truss can be found directly by the planar
truss bridge analysis program (Fu and Schelling 1989) and may be used for
analysis, rating, or design purposes. With truss joints rigidly connected,
frame analysis with 3D modeling should be used. A refined frame analysis
must include (1) composite action with the deck; (2) continuity among the
truss components, where it exists; (3) force effects due to the weight of
components, change in geometry due to deformation, and axial offset at
the panel points; and (4) in-plane and out-of-plane buckling. Figure 2.35
shows the detailed 2D truss bridge model with an influence line for live
load consideration.

In the United States, the practice is that, with proper care in sectioning
and details, it is probably safe to assume that it is not necessary to compute
secondary stresses. In Europe, the code specifies that, when considering the
limit state of fatigue, or the limit state of serviceability, it is allowable to use
either (1) assuming fixed joints in the analysis or (2) assuming pinned joints,
which modify the analysis by the inclusion of flexural stresses due to axial
deformation, self-weight of the members, and the stiffness of joints. More
detailed discussions with 2D and 3D examples are covered in Chapter 10
for steel truss bridges.
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Figure 2.35 (a,b) Truss bridge 2D model with an influence line for the live load consideration.

2.5.7 Arch bridge

An arch bridge is defined with members shaped and supported in such a
manner that intermediate vertical loads are transmitted to the support pri-
marily through axial compressive force, the reverse of cables of the suspen-
sion bridge. If correctly designed, the self-weight of the arch structure induces
mainly compressive forces. This is achieved by making the arch shape corre-
spond as closely as possible to the line of thrust due to the dead loads. If it is
a truss arch, the thrust is equally shared by the top and bottom chords of the
truss arch members. The three fundamental equations of static equilibrium
for 2D arch model are in the horizontal, vertical, and rotation directions.

For the three-hinged (two at supports and one at the crown) arch, the
structure is statically determinate. For all other arch types, fixed arch or
two-hinged arch, the unknowns exceed the equations of statics and are
suited for computer analysis. The frame-type program can be used for
assuming piece-wise linear beam elements with three degrees of freedom,
corresponding to H, V, and M. Some computer programs have the curved
beam elements and can give more accurate results. This type of analysis,
without considering the axial deformation, is called a first-order arch anal-
ysis. In early development, to save computation time, the influence lines
for moments, shears, axial force, and reactions can be generated by using
a reciprocal relationship. The region of lane loading and location of truck
loading should be placed properly to give the maximum live load effect.
Figure 2.36 shows typical influence lines of a three-hinged arch.

The arches can be classified by their types as (1) open spandrel, (2) solid
spandrel, (3) tied arches with bow-string, and (4) arch-like frames. It is
convenient to perform the analysis in terms of unit width of ring and by
dividing the ring into equal segments. For deck arches with columns and
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Figure 2.36 (a, b) Typical influence line of a three-hinged arch.

through arches with hangers, the segments should coincide with the panel
joints. For solid spandrel arches, 20 segments between the spring lines
should be enough, and the distribution of live and dead loads are best dealt
with as discrete point loads. The fill pressure considers the soil at rest, and
total loads on arch segment are shown in Figure 2.37. More detailed discus-
sions on analysis and construction will be covered in Chapter 9.

2.5.8 Cable-stayed bridge

A cable-stayed bridge is a highly statically indeterminate structure. Cable-
stayed bridge may be analyzed as a planar or space frame with consider-
ation of its linear and nonlinear behavior.

Linear system—For a linear system, the deflections of the structural sys-
tem under applied loads may be determined by applying the classical theory
(or so-called first-order theory). By assuming Hook’s law, linear superposition
is applied to the internal forces, the displacements, and the stresses. However,
for cable-stayed bridges, the linear assumption is on the nonconservative side
for long-span bridges and can be used only for preliminary designs.

Figure 2.37 (a) Arch model and (b, c) critical loads on arch segment.
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A simple solution for determining the force on the stiffening girder of
linear equation by the classical theory uses the beam-on-elastic-support
analogy (Troitsky 1988). If the shortening of both cables and tower is con-
sidered, the spring constants for the elastic support can be determined by
Equation 2.14 as

K= ! — (2.14)
(Hz /AtE,f) + (Lg /A.E.sin a)
where:
A,, E,, and H, are the area, Young’s modulus, and height of the tower,

respectively
A, E_, L. and o are the area, Young’s modulus, length, and inclined
angle of the cable, respectively (Figure 2.38b)

In early analysis of this system, the continuous stiffening girder on elastic
supports is considered as the basic system (Figure 2.38a), and the cable
forces are taken as being redundant.

For the preliminary analysis, a moment diagram may be constructed for
the girder. The cable forces are obtained through the shear forces and then
applied to the tower. The stresses at any section of the bridge system may
be evaluated by computer. Calculation would determine the approximate
cable stresses under dead load on the girder plus live load.

Nonlinear system—Nonlinearity of cable-stayed bridges generally can
be categorized as the cable, stiffening girders, and towers. The nonlinearity
of the cable is caused by the variation in sag with tensile force. To overcome
this nonlinear effect, Ernst uses the equivalent modulus of elasticity E; to
replace the modulus of elasticity of straight cable, and it will be discussed
more in Chapter 11, which is designated for cable-stayed bridges.

The nonlinearity of the stiffened girders and towers is subjected to the
interaction of compressive axial force and bending moments. The girder
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Figure 2.38 Basic cable-stayed system: (a) assumption of continuous stiffening girder on
elastic supports; (b) moveable cable.
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and tower in this case have to be analyzed as a beam column. The stiff-
ness of the girder has less effect on the vertical deflection of the girder
system. However, the towers are the most critical components of the system
because the second-order moments may cause formation of a mechanism
(plastic hinges) in a tower. Another aspect of nonlinearity is due to large
displacements of the structure. Because it affects the stresses, the principle
of superposition does not apply, and the problem has to be treated by the
large displacement theory (or so-called second-order theory). The iteration
process keeps modifying the geometry and maintaining the equilibrium of
the system.

2.5.9 Suspension bridge

Structural analysis of suspension bridge is usually made for the combina-
tion of dead load, live load with impact, traction and bracing, temperature
changes, settlement of supports, and wind (both static and dynamic effects).
Figure 2.39 shows suspension bridge models with different arrangements.

In the early stages of development of the theory for the suspension bridge,
elastic theory was used for the analysis. The suspension bridges were ana-
lyzed by the classical theory of structures, the so-called elastic (also known
as first-order) theory of indeterminate analysis that ignores deformation of
the structure. The elastic theory can be simply expressed as

M=M -hy (2.15)

Cable
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Stiffening truss
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Figure 2.39 Suspension bridge model with different arrangements: (a) one suspended
span with pinned stiffened truss; (b) three suspended spans with pin-ended
stiffened trusses; (c) three suspended spans with continuous stiffened

trusses; (d) multisuspended spans with pin-ended stiffened trusses; (e) self-
anchored suspension bridge.
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where:
M is bending moment in stiffening girder
M’ is bending moment in the unsuspended girder for the live loads
(h=0)
b is horizontal tension in cable
y is cable sag

This theory is only used in a preliminary design for estimating cable quantities.
As a consequence of large displacements of long suspension spans, the elastic
theory results in underestimated moments, shears, and deflections. A deflec-
tion theory is then developed and referred to as second-order theory with the
expression of

M=M —hy—(H+h)v (2.16)

where:
v is cable deflection under loads

As displacements affect structural geometry, Equation 2.16 is not linear,
and linear superposition technically is not applicable. There would be diffi-
culty in using the influence line concept. For this type of analysis, programs
that can handle large deflection and material nonlinearity should be used.
Large deflection analysis is necessary for structures, such as suspension
bridge, that undergo a large translation and rotation, and where their load-
carrying path is altered as the load is increased. The nonlinear procedure
for the suspension bridge is tedious and time consuming. With simplifica-
tion to a quasi-linear theory, an average value of H (H,,,, and H,;,) may
be used as a basis of linearized influence line as in the case of first-order
theory. There may be two sets of influence line generated, one by H,,,,, and
another by H,;,, to establish the most critical live load effect. More detailed
procedures to handle the nonlinearity in computation with modern tech-
nology, especially on live load, will be deferred to Chapter 12, which is
designated for suspension bridges.
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Chapter 3

Numerical methods in
bridge structure analysis

3.1 INTRODUCTION

Numerical methods, such as the finite element method (FEM), are fun-
damental to bridge structure analysis. When analyzing or designing a
bridge, different modern computer programs may be used. A deep under-
standing of the principles of the underlying methods to analyzing or
designing a bridge is essential to properly conduct bridge analysis and
design and is particularly important in building an appropriate computer
model representing a bridge for different types of analyses. In this chap-
ter, the principles of FEM, the automatic time incremental creep analysis
method, and the influence line/surface live loading method are introduced
to provide the basis for computational applications in bridge analysis
and design.

FEM was first introduced in 1960s and is widely adopted in bridge engi-
neering as the primary structural analysis approach. As modern computer
science has advanced since the end of the twentieth century, FEM’s appli-
cation to bridge structure analyses, including its pre- and postprocessing
techniques, has also greatly developed. FEM plays a critical role in mod-
ern bridges’ analyses and designs. Although many generic FEM packages
and more bridge-specific analysis systems are available and engineers or
researchers do not need to develop a FEM package by themselves, a general
understanding of FEM’s principles, procedures, and its limitations will help
to master its applications, including model preparation, result procession,
and error identification.

Creep and shrinkage behaviors are part of the nature of concrete
material. Most of these behaviors occur during the early stages, and there is
less development as concrete ages. Therefore, their total effects are limited.
However, the amount of both displacements and internal force redistribution
due to creep and shrinkage has to be analyzed in certain concrete bridges,
especially those built in multiple stages, or prestressed concrete bridges
(Bazant et al. 2011). Dischinger and effective Young’s modulus methods,
as shown in Chapter 4, are commonly used in concrete creep analyses.
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However, these methods are based on particular mathematical models
of creep development. The implementation of these methods involves
different element stiffness computations. Automatic incremental creep
analysis method, developed by the authors and presented here, relies
only on the linear assumption of creep effects and separates the time
domain nonlinearity away from FEM itself. As long as the creep factor,
a coefficient scalar to describe the proportion of creep strain to elastic
strain, is not coupled with loads, this method is suitable for any creep
development model, and its implementation can be separated from any
FEM system.

The third topic discussed in this chapter is the influence line/surface
live loading method. Searching for the extreme live load positions where
internal forces or displacements at a particular point of interest are
maximal or minimal is a unique analysis problem to bridge analysis and
design. For some simple vehicle patterns defined by certain specifications,
the extreme positions can simply be identified from influence lines. For
some complex vehicle patterns in which only minimum vehicle spacing is
defined, simple enumeration may not work. Dynamic planning is com-
monly used as a generic influence line live loading analysis method. Based
on the longitudinal influence line live loading method, influence surface
live loading can be further developed, with certain assumptions on traffic
movements.

3.2 FINITE ELEMENT METHOD

3.2.1 Basics

FEM is an approximate approach to solve a global equilibrium problem with
a continuum domain by a discrete system that contains a finite number of
well-defined components or elements. With the fast computing power and
large memory capacity of a modern digital computer, the discrete system
can be used to solve a very large and complicated continuum problem. Due
to the complexity of real engineering structural problems, often the con-
tinuous close-form solution is absent or impossible. With more advanced
modern computer hardware and software technologies, the application of
FEM becomes the obvious choice in structural analyses.

The principle of FEM is based on the minimization of total potential
energy, which states that the sum of the internal strain energy and external
works must be stationary when equilibrium is reached. In elastic problems,
the total potential energy is not only stationary but also minimal. The sta-
tionary of total potential energy is equivalent to its variation over admis-
sible displacements being zero and can be expressed as (Zienkiewicz et al.
1977)
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where a, a,, a,,... denote displacements and ITis the total potential energy—
the sum of the total internal strain energy and total potential energy of
external loads is

n=U0+w (3.2)

In Equation 3.2, U and W are the total strain energy and the total potential
energy of external loads, respectively. For a given domain, they can be sub-
divided into many regular or well-formed elements. The total strain energy
U is the sum of strain energies of individual elements. Given any admissible
displacements at the nodes of an element, if an appropriate displacement
pattern can be assumed based on these nodal displacements, displacements
at any point within the element can be expressed as a function of nodal
displacements. Strain can then be derived as a function of nodal displace-
ments. Considering the relationship between stress and strain, stress can be
expressed as a function of nodal displacements as well. The total potential
energy due to external loads is a simple function of nodal displacements.
Therefore, the total potential energy IT is a function of nodal displacements.
Applying variations over nodal displacements as in Equation 3.1 or the
well-known Rayleigh—Ritz process piecewise over all elements, a relation-
ship between unknown nodal displacements and known external loads can
be established as

Ka=f (3.3)

where:
K is the so-called global stiffness matrix

f is external nodal loads
a is nodal displacements

The procedures of applying FEM for structural analysis are standardized
and can be summarized as follows:

1. Subdivide the continuum or structure into small elements. This step
is also called system discretization. Element types and mesh density
have to be determined in this step.

2. Determine an appropriate displacement pattern of an element. This
is critical to the solution as it derives how displacements at any point



60 Computational analysis and design of bridge structures

within an element are interpolated from nodal displacements. Together
with mesh density, the displacement pattern affects the convergence of
the FEM solution. Displacement pattern is defined by different types of
elements. Therefore, once the types of elements used to discrete the sys-
tem are decided, displacement patterns are automatically determined.

3. Compute the stiffness matrix of every element and assemble the global
stiffness elements.

4. Prepare the global stiffness matrix according to known boundary con-
ditions. As any arbitrary rigid movements can satisfy Equation 3.3,
the global stiffness matrix K becomes singular. To solve Equation 3.3,
K has to be condensed to contain only unknown nodal displacements.

. Solve Equation 3.3.

6. Compute strains and stresses of each element. Once nodal displace-
ments are solved, displacements at any point within an element can be
interpolated by assumed displacement patterns. Furthermore, strains
and stresses at any point of element can be obtained.

n

Theories and literatures on FEM are widely available. In this chapter, the
key procedures like a generic FEM and some other special topics regarding
its numerical application in bridge structural analyses will be discussed.

3.2.2 Geometric and elastic equations

When external loads are acting on an elastic body, displacements and
deformations” will be induced. The displacement at any point a is described
by its projection on the Cartesian axes, u,v,w, respectively, as shown in
Figure 3.1. These three displacement components are functions of coordi-
nates X,Y,z, respectively.

a=[u v w] (3.4)

The deformation at any point in the elastic body is described by three
direct strains and three shear strains, which are the first derivations of
displacements.t

T
&= |:8x €y & Txy Vyz sz:|
ou Oov Oow ou Ov Ov Ow Ow Ou T
= + + +

lox dy & dy x & 9y ox &z (3.9)

* Displacement refers to translational or rotational movement along a direction and is used
to measure the absolute geometric change at a point in structure. Deformation refers to
shape change in a direction and is used to measure the strain at a point in the elastic body.

T When geometric nonlinearity is considered, the second order derivatives will be included as
in Equation 3.35.
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Figure 3.1 Stresses and denotations on an infinitesimal cube of any point in an elastic
body.

Equation 3.5 is the geometric equation that defines the relationship
between displacements and strains. When the displacements of an elastic
body are known, its strains can be derived from the geometry equation.
However, the displacements cannot solely be defined by known strains.
Any global rigid displacement can produce the same strains according to
Equation 3.5.

The displacements described by Equation 3.4 are generic for a point on
an elastic body. When a particular type of element is discussed, compo-
nents of displacements can be simplified or modified. For example, a two-
dimensional (2D) stress or strain element will not have the w component.
A spatial beam element will have rotational displacements along three
Cartesian axes, and Equation 3.4 will become:

a=[u v w 6o, 0, 0. (3.6)
For isotropic elastic materials, according to Hooke’s Law, the relationship

between stresses and strains is defined as

% % %, _% O O . _O_ O O 37
€= THp TG = R Th e = R R
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Txr T z TZX
Y xy :E);'sz:é;’sz :E (38)
where:
E is the Young’s modulus
G is the shear modulus
u is the Poisson ratio

For isotropic materials, shear modulus can be derived from Young’s modulus:

E
G —m (3.9)

Equations 3.7 and 3.8 are elastic equations. By solving stresses in these
equations, another form of elastic equations can be written as Equation 3.10
or in matrix form as Equation 3.11.

E(1-p) [8 TR
X 1 _

csx:(1+p)(1—2u) —ugy 1 pazj’
o, = E(1-y) = €x +Ey + B € |
(1+p)(l—2u) 1-p -
(3.10)
o, = E(l-n) Hoeor Hog e
¥ (1+u)(1—2u) 1-p " 1-p” )
Tey = _E Ty, = _E T ==
xy_2(1+u)ny> yz_z(l_’_u)’\/yz’ zx_2(1+u)YZx
[Gx Oy G Tey  Tyz TZX}T (3.11)
= D|:8x €y €2 Yxy Vyz Yex :'T or c=Dg
where D is the so-called elastic matrix as shown in Equation 3.12.
(A +2G Py A |
Py r+2G ) 0
Py Py r+2G
D= G 0 o0 (3.12)
0 0 G 0
| 0 0 Gj
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A is a constant related to Young’s modulus and Poisson ratio as
A =Ep/[(1+p)(1-2p)].

In general, initial strains caused by shrinkage or temperature change
and/or initial stresses due to existing condition may exist at any point. Only
will the difference between actual and initial strains cause elastic stress
changes, and the total stresses should be the sum of elastic stresses and ini-
tial stresses. The elastic Equation 3.11 can be rewritten in a generic form as

o=D(e—¢gy)+ 0y (3.13)
where:
o= [Gx G, O, Ty Ty Tax ]T (3.14)

are total stresses
T 0 0 0 0 o7 315
Gp =| Ox Gy O: Txy Tyz Tox ( . )
are initial stresses

T
e=[ec & & Yo T Ve (3.16)

are total strains
0 0 0 0 0 o7
g = |:8x gy & Vxy Vyz sz:l (3.17)

are initial strains

3.2.3 Displacement functions of an element

To apply Equation 3.5 to obtain the total strain energy of an element,
displacements at any point within the element should be explicitly expressed
by nodal displacements of the element. This expression is called element
displacement or shape functions. Due to variations of geometry shape and
mechanical behavior of an element, there is no general theoretical defini-
tion on how the displacement at a point is related to all nodal displacements
of an element. Only certain types of element, for example, beam-bend-
ing element, have known theoretical displacement functions. As a generic
approach of FEM, these relationships have to be assumed according to dif-
ferent types of elements. The definition of the displacement function for a
certain type element plays a critical role in its behavior and convergence
of a solution. It is easy to understand that the error in the calculation of
strain energy due to an inaccurate or coarse displacement function can be
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minimized by reducing the size of the element. However, an accurate or
fine displacement assumption can reduce the error of a large element so that
even a coarse mesh still can get accurate and convergent results.

By using displacement functions, the displacement of any point in the
element can be expressed as Equation 3.18.

u:iNiul-, vziNiui, w:iNiwi,... (3.18)
i=1 i=1 i=1

where:
n is the number of element nodes
u;,v;,w; are the node displacements at node 7
N; is the displacement function of node 7 and describes how a known
displacement at node ¢ will influence or contribute to the displace-
ment at any point within an element

From its definition, the displacement function must satisfy the following
conditions:

1. N, =1 at node i and N, =0 at all other nodes

2. Ensures any of the unknown displacement is continuous at element
boundaries, that is, displacements at any point on an element bound-
ary interpolated by nodal displacements of any adjacent elements
should be the same

3. Contains linear term so it is able to represent constant strain

n . « . . . .

_ Ni =1, so it can represent rigid displacement, that is, displace-
1= .

ment at any point should be the same as that at any node when all

nodes have the same displacements

In developing displacement functions for a type of element, the more com-
plicated the shape of the element, the higher the polynomial order of the
displacement function is required. An element with a higher order of dis-
placement functions will lead to a higher accuracy. Therefore, a coarser
mesh will produce relatively higher accurate results. Or, in other words,
a finer mesh is needed when a simple element with a lower-order displace-
ment function is used.

Taking a commonly used 2D rectangle element as an example, as shown
in Figure 3.2; the displacement functions of a four-node element are

N (1+8)(14), No = (1-€)(147)
(3.19)

N, %(1—&.)(1—11), Ny =%(1+i)(1—n)
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Figure 3.2 (a—c) Three different types of rectangle elements.

The displacement functions of an eight-node element are
N = (1+)(1m)(E+n-1)
No = L (1-8)(1en) (&0 -1)
Ny = (1-8)(1-n)(-&-n-1)
(3.20)
Ny = (1+g)(1-n)(e-n-1)

N; =%(1—§2)(1+n), N, = %(1—112)(1—@)

N, = %(1—@2)(1—11), Ng = %(1—n2)(1+§)
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Displacement functions at some nodes of a less-used 12-node element are

N, = 3%(1+§)(1 +n)[9(§2 +n2)—10}

N, :3%(1—@)(1“1)[9(@2+n2)—1o} (3.21)

9

N i(1+n)(1—é2)(1—3§), No=

2

5 (1-g)(1-n7)(1+3n)

To investigate the characteristics of displacement function, three-dimensional
(3D) views of some of the earlier functions are shown in Figures 3.3 through 3.5.
The functions in Equations 3.19 through 3.21 are linear, square, and cubic,
respectively. From the earlier definitions and 3D views shown in Figures 3.3
through 3.5, it can be seen that the conditions in 1, 3, and 4 are met. To check
the continuous condition, the element edge 1-5-2 of the eight-node element
can be used as an example. Displacement functions of all nodes other than
1, 5,and 2 are 0, which means the interpolation of any displacement along the
edge merely depends on nodal displacements at nodes 1, 5, and 2. Therefore,
any displacement at any point along the edge will obtain the same value by
interpolation from either of the adjacent elements.

3.2.4 Strain energy and principles of minimum
potential energy and virtual works

When applying external forces, strains and stresses will be present over
the entire elastic body. The total strain energy accumulated by increasing
external loads from zero to a given load will be used to measure the internal
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(a) Displacement function N (b) Displacement function N,

Figure 3.3 (a, b) 3D views of displacement functions of a four-node rectangle element
(linear function).
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Figure 3.4 (a—d) 3D views of displacement functions of a eight-node rectangle element
(square function).

works that the external loads are done. The multiplication of stress and
strain at any point gives the strain energy density U. Taking the spatial
strain and stress problem, as shown in Figure 3.1, as the example to illus-
trate a generic approach, the accumulated strain energy density starting
from the beginning to any equilibrium point is the shaded area as shown in
Figure 3.6. It can be expressed as follows:

gy €z Vxy

U= J.cxdsx + Icyday + chdsz + I Ty @Y xy
0

0 0 0

(3.22)

Tyz Vax

n
+erzdyyz + Iszdex = IGTds

0 0 0
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Figure 3.5 (a—d) 3D views of displacement functions of a 12-node rectangle element
(cubic function).

where € is the strain at any equilibrium point. When elastic is assumed, the
curve in Figure 3.6 will become a straight line, and Equation 3.22 can be
simplified as

U=_¢"¢ (3.23)

Substituting o with Equation 3.11, the strain energy density can be obtained
in Equation 3.24.

U= %STDS (3.24)

The total strain energy is the integration of strain energy density over the
entire elastic body as shown in Equation 3.235.
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Figure 3.6 Strain energy density.

U= %J. ¢ Dedv (3.25)

The works done by external loads to increase strains from 0 to ¢ are the
products of nodal displacements and external loads. Therefore, the total
potential energy of external loads is

W=-d"f (3.26)

According to the minimum potential energy principle (Equations 3.1 and
3.2), the global equilibrium equations, as shown in Equation 3.27, can
be obtained by substituting Equations 3.25 and 3.26 into Equations 3.1
and 3.2.

aU sTDadvj

= 3.27
Py f (3.27)

N | =

Substituting Equation 3.18 into Equation 3.3, the strains at any point of an
element can be expressed by all its nodal displacements:

¢=[B|B,...B,]Ja=Ba (3.28)

where 7 is the number of element nodes and B; is expressed as
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Equation 3.28 expresses the relationship between strains and displace-
ments, for both an individual element and the entire domain. When the
entire domain is considered, the node number 7 will be the total nodes
meshed in the domain. Thus, Equation 3.27 becomes Equation 3.29 when
substituting & with Equation 3.28,

I B"DBdva=f (3.29)
or the global equilibrium Equation 3.3 where
K:JBTDde (3.30)

K is the so-called global stiffness matrix. When a domain of an individual
element is considered, the results of Equation 3.30 will be the stiffness
matrix of an element.

The global equilibrium equation 3.29 or 3.3 can also be derived from the
principle of virtual works. Given any equilibrium state of a system, small
fictitious displacements—the virtual displacements—are assumed. The
virtual displacement will cause internal virtual strains. The virtual work
principle states that the virtual work done by actual external forces during
the virtual displacements is equal to the internal strain energy increased at
actual internal stresses due to the virtual strains:

I d¢'odv =8a" f (3.31)

where 8¢ denotes internal virtual strains corresponding to external virtual
displacements da. Applying Equation 3.28 into 3.31, the equilibrium equa-
tion can be obtained as
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w(a):IBTcdv—f:O (3.32)

where y is the sum of general internal and external forces. Equation 3.32
can be stated as that at any equilibrium point internal forces due to inter-
nal stresses should balance external loads that cause internal strains.
Furthermore, when physical equation 3.13 is substituted into Equation 3.32,
a more generic equilibrium equation can be obtained as

w(a):IBTDdea—IBTDsodU +IBTcodv—f -0 (3.33)

Equation 3.33 illustrates the balance between internal and external forces
when initial strains and initial stresses exist.

Each element’s stiffness matrix K, can be obtained by integration over
the entire element body. The physical meaning of any element at row 7 and
column j of K,,K, (7,7) is the force caused at ith degree of freedom because
of a unit displacement happening at jth degree of freedom, as the existence
or contribution of the element. The variables i and j are the order num-
ber of degree of freedom of an individual element. Because the total strain
energy of a continuum is the sum of strain energies of subdivided elements,
assembling all elements’ stiffness matrices in an appropriate order can form
the global stiffness matrix in Equation 3.30. Obviously, if all elements con-
nected at a global node have the same local coordinate systems as the global
coordinate system, stiffness elements corresponding to this global node in
K can be obtained by summing the contributions (K,(i,7)) from all con-
nected elements. This process is the assembly of global stiffness matrix,
which reveals the implementation of the approach by meshing a continuum
into finite regular-shaped elements.

3.2.5 Displacement relationship processing
when assembling global stiffness matrix

As discussed in the Section 3.2.4, an element stiffness matrix will be
assembled into a global stiffness matrix. The assembly is done by matching
element nodes with their global order. For example, an element has two
nodes, i and j, and its element stiffness matrix is shown in Figure 3.7b.
When assembling, each submatrix in Figure 3.7b will be added into its
corresponding submatrix in the global matrix in Figure 3.7a. It should be
noted that the element stiffness matrix must be transformed into the global
coordinate system before adding it into the global matrix. The element
stiffness matrix is established in its local coordinate system, which is often
different from the global coordinate system. Because stiffness of a degree of
freedom is a vector in space, the transformation of the stiffness matrix can
be taken as a simple standard space transformation process.
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Figure 3.7 (a—d) Assembling global stiffness matrix and processing displacement
relationship.

All displacements at the connection of adjacent elements are continuous
by default, or the connection is rigid from element to element as shown in
Figure 3.7c. It is obvious that the global stiffness of node 7 will be the sum
of submatrices of both elements (el and ez). These results are due to one-
to-one mapping of element stiffness and global stiffness during assembling
matrices. However, the relationship between element stiffness and global
stiffness does not have to be one to one. When this happens, a matrix-pro-
cessing technique, the displacement relationship, will be used. Taking the
simulation of commonly used joints as example, the principle of displace-
ment relationship is discussed briefly next in this section.

As shown in Figure 3.7d, two beam elements are connected with a joint.
Four nodes, 7, j, k,and [, in the global matrix will be needed to have enough
degrees of freedom to represent the extra rotation at the joint. If each node
is assumed to have six (6) degrees of freedom, node jandk will be sharing
five (5) of them and each node has one rotation independent of one another.
The relationships of displacements between nodes jandk will be that the
five (5) shared displacements of node k are mapped to those of node j,
and their rotation is separated. When assembling e, it is a usual summing
process. When assembling e,, matrix elements corresponding to shared dis-
placements at node k will be added to node j instead, rather than to node &
as is normally done. Only the rotation matrix elements will be added to its
own position, node k in global. This type of relationship is often called the
master—slave relationship.
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The displacement relationship and its processing are an important part
of FEM. In addition to beam joints mentioned earlier, this process can
be used to simulate many other complicated mechanics situations, such as
spring or rigid body connections.

3.2.6 Nonlinearities

In the prior derivations of the global equilibrium equation, both the geome-
try relationship (Equation 3.5) and the material relationship (Equation 3.13)
are in linear forms. When displacements are small and strains are within
the linear range with stresses, as for most engineering problems, linear
solutions (Equation 3.13) are accurate and adequate. However, large dis-
placements and/or nonlinear constitutive material problems widely exist
in engineering practices. The geometric nonlinearity of long-span cable
bridges, discussed in Chapter 11, and the plastic behavior of middle- and
short-span bridges, discussed in Chapters 14, 15, and 17, are two typical
examples of these problems in bridge structural analyses. The approach to
the respective geometric nonlinear and material nonlinear problems is an
important part of FEM.

In general, when material nonlinearity is considered, the stresses and
strains relationship (Equation 3.13) would be

o =o(g) (3.34)

When geometric nonlinearity is considered, the strains will contain the sec-
ond order of displacement derivatives as

el (2) (3 (2]
. z:+;[(z:f( m

8}’
€, ow + o +
&= . =< 0z 2lloz (3.395)
xy
y Oou Ov Oudu Ovov Owow
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Thus, the strains and displacements relationship (Equation 3.28) becomes
¢=Ba=(By+B.[a])a (3.36)

where B, is the same matrix as when geometric nonlinearity is not consid-
ered and B, (a) is due to the second order of displacement derivatives and
relates to current displacements.

When nonlinearities are considered, the solution of Equation 3.32 has to
be approached by incremental method, in which changes of y(a) respective
to a small increment of @ are to be noted.

T
dy = IdB cdu+IBTd—de da = Krda (3.37)
da da

In Equation 3.37, Kr is the tangential stiffness, respective to small incre-
ment of displacements. Taking the geometric nonlinearity as an example,
the tangential stiffness can be derived as

KT =K0+KG+KL (3.38)

where:
K, = | B{ DB, represents the usual stiffness when displacements are small

K, is the first term in Equation 3.37, which reflects the stiffness due
to the existence of stresses, that is, the initial stress or geometric

matrix:
T T
K. = J' B iy - J' By iy (3.39)
da da

K, is the stiffness due to large displacements:
K, = J(BOT DB, + B{DB, + B DB, )dv (3.40)

When material nonlinearity is considered as well, the elastic matrix D
should be evaluated at strains due to current displacements.

The solutions of nonlinear problems can be reached by iterations on
Equations 3.33 and 3.37. Given initial estimated displacements ao, which
are obtained as linear solution, their corresponding internal strains can be
computed. Furthermore, the internal stresses can be obtained by either linear
or nonlinear stress and strain relationship. As shown in Equation 3.33, the
initial unbalanced general forces \V(ﬂo) can be determined. The unbalanced
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general forces reveal that the internal forces cannot balance the external
forces due to the effects of nonlinearities. The displacements have to be
adjusted by Equation 3.37. Tangential stiffness Kt will first be formed at
current displacements (a,). Taking y(a,) as dy in Equation 3.37, the dis-
placement adjustment can be solved. Once an adjustment is obtained, new
displacements a; are established. The iteration process will keep looping till
the unbalanced general forces y(a, ) become significantly small. To ensure
the convergence of this iteration process, external loads are often loaded
incrementally, with each step containing only a fraction of the total loads.

3.2.7 Frame element

Frame components, which work as both beams in bending/shearing and
also as truss members in axial tension/compression, are very common in
structural engineering, and the development of a frame element is fun-
damental in FEM. This section will briefly introduce its displacement
functions, elastic stiffness matrix, and initial stress matrix.

The total strain energy of a frame element is the sum of the axial tension/
compression strain energy and the bending strain energy. Therefore, when
developing the elastic stiffness matrix, the axial tension/compression and the
bending behaviors can be separated. The beam-bending theory assumes that
the cross section at any point along the beam axis will remain a plane after
bent. Based on this assumption, bending strain energy along a cross section
can be expressed as the product of bending moment and rotation angle of a
cross section or the second-order derivative of vertical deflection. For a two-
node frame element as shown in Figure 3.8, according to the requirements in
Section 3.2.3, the displacement functions can only be linear. It is not enough
to describe the bending deflection, as the second-order derivative does not
exist. Two additional rotational displacements (¢1 and ¢.) have to be added.
Although they belong to the same nodes (nodes 1 and 2, respectively), a two-
node beam element has four independent nodal displacements and is truly
working as a four-node line element.
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Figure 3.8 Two-node frame element.
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The nodal displacements of a frame element as shown in Figure 3.8 are
a=[m v & wm v, ] (3.41)

The strains of a frame element contain the axial tension/compression strain
and bending strain as

du
. :{Sa}: dx (3.42)
T e d*v

Y dx*

where:
y is the vertical distance of a fiber layer to the neutral axis of a cross section
u and v are axial and vertical displacements, respectively

Their interpolation functions are

u N, 0 0 N, 0 0
= a, (3.43)
v O Nz N3 O NS N6

where:

N; =L1, N, ZL% (3—2Ll), N3 :L%Lzl, N, =L2,
(3.44)
N;=I5(3-2L,), Ng=-L L1}, L, :1_% L, =%

Knowing ¢ = dv/dx, it can be easily verified that the earlier functions satisfy
the conditions of a displacement function in Section 3.2.3.

The matrix B in Equation 3.28 is

1 . ;1
a| ! 1
|y (28] (%4
) T
(3.45)
0 0

12x 6 6x 2
r ) e

When integrating over the entire element as in Equation 3.30, the beam-bending
assumption and a prismatic cross section can be taken into consideration.
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The elastic matrix D is one single constant as E. The elastic stiffness element
can be derived as

E 0 0 ﬂ 0 0
I i
12EI 6EI —12EI  6EI
0 5 Nz 0 P Nz
6EI 4EI —6EI 2EI
o = 4 0 2P
K, = A EA (3.46)
—= 0 0 = 0 0
I I
—12EI  —6EI 12EI  —6EI
0 P I? 0 P I?
0 6EI  2EI 0 —6EI 4EI
I I? I? I? I

where:
A denotes the cross-sectional area of an element

I :I y*dA denotes the moment inertia to the neutral axis of the cross
section

When geometric nonlinearity is considered, the axial strain will be coupled
with bending deflection. Equation 3.42 will become

du+1(dyjz
88:{&1}: dx 2\dx (3.47)
€p d*
ydxz

Following similar procedures, the initial stress matrix of a frame element
can be derived by Equation 3.39:

[0 0 0 0 0 0]
0 3 3 0 -3 3
K, - E |0 3l 4 0 -3 -P (3.48)
300/ 0 0 0 0 0 0
0 -36 -3 0 36 -3
0 3 - 0 -3 4P
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3.2.8 Elastic stability

As shown in Equation 3.39, stiffness may be enhanced or reduced by K,—
the initial stress stiffness due to existing stresses when large displacements
are considered. When total stiffness is reduced by the initial stress stiff-
ness, as in columns or plates under compression, there will be a critical
point in which stiffness in one or many degrees of freedom reaches 0 (i.e.,
Ky + K, becomes singular). This phenomenon is the so-called elastic stabil-
ity problem, in which a critical point clearly defines the entry to an unstable
state. In addition to the elastic problem, stability problems can further be
classified as plastic stability and excessive displacements according to the
reason of singularity of the total stiffness (tangential stiffness Ky + K + K ).
For example, if the stability problem is due to the elastic matrix D, it is
plastic stability problem; if it is due to large displacements, it is the exces-
sive displacements problem. It is obvious that both are nonlinear problems
and are the same in a mathematical view. When nonlinear stability is of a
concern, both plastic and large displacements should be considered together.
When excessive displacements happen, some components may have entered
plastic range, and when some components enter plastic range, displacements
may become large. The approach to nonlinear stability solutions is the same
as normal nonlinear problems as illustrated in the previous section. In this
section, only the elastic stability is discussed, as it gives the upper limits of
critical loads and is more essential to structural analyses. For instance, dur-
ing preliminary designs of bridges in which compression and bending are
dominating (i.e., arch bridges and cable-stayed bridges), elastic stability is
usually analyzed first. The upper limit will guide the adjustment to structure
dimensions and component sizes. Further discussion and application on sta-
bility is discussed in Chapter 14.

The solution to an elastic stability problem can be categorized into an
eigenvalue problem. When only initial stress is considered, the following
equilibrium equation can be derived from either the global equilibrium
equation 3.33 or the tangential equilibrium equation 3.37:

(Ko +Ks)a=f (3.49)

K, is proportional to the current axial tension/compression stress as shown
in Equation 3.48. The search for critical loads in elastic stability can be
simplified by amplifying K until the total stiffness matrix in Equation 3.49
becomes singular, which is equivalent to the following general eigenvalue
problem:

Ko +AK,| =0 (3.50)
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Figure 3.9 Example of elastic stability problem—a beam under compression.

Taking the frame element discussed in the previous section and a typical
P — A problem as shown in Figure 3.9 as an example, the FEM approach
to the elastic stability problem can be compared with theoretical solutions.
The cantilever beam in Figure 3.9 is fixed at one end, so that the unknown
displacements are only v and ¢. The elastic stiffness matrix in Equation 3.46
and initial stress stiffness matrix in Equation 3.48 can be condensed to
Equations 3.51 and 3.52, respectively:

12EI  6EI
rr
K, = (3.51)
6El  4EI
E ]
k --P|36 3 (3.52)
° 300 31 4P '

The total stiffness matrix is

_EI[12-360 6130l (3.53)
TP 6l-30l 4 -4l ’
where:
2

The roots, w; =0.08287 and w, =1.073 of the following equation, will
make the total stiffness matrix in 3.53 singular:

4(12-360)(1-0)- (6 -30) =0 (3.55)



80 Computational analysis and design of bridge structures

Substituting the two roots into Equation 3.54, two critical loads can be
obtained as

2
and P2 :3-26127;”91 (3.56)

Pl 0.252n*El

cr 12
Comparing the first critical loads with the theoretical solution
(PI =0.2507*EI/I%* Zhu 1998), the FEM approach can produce very accu-
rate solutions. It should be noted that the previous solution is based on one
element (two degrees of freedom). If the number of elements in the beam
meshes increases, the accuracy improves accordingly.

3.2.9 Applications in bridge analysis

When applying FEM to bridge analysis, there are some common questions
and issues that engineers have to clarify. These issues include (1) what types
of element should be used in a bridge model; (2) when a 2D model is suf-
ficient and when a 3D model is necessary; and (3) how to correctly interpret
FEM results from bridge engineering perspectives, especially when a bridge
is modeled as plate or shell elements.

In Sections 3.2.1 through 3.2.8, only generic principles and procedures
of FEM are briefly illustrated, aiming at helping engineers to understand
the theories behind an FEM package. And, as an example, only 2D frame
element is discussed in detail. In general, truss, frame, and shell elements
can cover most bridge analyses.

Truss element, like a member in a truss bridge, is a line element with only
two nodes. It has only axial strain/stress, and the most important feature
is that its strain/stress is constant over the entire element. Truss element
is also called link element. Bridge bearings, hangers, prestress tendons,
cables, and so on, can be modeled as truss elements.

Frame element, like a member in a frame structure, is a line element with
only two nodes. It behaves as a beam but could be under axial tension/com-
pression or a combination of beam and truss elements. Most FEM pack-
ages combine behaviors of beam, truss, and torsional element into one as a
frame element—the most commonly used element type in bridge analysis.
In line models, girders, stringers, diaphragms, pylons, columns, piers, and
so on are usually modeled as frame elements.

Shell element combines in-plane stress/strain behavior together with bend-
ing of a plate, either as a thin plate or as a thick plate. When a bridge com-
ponent is modeled into the plate level, such as a box girder or steel I-girder,
shell element could be used. Some components that behave in-plane, such as
webs, can be simplified as shells to streamline the modeling.

Nowadays, whether or not to model in 3D is no longer a question because
modern graphical pre- and post-processing tools are widely available.
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For detailed analysis, most bridges should be modeled in 3D, not only for
better accuracy but also for simplification of component simulations. Even
a long-span bridge, such as a suspension bridge discussed in Chapter 12,
is preferable to be modeled in 3D rather than 2D because the stiffness of
components such as pylons and truss members of stiffening girder can be
easily computed and thus be simulated accurately in 3D. For certain analy-
sis purposes, such as extreme live loads analysis of floor beams in truss
bridges, 3D model becomes inevitable.

When dimensions in longitudinal and transverse axes are comparable,
such as middle- and short-span girder bridges, an intermediate model, or
the so-called grid model, is widely used. The element in a grid model is
retrograded from a 3D frame element by ignoring two translational dis-
placements on the grid plane and one rotational displacement along the
axis perpendicular to the grid plane. Thus, each node of an element has
only vertical displacements, bending rotation and torsional displacements.
Element internal forces contain bending and torsional moments plus shear,
accordingly. A grid model can easily analyze distributions in the longitudi-
nal direction of a girder and in the transverse direction among girders while
maintaining the same number of degrees of freedom. Therefore, the grid
model is very common in girder bridge analyses. Furthermore, the
grid model can be expanded to simulate a wide box girder, in which webs
are not connected directly by separate diaphragms, but by flanges (Hambly
1991). However, a true 3D model with shell elements is encouraged when
lateral distributions among webs of a box girder are of interest. Many
behaviors of a wide thin-walled box girder, such as warping when torsion
is restrained, distortion when insufficient diaphragm is used, and shear lag-
ging due to longitudinal shear deformations of flanges, cannot be repre-
sented in a grid model.

Most component design theories and code checking are based on inter-
nal forces over a cross section of a component. For example, when design-
ing rebar quantities of a frame member, bending moment, shear, and
axial forces should be known. When a bridge component is modeled as
truss or frame elements, internal forces output from FEM analyses can be
used directly for engineering design and code checks. When a component
is meshed into shell elements, such as a web in box girder as shown in
Figure 3.10a, results from FEM have to be translated into the perspec-
tive of a bridge component, or the original FEM results are not mean-
ingful and cannot be used in design or code checks. This is because the
stress results from FEM analysis are in each element’s local coordinate
system, which may vary from one element to another. Stresses have to be
transformed to a unique axis that is meaningful to engineering, like the
longitudinal axis of a component. When in curve segments, elements have
to be unfolded along curves and stress results can then be plotted on flat
regions. As shown in Figure 3.10b, for example, the horizontal stresses
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Figure 3.10 Interpretation of stresses as engineering perspectives. (a) Shell elements of
aweb in a box girder and vertical shear stresses. (b) Stresses along horizon-
tal direction after unfolded. (c) Major principal stresses.

along web curves are transformed from two axial stresses and one shear
stress of all involved shell elements. What is shown in Figure 3.10b can
be defined as axial stress perpendicular to a cross section, which is one of
the dominating stresses and is what a bridge engineer looks for. Further,
the major/minor principal stresses,” which are transformed from stress
components at any point, are needed more often and more meaningful
than their original stress components in each element’s local coordinate
system. Figure 3.10c shows the major principal stress of the same web as
in Figure 3.10a and b.

When a bridge is modeled as shell elements, or further as 3D block ele-
ments, engineers often want to compare the stress distribution obtained
from shell elements to that from a simple model as frame elements so that
the differences from the beam theory can be better understood. Special
functions in postprocessing in this regard are particularly important to
bridge analysis, or 3D detailed modeling will be greatly limited in bridge
analysis and design. For example, Figure 3.11 shows a special function in
a postprocessing package that can first transform stress components to
axial stress perpendicular to any predefined cross section and then inte-
grate this stress over the cross section to obtain equivalent sum forces
over the section. The equivalent forces, which are shown at the bottom
of Figure 3.11, can then be used to compute axial stress distribution by
beam-bending theory. The stress comparison, as shown in both top and
bottom flanges, can help engineers to understand effects such as warping,
distorting, and shear lags.

“ The two or three result stresses at any point on plane or in spatial that are transformed
from its three or six stress components as shown in Figure 3.1



Numerical methods in bridge structure analysis 83

55 58
8986 (8974 (9167 984 9027 (8906 [8849 |8905 [9027] 8984 9167 (8973 (8985

L Ny 1

5775 —5579
[-6348 -6250 —625%_|-6348

-7014 7005

Fx=11.8939 Fy=0.498916 Fz=-3.72129
Mx =-672.528 My =-702.866 Mz = 311822

Figure 3.1l Stress integration over a cross section comparing with beam theory.
Curves—axial stresses distribution from a shell element model. Straight
lines—axial stresses distribution recomputed from beam-bending theory by
using equivalent internal forces obtained from stress integration.

3.3 AUTOMATIC TIME INCREMENTAL
CREEP ANALYSIS METHOD

After elastic strains instantly occurred with loads on a concrete structure,
creep strains will later be developed. The development of creep strains
depends on the age of concrete when loads are applied and the time of
observing. However, the creep strains are always proportional to the initial
elastic strains that cause them. Creep strains affect a structure in two ways:
(1) extra displacements would be developed after construction and (2) extra
displacements would cause load redistributions. For concrete or compos-
ite bridge structures built in multiple stages, creep analyses are important
as loading and concrete aging history can be complicated. Together with
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creep strains, concrete material will also develop shrinkage strains, which
have a similar behavior as creep strains in terms of time history. However,
shrinkage strains are elastic strain independent or are not related to loads.
Therefore, shrinkage analysis is simpler than creep analysis. In general,
these two types of time domain issues are considered concurrently with
bridge structural analysis.

Generically, the Young’s modulus of concrete varies as aging and the
creep strain developed not only depends on concrete age and observation
time, but also couples with concrete stress. When analyzing creep effects
in perfect accuracy, integration over the entire observation time span is
inevitable. Therefore, the analysis method is complicated and its proce-
dures are closely related to a particular creep and shrinkage model. As a
result, the evolution of the FEM system is tied to the mathematic model
of creep and shrinkage, and similarly, the adoption of a new creep and
shrinkage model is limited by an existing FEM system. When considering
most common concrete bridge situations, such as low service stress (<40%
of concrete strength) and no-unloading in terms of predominate structural
weight, the creep strain is proportional to the elastic strain that happened
at a given age, and a constant Young’s modulus of 28 days can be taken.
Thus, nonlinearity of creep can be limited in the time domain only, and
the relationship to loads can still be linear. Further, the time history can
be divided by many small time steps and the stress within each step can
be treated as constant. The Automatic Time Incremental Creep Analysis
Method introduced in this section is a simplified method based on the
above assumptions. As illustrated by an example in this section, the results
by the simplified method are very close to other complicated integration
method, and the error is engineering acceptable.

As revealed in Equation 3.58 that the creep strains are proportional to
elastic strains and the development of such a creep strain factor in time
domain is separated from external loads and the structure itself, it can be
concluded that the superposition of loads is still valid when creep is consid-
ered. Based on the principle of superposition, the automatic time incremen-
tal creep analysis method first computes the creep effects at all time steps
in the future due to external loads and creep redistribution loads at the
current time. A simple accumulation of analysis results can then produce
the final creep effects at any observation time (Wang 2000).

3.3.1 Incremental equilibrium equation
in creep and shrinkage analysis

When creep and shrinkage are considered in a constant stress scenario,

E=6, +& +& =& +£0(5,1)+&(51) (3.57)
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where &, €., and g, denote the regular elastic strain, creep strain, and
shrinkage strain, respectively. Both creep and shrinkage strains depend on
the age of concrete and the observation time where the age for creep is
the duration after applying loads and the age for shrinkage is the duration
after concrete is allowed to dry. The creep strain also is proportional to the
elastic strain as

e =&.09(,7) (3.58)

¢(2,7) is the creep factor, which may be expressed by many different mathe-
matical models. The time origins of ¢ and t are the same as when the concrete
starts to cure. No matter what model is used to describe creep development,
the creep factor ¢(#,7) can be explained as at observation time ¢ , the total
creep due to an elastic strain at T divided by the elastic strain. g,(¢,1) is the
total shrinkage at time #, which is independent to the elastic strain g,.

Given an external load acting on time 7, at time # the system is balanced
and the equilibrium equation is written as Equation 3.32. Considering a
small time increment dt, the variation of elastic strain can be obtained from
Equation 3.57 as

de, =de—g.do —dg, (3.59)

The internal stresses will have a change of do, and the incremental equilib-
rium equation can be obtained from Equation 3.32 as

dv(a)= [ B'dodv =0 (3.60)

Substituting Equations 3.59 and 3.11 into Equation 3.60, the incremental
equilibrium equation of creep and shrinkage can be derived as

Kda = IBTcd(pdv ; j B"Dds.dv (3.61)

where K is the global stiffness matrix as shown in Equation 3.30.

The physical meaning of Equation 3.61 is simple and clear: Incremental
creep and shrinkage will cause equivalent loads and will be balanced by
incremental displacements. By solving Equation 3.61, the incremental
displacements at the next time step due to creep and shrinkage can be
obtained. The total and elastic incremental strains can be computed from
Equations 3.28 and 3.59, respectively. The incremental stresses can further
be obtained. By accumulating all incremental values for each incremental
time, the total internal stresses and displacements at any time due to creep
and shrinkage can be solved.
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It should be noted that the most available creep and shrinkage models are
based on experiments on axial compression components. However, creep
and shrinkage factors can be treated the same in all directions, includ-
ing shear strains. Therefore, when computing the equivalent loads as
Equation 3.61, the incremental creep and shrinkage factors can be isolated
from matrix operations.

3.3.2 Calculation of equivalent loads due to
incremental creep and shrinkage

The development of concrete shrinkage at a given observation time depends
only on the concrete age when it is allowed to dry and is independent to
stresses. Thus, the equivalent loads due to shrinkage (the second term on
the right side of Equation 3.61) are straightforward. The computation of
creep equivalent load, however, is complicated because it depends on both
stresses and the concrete age when stresses are loaded. Figure 3.12 shows
generic stress changes of one component at different time steps. Each stress
change could be caused by external loads or creep/shrinkage redistribu-
tion. As time and the concrete age are considered when each stress change
applies, this diagram represents a typical loading history. Assuming stress
change at each time step is Ac;, the time ordinate at each time step is #;, and
the concrete age is 1o when the first stress change Ao, is loaded, the total
stress at any time step ; is

i
o; = E Ac; (3.62)
j=0
AG A
Ao,
1 Ac; g
A0y Ao,
Ao, Ac;
Ao,y
0 t, t t. > L
0 1 3 i1 &4 li+1  Loading time

T Toth—t Totiz—l Totti—f Age when loading

Figure 3.12 Stress changes and loading history of a concrete component.
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and the creep equivalent stress at the next time step is

cdo = ZAG,- [(p(t,-+1,ro +1; - to) - (p(tl-,ro +t - to)] (3.63)
=0

Considering IBTAGidU = K,Aa;, the creep equivalent nodal loads of an

element at time step #; can be written as
Ee - KeZAl«l/ |:(p(ti+1,’f() + t,- — t()) — (P(t,',’fo + t/' - to):| (364)
=0

where Ag; is the incremental displacements at time ¢; corresponding to
the stress change of Ac;. From Equation 3.64, it is obvious that the cal-
culation of creep equivalent load is separated from the element stiffness
matrix. Given the history of displacement changes due to any loading
types, including redistribution loads of creep and shrinkage themselves,
creep equivalent nodal loads at the next time step can be simply obtained
by Equation 3.64, and the displacement changes at the next time step can
be solved from Equation 3.61. Iterating this process through the entire
observation history (from the first loading time to a future time) with a
small time step, displacements and internal forces due to creep and shrink-
age at any time can be analyzed. When applying this method to bridge
analysis, causes of stress changes at any time, as shown in Figure 3.12,
include different types of external loads such as construction loads, struc-
tural weights, stage changes, prestressing, and redistribution of creep and
shrinkage themselves.

3.3.3 Automatic-determining time step

Considering the behavior of concrete creep and shrinkage, these effects
may need to be analyzed at five years or even 50 years after the structure
is built (Bazant et al. 2011). The small time step used in the previous
iteration should be determined based on the performance and accuracy.
As all creep theories assert that the creep development will decrease
gradually and cease eventually, the time step can be increased from a
smaller one at an earlier age to a large time span at a more matured
age. This adjustment can be done automatically by detecting a small
displacement change. With today’s advancement of modern computers,
when a bridge is modeled as a spatial frame, performance degraded due
to short time steps, such as a week or even shorter time, would not be a
consideration.
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3.3.4 A simple example of creep analysis

A three-span continuous bridge that is built span by span will be used as an
example here to illustrate the concrete creep behavior and the application
of time incremental analysis method. The example has three equal spans
with a span length of 30 m (Fan 1998). The first construction stage is the
casting of the first 36-m girder segment with the support of falseworks (first
span plus 6-m cantilever). The falseworks are removed after the concrete is
cured for one week. The second stage is to cast the next 30-m girder seg-
ment. After the concrete is cured for the same number of days (one week),
the last 24-m segment is cast as the last stage. The bridge is completed after
the last segment is cured for one week. The structural weight is 100 kN per
meter. In this model 3D frame elements are used.

Figure 3.13 shows moment distributions after the bridge is built when
creep effects are not considered. The moments at the first and second
interior bearings are -4,928 and -7,005 kN-m respectively. For compari-
son, both would be -9,000 kN-m if the three-span bridge is built all at
once. Figure 3.14 shows the final moment distributions eight years after
the bridge is built. Due to creep effects, moments at the interior bearings
become -8,283 and -8,926 kIN-m, respectively, revealing the tendency of
concrete creep that the internal forces distributions would eventually be

43 4625

79
5040 5302 5163

Figure 3.13 Moment distribution of a three-span continuous bridge built span by span,
without consideration of concrete creep considered (kN-m).
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Figure 3.14 Moment distribution of a three-span continuous bridge eight years after
built span by span, with consideration of concrete creep considered (kN-m).
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close to what it should be when the bridge was built in one time. More
detailed 2D and 3D illustrated examples, including creep and shrinkage,
are shown in Chapter 5 for PC bridges.

3.4 INFLUENCE LINE/SURFACE
LIVE LOADING METHOD

Live load analysis is a unique problem to bridge analysis and design. As
some bridge design specifications define that many vehicles with minimum
spacing are allowed to present in a lane, the simple search of maximum or
minimum positions by moving axles along an influence line will not work
well in general. A generic and effective influence line loading method that is
suitable for any type of live load definition is important in bridge analysis
and design. The traffic lane layouts in many bridges, such as interchanges
or curved bridges, can be complicated, and, therefore, spatial live loads
analysis becomes inevitable. Based on influence line loading, influence sur-
face loading with multiple traffic areas is another important topic in live
loading analysis, especially nowadays with advanced computer technolo-
gies, spatial analyses become essential to bridge designs.

In this section, the application of dynamic planning method in influence
line loading and the principle of multiple traffic areas in influence surface
loading will be introduced.

3.4.1 Dynamic planning method and its application
in searching extreme live loads

Live loads usually contain a single concentrated load, uniformed (or
called lane) loads, and vehicle loads. Searching for extreme positions of
vehicle loads is complicated in live load analyses. Locating the positions
or areas where a single concentrated load or uniformed loads reach the
extreme is simple. In this section, vehicle loads are used as examples to
illustrate the principle of dynamic planning method in search of extreme
positions.

Different bridge specifications define different vehicle loads, and these
definitions may be changed per traffic demands. Figure 3.15 shows a single
vehicle model and two typical vehicle processions. As shown in Figure 3.15a,
a vehicle can be described as a number of axles with constant axle weights
and spacing. Because both axle weights and spacing are fixed, given only
the location of its front axle on the influence line, its influence value can be
obtained. Therefore, it can be simplified as a concentrated load as shown in
Figure 3.15b. Figure 3.15c shows a typical vehicle procession that contains
identical vehicles as illustrated in Figure 3.15a with a minimum leading



90 Computational analysis and design of bridge structures

P, P, PP P P
| Ci1 &) G
Vehicle with fixed axle spacings Simplified denotation
(@ (b)
P, P, P P, P P, P,y P, P, P P, P, P, P P
| Co1| | G .G | 2m N C"’IJ | G .G )l >m )l C'H‘l | G ) G l
Procession of identical vehicles with a minimum spacing
(©
P P P

| >q | 2a |

L4

Simplified denotation of procession of identical vehicles
(d

2a 2a 2a, 2a, 2a 2a

Simplified denotation of procession containing overweighted vehicles

(e)

Figure 3.15 (a—e) Typical vehicle loads and vehicle processions.

and trailing spacing between other vehicles. When determining the extreme
positions of such a procession, these spacing are variables in addition to the
location of the first vehicle. As each vehicle can be treated as constant, this
type of procession can be simplified as shown in Figure 3.15d. Further, a
procession may contain one and only one overweight vehicle with different
leading and trailing spacing to other regular vehicles. Similarly, it can be
simplified as shown in Figure 3.15e.

Figure 3.16a shows an example of the influence line. The goal of search-
ing extreme live loads is to find the number and positions of vehicles on
the influence line that makes the influence value maximal or minimal.
Considering the minimum can be reached by the same procedures as the
maximum after reversing influence value signs, the following procedures
are illustrated for reaching maximum values only.

An extreme value function e(x) is introduced in the dynamic planning
method (Shi et al. 1987). The value of e(x) is the extreme influence value of a
particular vehicle or vehicle procession in the loading range from 0 to x. As
a longer range will not produce less influence value than a shorter range, e(x)
is a monotonically increasing function as shown in Figure 3.16b. Taking a
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Figure 3.16 (a) Influence line, (b,c) extreme influence value, and (d) finding vehicle
locations.

single vehicle as an example, Figure 3.16b shows its extreme value function
corresponding to the influence line shown in Figure 3.16a. When moving
the vehicle from 0 to a, the influence value keeps increasing until reaching
a peak at a, whereas the curve segment of e(x) from 0 to a keeps increasing
accordingly. When moving the vehicle farther from a, the influence value
stops increasing as a range with less or even negative values is reached. After
passing point b, where the influence line has a value greater than that at
point a, the curve resumes increasing until it leaves point ¢, from which the
influence line turns lower again.

Given an extreme function of a single vehicle within a range [0,/],
extreme position can be easily located by numerating e(x) in a backward
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order (i.e., going back from | to 0, the first position where e(x) starts
decreasing is the extreme position). In the example shown in Figure 3.16b,
location c is the first point from which e(x) starts decreasing. Therefore,
the extreme position for a single vehicle on the influence line as shown in
Figure 3.16a is c.

When determining the extreme function of a vehicle procession, iteration
is needed as a minimum spacing between vehicles is introduced. Assuming
the extreme value at current position x, e(x) is known, and the iteration
process to evaluate the extreme value at x + Ax is

e(x), ife(x+Ax—a)+v(x+Ax)<e(x)

e(x+Ax)= e(x+Ax—a)+v(x+Ax), if otherwise

(3.65)

where v(x + Ax) stands for the influence value of a single vehicle at posi-
tion x + Ax. Equation 3.65 would be clearer by attempting to place a vehi-
cle at x+Ax. As there is a mandatory minimum vehicle spacing a, the
preference for whether or not a vehicle is placed at x+ Ax (to produce
more influence value) depends on the total effect of this vehicle and the
maximum loading value on range [0,x + Ax — a], that is, e(x + Ax — a). If the
total effect is increasing from the current position, use it as the extreme
value at the next position. Otherwise, keep the extreme value the same for
the next position.

Once the extreme function of a vehicle procession is determined within
a range [0,/], the number of vehicles and their positions that cause the
maximum influence value can be located in a similar manner as searching
for a single vehicle. Taking the extreme function as shown in Figure 3.16d
as an example, the first decreasing point is [ and the search has to keep
going further back as more vehicles may be present. The second decreasing
point is [, after a spacing of a away from the first vehicle. After the third
vehicle is placed at [,, there would not be an allowed point at /5, even
though it keeps decreasing as it is less than a minimum distance from I,.
No vehicle should be placed in the range [l4,/;] as the extreme value does
not decrease in this area. All six vehicles can be located in this way as
shown in Figure 3.16d.

The process to determine the extreme positions for a procession that may
contain an overweight vehicle, as shown in Figure 3.15e, can be established
based on the earlier procedures for a procession that contains only normal
vehicles. As illustrated in Figure 3.15e, the total effect of this kind of pro-
cession is the sum of the influence values of overweight vehicles, following
normal vehicles and leading normal vehicles. The following vehicles can be
located by searching for e(x — a,) according to the definition of the extreme
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Figure 3.17 Extreme functions of (a) forward- and (b) backward-moving processions.

function. To determine extreme values due to leading vehicles, a similar
extreme function re(x) is introduced. As shown in Figure 3.17b, re(x)
defines the extreme value within the range [x,/] for a procession moving
backward from / to 0.

Having the extreme function for reverse-moving procession established,
searching the location and maximum value of a procession that contains
an overweight vehicle is equivalent to finding the maximum value of the
following equation:

L(x)=e(x—ay)+o(x)+re(x+a) (3.66)

where o(x) is the influence value of the overweight vehicle at position x.
Simply moving the overweight vehicle from 0 to | will give the maximum
value by Equation 3.66. The influence values of following and leading nor-
mal vehicles can simply be obtained from forward and backward extreme
functions, respectively. However, it should be noted that the finding of fol-
lowing vehicles’ positions on e(x) is from x —a, to 0, and the leading vehi-
cles’ positions on e(x) is from x +a; to /.

When implementing this method, the following issues should be taken
into consideration: (1) the length of the original influence line has to be
extended at both ends to ensure the last axle is moving out of range;
(2) the extreme positions and values obtained are based on moving vehicles
from O to [ (this value should be compared with that of moving vehicles
from [ to 0 which can be simply obtained by reversing the influence line);
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(3) when a procession contains an overweight vehicle, the maximum value
obtained from Equation 3.66 should be compared with a procession that
contains only normal vehicles, for possible mandated long leading and/or
trailing spacing of overweight vehicle; (4) the minimum values and posi-
tions can be solved in the same way with reversing signs of influence values;
and (5) an appropriate vehicle-moving step should be determined to main-
tain an accurate and a better-solution performance. In general, one-third to
one-half of a meter (1/3-1/2 m) is suitable for most longitudinal live load-
ing analyses, and one-fourth to one-third of a meter (1/4-1/3 m) is accurate
enough for transverse live loading discussed in Section 3.4.2.

3.4.2 Transverse live loading

When influence surface loading is needed or in some transverse distribution
analyses, transverse live loading analyses will be required. Most bridge speci-
fications have the transverse placement of a vehicle load defined, which can
be summarized as a series of fixed-axle vehicles moving along a given range.
The same concept and principles of the extreme function introduced in the
Section 3.4.1 can also be applied in transverse loading. As a multilane dis-
count may be applied when multiple lanes present per a particular specifica-
tion, each number of lanes should have a separate extreme function as shown
in Figure 3.18. When determining the extreme value with an attempt of add-
ing a new lane, it should be compared with what it was without adding a new
lane, as the multilane discount may be higher if added. Another special issue
in transverse live loading is the restrictions on vehicle moving, for example, a
minimum distance to curb is usually defined in most specifications.

3.4.3 Influence surface loading

As spatial analyses became essential in bridge analysis and design, tradi-
tional lateral load distribution theories and simplified calculation meth-
ods are gradually substituted by spatial structural analyses and influence
surface loading. Particularly for bridges with irregular shapes such as
interchanges, spatial analysis and influence surface loading are inevitable.

esx)
e3(x)
¢ e(x)
e |
0 ; >
¢ Moving range C+ W
— e ple >

Figure 3.18 Extreme functions of transverse loading.
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Figure 3.19 (a, b) Influence surface of a tied-arch bridge.

(b)

As an example shown in Figure 3.19, influence surface is a function of planar
coordinates. Based on the influence line loading method introduced in Section
3.4.2, the influence surface loading method can be developed with certain
assumptions.

The deck of a bridge with an irregular shape may be divided into dif-
ferent traffic areas. Figure 3.20a, for example, shows the plane view of
a generic bridge deck. On a plane, traffic regions may be overlapped as
seen in interchanges. A region on a plane can be defined by its center-
line, left width, and right width, and both widths are constant along
the entire region. Although the centerline of a region may be curved in
reality as regions Q, and Qj; shown in Figure 3.20a, it is assumed that

Left width
of a region

Regions may be overlapped
on the plane

Left width of a region Ql ____________
R Centerline of a region  _
Centerline of a region
Right width of a region | __ __ _____ I
, Centerline of a region

Right width

(a) Multiple traffic regions of a region

Influence [ines interpolated transversely from surface

(b) Unfold a region to a rectangle along its centerline

Figure 3.20 (a) Multiple traffic regions and (b) unfolding region to rectangle.
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the approximation by unfolding the region along its curved centerline
as a rectangle is acceptable in engineering. For example, region Q, in
Figure 3.20a can be represented by a rectangle similar to Figure 3.20b,
which is obtained by unfolding its curved centerline to a straight line.
Points on the straight centerline can be mapped to its curved centerline
one to one. Both left and right widths of the unfolded region are the same
as the curved region.

To be mathematically feasible and also considering the fact that traffic is
maintained within a lane, a vehicle procession of a traffic lane is lined up
longitudinally; no staggered vehicle in lateral is considered. Having these
assumptions set forth earlier, the searching of extreme live loads on a region
Q, can be outlined as follows:

1. Unfold the region along its centerline to a rectangular region

2. Divide the total width of the region into steps and establish longitu-
dinal influence lines at each transverse step by interpolating from its
original influence surface

3. Search maximum and minimum live load values and their corre-
sponding positions for each longitudinal influence lines in step (2)

4. Two transverse influence lines regarding maximum and minimum
values are formed

5. Search extreme live loads laterally by applying transverse live loading
on these two influence lines in step (4)

Once the extreme live loads positions and influence values on all regions
are found, the total extreme values and their positions are the sum of these
overall regions. More precisely, the lane discount in surface loading should
be considered regionally, rather than globally. For example, when loading
on a region Q;, the discount is determined according to lane combinations
only in this region. The concept of influence surface is applied to many
different types of bridge discussed in Chapters 5 through 12.
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Chapter 4

Reinforced concrete bridges

4.1 INTRODUCTION

Reinforced concrete (RC) was first introduced into bridge engineering in
the late nineteenth century, and it has become a major material for bridges
ever since then for its versatility, flexibility, and durability. RC bridges were
widely used during the reconstruction of Europe after World War II. In
general, a bridge that mainly uses RC for its major structural components
can be categorized as an RC bridge. For example, RC arch bridges, RC
beam-slab bridges, and RC rigid frame bridges are all considered as RC
bridges. Because of cracking, only partial of a concrete section is intact and
functional, the RC sectional strength to resist moment, shear, and tensile
is much lower than that of a prestressed concrete (PC). The cracking in
the tensile area, which is allowed in RC and actually does exist in services
state, poses potential corrosion risk on reinforce steels and thus deteriora-
tion of a cross section as a whole. The spanning capacity of an RC bridge
is limited to short to middle spans, and its application also depends on the
site environment.

Due to RC’s special material behavior and the existence of cracking,
several distinctive issues arise in both the structural analysis and the com-
ponent design of an RC bridge. For example, how to count for the variation
of sectional modulus from location to location when conducting structural
analyses, as effective area of a cross section is related to moment it resisted,
and when behaviors of concrete and steel have to be considered in separa-
tion are common questions an engineer may ask when modeling or design-
ing an RC bridge. To be more practical, cracking and steel reinforcement
to cross sections can be simply ignored in most generic structural analyses
for obtaining component design forces. Sectional modulus variation due to
cracking loss and steel reinforcement is minor with regard to global load
distributions. Having obtained design forces, special principles and codes
should be strictly followed when coming to component design phase. When
the ultimate capacity of an RC bridge is of interest, which is more often
the case for short- to medium-span RC bridges than medium- to long-span

99
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non-RC bridges, a full material nonlinear analysis is required. In such an
analysis, material behaviors of concrete and steel are considered in great
detail. For example, a specific constitutive relationship for steel RC as a
whole may be used, special concrete elements with consideration of the
existence of reinforcing steels can be developed, or concrete and steel are
separately modeled in the structural level.

Fiber-reinforced concrete (FRC) is a kind of concrete that contains
fibrous material for reinforcement to increase the structural integrity. FRC
contains short discrete fibers that are uniformly distributed and randomly
oriented. Fibers include steel, glass, synthetic, and natural fibers, which give
different structural properties. Several ultrahigh-performance concrete
(UHPC) bridges using FRC have been built in the United States (Fu and
Graybeal 2011). The addition of fiber to concrete was aimed primarily at
enhancing the tensile strength and postcracking behavior of concrete. FRC
behaves as regular concrete but with higher strength, especially tensile
strength. For highway bridge structures, FRC can be applied to overlays
in bridge decks, seismic- and explosion-resisting structures, and recently
UHPC bridges.

On the other hand, fiber-reinforced polymer (FRP) is a composite mate-
rial made of a polymer matrix reinforced with usually glass, carbon,
basalt, or aramid. FRP bars and grids have been commercially produced
for reinforcing concrete structures for over 30 years. FRP bars have been
developed for prestressed and non-prestressed (conventional) concrete
reinforcement. FRP has been used for strengthening structural members
of RC bridges that are structurally deficient or functionally obsolete due
to changes in use or consideration of increased loadings (Kachlakev 1998).
Many researchers have found that FRP composites applied to such mem-
bers provide reliable and cost-effective rehabilitation. FRP composites
are orthotropic materials with two constituents, that is, reinforcing and
matrix phases. The reinforcing phase material is fiber, usually carbon or
glass, which is typically stiffer and stronger, whereas the matrix phase
material is generally continuous, less stiff, and weaker. The behavior of
FRP-strengthened concrete structural members can be analyzed using
finite element method (FEM).

As detailed RC cracking analysis, most early finite element models of RC
were based on a predefined crack pattern. The recently developed smeared
cracking approach overcomes these limitations of unpredicted predefined
cracks and has been widely adopted for predicting the nonlinear behav-
ior of concrete. It uses isoparametric formulations to represent the cracked
concrete as an orthotropic material. More details of this subject are dis-
cussed in Section 4.4.2—Nonlinear Modeling.

In this chapter, RC bridge behavior at the material level, especially
the coworking of concrete and steel; characteristics of skewed slabs as a
common application of RC bridges; and different modeling methods are
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discussed in detail. Also, different analysis examples of beam—slab bridges
by using different modeling methods and analysis packages are included.
In Section 4.7, a study on a skewed, transversely post-tensioned slab bridge,
including nonlinear analysis, field survey and monitoring, and comparison,
is presented.

4.2 CONCRETE AND STEEL MATERIAL PROPERTIES

RC is made of concrete and steel, two materials with different physi-
cal and mechanical behavior. Concrete exhibits nonlinear behavior
even under low-level loading due to nonlinear material behavior, envi-
ronmental effects, cracking, biaxial stiffening and strain softening, and
time-dependent effects such as creep and shrinkage (Darwin 1993).
Reinforcing steel acts linearly in the working stress range until yielding,
and it interacts with concrete in a complex way. Sophisticated finite ele-
ment analysis (FEA) techniques can be used to accurately represent the
behavior of RC structures. Cracking, softening in compression, yielding
of steel, and bond slip are taken into account in modifying the analysis
procedure.

Because of the difference in the short- and long-term behavior of con-
stituent materials of RC, the popular method of representing RC consists
of developing separate models for concrete and steel and combining those
models either at the element level, through the addition of constitutive
matrices, or at the structure level, through the use of different elements for
each material. The presence of steel modifies the behavior of concrete in a
way that evolved into the technique of tension stiffening, in which consti-
tutive models for cracked concrete are modified to account for the ability
of concrete within the composite to carry tensile stress after cracking, in
contrast to a simple concrete element in which the stress-carrying capacity
drops rapidly following the formation of crack.

The stress—strain relationship of concrete elements in compression is non-
linear up to the ultimate strain and beyond. Several models for the stress—
strain relationship of concrete have been proposed in the past. At low levels
of stress, transverse reinforcement (stirrups) is hardly stressed; the concrete
behaves much like unconfined concrete. At stresses close to the uniaxial
strength of concrete, internal fracturing causes the concrete to dilate and
bear out against the transverse reinforcement, then causing a confining
action in the concrete. This confined concrete with suitable arrangement of
transverse reinforcement increases the strength and ductility of the concrete.
The enhancement of strength and ductility by confining the concrete is an
important aspect that needs to be considered in the design of structural con-
crete members, especially for extreme events such as seismic activity, blast
effects, or vehicle crashes.
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The stress—strain relationships corresponding to unconfined concrete,
confined concrete, and longitudinal steel reinforcement are discussed in the
Sections 4.2.1 through 4.2.3.

4.2.1 Unconfined and confined concrete

Numerous stress—strain relationships for unconfined and confined concrete
were developed. The two most popular ones based on their usage are listed
here. Kent and Park (1971) proposed a stress—strain equation for both
unconfined and confined concrete, in which Hognestad’s (1951) equation
was generalized to describe the postpeak stress—strain behavior in a more
complete manner. In this model, the ascending branch is represented by
modifying the Hognestad second-degree parabola by replacing 0.85f with
f and strain at peak stress for unconfined concrete €., with 0.002. Kent
and Park modified their model again in 1982 as shown in Figure 4.1.

fo=f| 25 —(gj (4.1)

8CO 8CO

Mander et al. (1988a) first tested circular, rectangular, and square full-
scale columns at seismic strain rates to investigate the influence of different
transverse reinforcement arrangements on the confinement effectiveness
and overall performance. Mander et al. (1988b) went on to model their
experimental results. It was observed that if the peak strain and stress
coordinates (g, f.) could be found, then the performance over the entire

cc

stress—strain range was consistent, regardless of the arrangement of the

ff (0.002K, KFf)

Confined concrete

Unconfined concrete

» €

c

Figure 4.1 Stress—strain behavior of compressed concrete confined by rectangular steel hoops.
(Data from Kent, D.C. and Park, R., J Struct Div., 97(ST7), 1969-1990, 1971.)
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Figure 4.2 Stress—strain relation for monotonic loading of confined and unconfined
concrete. (Data from Mander, J.B., Priestley, M.J.N., and Park, R., | Struct Eng.,
114(8), 1804—1826,1988b.)

confinement reinforcement used. The equations are listed here and shown
in Figure 4.2.

Lf _ 7’1(86/8“) (423)
fcc (n - 1) + (gc/gcc)n
in which
ne_ B (4.2b)
Ec - Esec
E. = 5000,/f. (both in a unit of MPa) (4.2¢)
E, =le (4.2d)
SCC

where €, is the strain at the maximum compressive strength of confined
concrete f,,

€ = €00 {1+5[%—1I‘ (4.2¢)

and f,_, the compressive strength of confined concrete, is given as

f.=f. {—1.254+2.254 1+ 7'?;"7 -2 ]’:f ] (4.2f)
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in which f; is given by

'

1
ﬁf = zkepsfyh (42g)

where:
p,is the ratio of the volume of transverse confining steel to the volume
of confined concrete core
f,» is the yield strength of transverse reinforcement
k, is the confinement coefficient

For circular hoops

, 2
k, = M (4.2h)
1-pe

For circular spirals

ke _ 1—(5'/2615) (4.2i)
1_p6c

where:
P.c is the ratio of the area of longitudinal reinforcement to the area of
core of the section
s’ is the clear spacing between spirals of hoop bars
d, is the diameter of spiral

Due to its generality, the Mander et al. (1988b) model (Figure 4.2) has
enjoyed widespread use in design and research despite a few shortcomings.

4.2.2 Reinforcing steel

The stress—strain relation of reinforcing steel exhibits an initial linear
elastic portion, a yield plateau, a strain-hardening range in which the
stress again increases with strain, and finally a range in which the stress
drops off until fracture occurs. The length of the yield plateau and strain-
hardening regions decreases as the strength of the steel increases. For
monotonic loading, reinforced steel is represented as either an elastic—
perfectly plastic material or an elastic strain-hardening material. It can
also be represented using a trilinear stress—strain curve or a complete
stress—strain curve. Most often elastic—perfectly plastic representation is
selected (Darwin 1993).

In the analysis of moments and axial loads, two different models of the
stress—strain performance of the reinforcing steel may be adopted. For nominal
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Figure 4.3 Stress—strain curve for steel. (a) True stress—strain curve for steel.
(b) Idealized steel stress—strain relationships.

design capacities, an elastoplastic model is customarily adopted to provide
a dependable estimate for design. For the exact analysis of existing RC
members, a realistic stress—strain model should be applied using expected
values of the control parameters. Such a model (Figure 4.3a), conveniently
posed in the form of a single equation, is given as:

P
ESSS Esy — &
f= 200-05 H(fu=F)| 1= 20p 20p) 003 (4.32)
{1+ Esgs/fy‘ } {ssu — &g t |8 — & }
where constant P can be represented as
_ Esh(gsu - Ssh) (4.3b)

(fsw _fy)
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For the longitudinal steel, a bilinear stress—strain relationship was esti-
mated and employed (Figure 4.3b).

4.2.3 FRC and FRP

As mentioned in Section 4.1, the cracking behavior of FRC can be studied
using the smeared crack approach. To determine the material properties of
steel-FRC (SFRC), the inverse analysis techniques can be used to establish
the stress—strain response of SFRC. This technique obtains the flexural
response from bending tests to back calculate the stress—strain relationship.
Both M-¢ (moment—curvature) and P-3 (force—displacement) responses
can be obtained from the test. The measured M—¢ or P-8 responses reflect
the influence of the steel fiber parameters and the concrete matrix.

4.2.3.1 Inverse analysis method

For this method, a three-step procedure is used to calculate the P-3 response
of SFRC beams (Elsaigh et al. 2011a):

1. Assume a 6—¢ relationship for the SFRC.
2. Calculate the M—¢ response for a section.
3. Calculate the P-4 response for an element.

At the end of either step (2) or (3), the results from the analysis are
compared to experimental results and adjustments are made to the c-¢
response until the analytical and experimental results agree within accept-
able limits.

Based on the study by Elsaigh et al. (2011a and b), the tensile c—¢ response
and results obtained from the nonlinear FEA of the beam were used in the
analysis involving an SFRC slab manufactured using a similar material of the

(o)
0 —— | Tension
€ €0 Ot [~ _ll @ R
&0 €n € e

Compression

| ©

Figure 4.4 Stress—strain response of SFRC.
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beam. Figure 4.4 shows the shape of the proposed 6—¢ relationship used in
this analysis. The mathematical form of the 6—¢ relationship is expressed as
follows:

G for (g, <e <gy)
Es for (e, <e<gy)
ofe) = (4.4a)

G+ (e—&y) for (e0<e<e,)

Gu+h (e—gy) for(ey <e<g,)

where:

(0}

E — cu
€c0
Gy —O

Y= w200 (4.4b)
€11 €10

—O

}\’ — tu

Ew |

In Figure 4.4, 0,, and ¢, represent the cracking strength and the corre-
sponding elastic strain, respectively; o,, and €, represent the residual stress
and the residual strain, respectively, at a point where the slope of softening
tensile curve changes; €, is the ultimate tensile strain; E is Young’s modulus
for the SFRC; 6, and €, are the compressive strength and the analogous
elastic strain, respectively; and €, is the ultimate compressive strain.

As mentioned in Section 4.2.1, in compression, the concrete stress—strain
relationship can be divided into ascending and descending branches. The
behavior of FRP-confined concrete for flexural members can be assumed
as similar to that of stirrup-confined concrete. Hence, confinement has no
effect on the slope of the ascending part of the stress—strain relationship, and
it is the same as for unconfined concrete, but not in the descending part in
Figure 4.2. The compressive flexural strengths for both unconfined and con-
fined concrete are the same and equal to the cylinder compressive strength.
Figure 4.5 shows the uniaxial stress—strain curve for carbon and glass FRP
composites in the fiber direction. For a more generalized expression, many
studies show that instead of maintaining constant after compressive strength
0., the o—¢ relationship may descend and the rate of descending is depen-
dent on VI/d, where V,is the volume ratio of fiber to concrete, [ is the fiber
length, and d is the fiber diameter (Gao 1991).
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Figure 4.5 FRP uniaxial stress—strain curve for carbon and glass FRP composites in the
fiber direction.

4.3 BEHAVIOR OF NONSKEWED/SKEWED
CONCRETE BEAM-SLAB BRIDGES

Skew effect occurs in all types of bridge. It is discussed here because the
effect is especially true and can be easily interpreted for concrete slab bridges.
Nonskewed bridges, also known as straight, normal, or right bridges, are built
with the longitudinal axis of the roadway normal to the abutment and there-
fore have a skew angle of 0°. As described in the American Association of State
Highway and Transportation Officials (AASHTO) Load Resistance Factor
Design (LRFD) Bridge Design Specifications (2013a), the skew angle of a bridge
is defined as the angle between the longitudinal axis of the bridge and the
normal to the abutment or, equivalently, as the angle between the abutment and
the normal to the longitudinal axis of the bridge as shown in Figure 4.6. Skewed
bridges are often built due to geometric restrictions, such as obstacles, com-
plex intersections, rough terrain, or space limitations (Menassa et al. 2007).

As early as 1916, design recommendations were made to avoid building
skewed bridges because of the many difficulties that arose when designing
them, such as complex geometry and load distributions. However, because
of increasingly complex site constraints, an increasing number of skewed
bridges have been built. In addition to the complex geometry and load dis-
tributions caused by the skew, the skew angle can affect the performance of
the substructure in conjunction with the superstructure, causing a coupling
of transverse and longitudinal modes because of wind and seismic loads.
Skew angles, in addition to the length-to-width ratio, also affect whether
the bridge undergoes beam bending or plate action. As the skew increases
or the length-to-width ratio of a bridge decreases, the bridge behaves more
similarly to a plate than a beam.
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Figure 4.6 Description of a skew angle using a skewed bridge over a highway. (Data from
Menassa, C. et al., Journal of Bridge Engineering, 12, 205-214, 2007.)

A nonskewed bridge deck behaves in flexure orthogonally in the lon-
gitudinal and transverse direction. The principal moments are also in the
traffic direction and in the direction normal to the traffic. The slab of this
type of bridges bends longitudinally leading to a sagging (or called positive)
moment as it is shown in Figure 4.7. The load from the slab is transferred
to reaction line directly through flexure. There will be a small amount of
twisting moment because of the bidirectional curvature, and it will be
negligible.

The force flow between the support lines in skew slabs is through the
strip of area connecting the obtuse-angled corners, and the slab primarily
bends along the line joining the obtuse-angled corners. The width of this
primary bending strip is a function of skew angle and the ratio between the
skew span and the width of the deck (aspect ratio). The areas on either side
of the strip do not transfer the load to the supports directly but transfer the
load only to the strip as cantilever as shown in Figure 4.8c. Hence the skew
slab is subjected to twisting moments. This twisting moment is not small
and hence cannot be neglected (Rajagopalan 2006). Because of this, the
principal moment direction also varies, and it is the function of skew angle
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Figure 4.7 Deflection profile of a nonskewed deck.

and width-to-span ratio. The load is first transferred from the strip to the
support over a defined length along the support line from the obtuse-angled
corners. Later the force gets redistributed for full length. The force flow
is shown in Figure 4.8a and b where the thin lines in Figure 4.8a indicate
deformation shape. The distribution of reaction forces along the length of
the supports is shown on both the support sides.

For skewed bridges, the deflection of the slab is not uniform or sym-
metrical as in the case of nonskewed deck. There will be warping that
leads to higher deflection near obtuse-angled corner areas and less deflec-
tion near acute-angled corner areas. For small skew angles, both free edges
will have downward deflection but differing in magnitude. For large skew
angles, the maximum deflection is near the obtuse-angled corners. Near
the acute-angled corner, there could be even negative deflection resulting
in S-shaped deflection curve with associated twist. Increase in skew angle
decreases bending moments but increases twisting moments (Rajagopalan
2006).

The characteristic differences between the behavioral aspects of a skewed
deck and a nonskewed deck are as follows (Rajagopalan 2006):

e High reaction at obtuse corners.
® Possible uplift at acute corners, especially in the case of slab with very
high skew angles.
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Figure 4.8 (a—c) Force flows in a skewed deck.

® Negative moment along the support line and high shear and high
torsion near obtuse corners. Sagging moments orthogonal to abut-

ment in the central region.

* At free edges, maximum moment nearer to obtuse corners rather than

at the center.

® The points of maximum deflection toward obtuse-angled corners (the big-
ger the skew angle, the more shift of this point toward the obtuse corner).

* Maximum longitudinal moment and also the deflection reduce with
the increase of skew angle for a given aspect ratio of the skew angle.

® As skew increases, more reaction is thrown toward obtuse-angled
corners and less on the acute-angled corner. Hence the distribution of

reaction forces is nonuniform over the support line.

® For a skew angle up to 15° and skew span-to-right width ratio up to 2, the

effect of skew on principal moment values and its direction is very small.

* For a skew angle more than 15° the behavior of the slab changes

considerably.

Ilustrated examples are provided in Sections 4.5 through 4.7.
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4.4 PRINCIPLE AND MODELING OF CONCRETE
BEAM-SLAB BRIDGES

The selection of the most appropriate modeling scheme depends on the
nature of the information that is required. The first type of analysis could
be performed with a linear elastic model, and the second type could be con-
ducted with a more sophisticated RC model that is selected to represent the
key aspects of nonlinear behavior for a particular structure or structural
member.

4.4.1 Linear elastic modeling

The simplest form of an RC bridge is the RC slab bridge of solid sections
or void sections. As described in Chapter 2, it can be simplified as a beam
or a grid. The solid section can be idealized as an isotropic plate with the
equivalent stiffness calculated from Equation 2.5. The voided section is
idealized as an orthotropic plate, that is, a continuous medium with dif-
fering stiffness in directions parallel and perpendicular to the voids. The
equivalent stiffness can be calculated from Equation 2.6 for rectangular
void block or from Equation 2.7 for circular block (Sen et al. 1994).
Analysis of slab bridge decks using FEM involves the modeling of a con-
tinuous bridge slab as a finite number of discrete segments of slab or elements
(Hambly, 1976). Generally all elements lie in one plane and are interconnected
at a finite number of points known as nodes. The most common types
of elements used are quadrilateral in shape, although triangular elements
are sometimes also necessary (O’Brien and Keogh 1999). Some types of
element, such as plate element, do not model in-plane distortion and con-
sequently the nodes have only three degrees of freedom, namely, out-of-
plane translation, and rotation about both in-plane axes (Timoshenko and
Woinowsky-Krieger 1959). No particular problem arises from using ele-
ments that allow in-plane deformation in addition to out-of-plane bending,
but the support arrangement chosen for the model must be such that the
model is restrained from free body motion in either of the in-plane direc-
tions or rotation in that plane. Such analyses are necessary only if they are
specifically required to model in-plane effects, such as axial prestress.
Finite element models, in which the elements are not at all located in
one plane, can be used to model bridge decks, which exhibit significant 3D
behaviors. The elements used for the modeling of slab bridge decks are flat
shell elements, which can model out-of-plane bending in combination with
in-plane distortion. The material properties of the elements are defined in
relation to the material properties of the bridge slab. In case of bridges
that are idealized as isotropic plates, only two elastic constants need to be
defined for the finite elements, E and v. Geometrically orthotropic bridge
decks are frequently modeled using materially orthotropic finite elements.
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For materially orthotropic finite elements, five elastic constants, E, E
v,, and v,, need to be specified.

In the third illustrated example with slab bridge decks, in-plane orthotropy
was disregarded as the analysis tool used only permits bending orthotropy.
However, in-plane (axial) and out-of-plane (bending) effects are uncoupled,
and therefore this approximation does not affect comparisons for live load
effects (bending) obtained from the model tests.

As described in Chapter 3, the finite element response to applied
loading is based on an assumed displacement function. This function
may be applicable only to the elements of certain shape; quite often the
program will allow the user to define the elements that do not conform
to this shape. Recommendations for FEA (O’Brien and Keugh 1999) are
listed as follows:

Gy

v

1. Regular-shaped finite elements should be used wherever possible.
These should trend toward squares in the case of quadrilateral ele-
ments and toward equilateral triangles in the case of triangles. In the
case of quadrilateral elements the perpendicular lengths of the sides
should not exceed 2:1 and no two sides should have an internal angle
greater than 135°.

2. Mesh discontinuities should be avoided.

3. The spacing of elements in the longitudinal and transverse directions
should be similar.

4. Elements should be located so that nodes coincide with the bearing
locations.

5. Supports to the finite element model should be chosen to closely
resemble those of the bridge slab.

6. Shear forces near points of support tend to be unrealistically large
and should be treated with skepticism. However, results at more than
a deck depth away from the support have been found in many cases
to be reasonably accurate.

A beam-and-slab or cellular bridge deck may require a 3D FEA. It is possi-
ble to approximate the behavior of slabs and webs to thin flat shells, which
can be arranged in 3D assemblage. At every intersection of shells lying in
different planes, there is an interaction between the in-plane forces of one
shell and the out-of-plane forces of the other, and vice versa. For this reason
it is essential to use finite elements, which can distort under plane stress
as well as plate bending. Because it is assumed that for flat shells, in-plane
and out-of-plane forces do not interact within the plate, the elements are
in effect the same as a plane stress element in parallel with a plate (or flat
shell) bending element.

There is no logical limit to the cellular complexity, structural shape, or
support system of a bridge that can be analyzed with a 3D flat shell model.
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4.4.2 Nonlinear modeling

In nonlinear modeling of a RC structure, reinforcing steel can be modeled
as the following:

1. Equivalent uniaxial material that is distributing throughout the finite
element; often referred to as smeared steel (smeared model)

2. Discrete bars connected to the nodes in the finite element model (dis-
crete model)

3. Uniaxial element that is embedded in a larger finite element (embed-

ded model)

All three techniques involve the assumption of a perfect bond between steel
and concrete, and in general its selection is based on the ease of application.
The discrete and smeared representations were used more often. Surveyed
by Darwin (1993), all models represent the steel and concrete as separate
materials, whereas some consider the presence of steel in the development
of the concrete material model, but all add the steel constitutive or stiffness
matrix to the element or global matrix stiffness, respectively, as a separate
uniaxial material. Although it is understood that bond slip will occur locally
in the vicinity of flexural and shear cracks, members are designed so that the
reinforcing steel is adequately anchored and thus the anchorage does not play
a role in the strength of members in practice. Many models have been devel-
oped that totally ignored slip between the reinforcing steel and the concrete.

For models with smeared steel, the perfect bond relationship is the easiest
to represent because it simply involves overlaying the constitutive matrix
of the steel with the concrete element. For models with discrete steel, per-
fect bond also represents an easy solution, because the displacement of the
nodal points is the same for both the steel and the concrete.

Bond slip can be modeled using both the discrete and distributed repre-
sentation. Bond stress—slip relationships may be linear or nonlinear. Special
link or bond zone elements are usually used in conjunction with discrete
steel representations, whereas constitutive laws are used to model bond slip
with distributed steel representations.

4.4.2.1 Cracking and retention of shear stiffness

The smeared cracking model procedure represents cracked concrete as an
orthotropic material. After cracking occurred, the modulus of elasticity of
the material is reduced to zero perpendicular to the principal tensile stress
direction. This procedure has the effect of representing many finely spaced
(or smeared) cracks perpendicular to the principal direction. The smeared
crack concept fits the nature of the finite element displacement method, as
the continuity of the displacement field remains intact.
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The use of shear modulus, BG (with 0 < B < 1), known as shear
retention, improved most of numerical difficulties and improved the real-
ism of cracking phenomena generated during the FEAs. A variable value
of reduction factor has been selected to represent changes in shear stiffness
(Darwin 1993).

As a general rule, moderately sophisticated elements such as four-node,
two-dimensional isoparametric elements and eight-node, three-dimensional
brick elements worked well. These elements usually provide the best results
when used in conjunction with four- and eight-point Gauss integration,
respectively. Higher-order elements provide locally more realistic defor-
mation and strain fields. For macroscopic representation, element size
and consideration of strain softening (fracture considerations) may not be
important.

For better understanding the behavior of structures including general
crack locations as well as concrete and steel stresses, it is advised to have
a more refined mesh and a model that includes fracture considerations for
concrete. Also, to capture the nonlinear behavior, the load step size must
be kept small.

4.4.3 FRC/FRP modeling

Researchers have studied the behavior and modeling of RC members
strengthened with FRP composites using FEM. The finite element model
uses a smeared cracking approach for the concrete and 3D-layered elements
to model FRP composites.

For research or forensic study purposes, 3D RC elements and layered
solid elements can be used to simulate the behavior of FRP-strengthened
RC structural elements (e.g., beams) using nonlinear FEM packages, such
as ANSYS (2005). For RC, the 3D solid element (SOLID65 in ANSYS) with
eight nodes and three degrees of freedom at each node, translations in the
nodal x, y, and z directions, can be used. This element is capable of plastic
deformation, creep, crushing in concrete, and cracking in three orthogonal
directions at each integration point. Solid elements simulate the nonlinear
material behavior with a smeared crack approach. When cracking occurs at
an integration point, material properties are adjusted to effectively model a
smeared band of cracks, rather than discrete cracks.

When a principal stress at an integration point in a concrete element
exceeds the tensile strength, stiffness is reduced to zero in that principal
direction perpendicular to the cracked plane. Cracking can be simulated
at each integration point in three directions. FRP composites are modeled
with 3D-layered structural solid elements (SOLID46 in ANSYS) having the
same number of nodes and degrees of freedom as the concrete elements.
The solid element allows for different material layers with different orienta-
tions and orthotropic material properties in each layer. Steel reinforcement
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bar can be modeled with a 3D truss (or spar) element (LINKS8 in ANSYS).
The truss element has two nodes and three degrees of freedom at each dis-
crete node, translations in the nodal x, y, and z directions.

4.5 2D AND 3D ILLUSTRATED EXAMPLES:
THREE-SPAN CONTINUOUS SKEWED
CONCRETE SLAB BRIDGES

This example of a three-span continuous skewed RC slab bridge was extracted
from a reference book by S. H. Park (2000). Plane, elevation, and cross-sectional
views of the bridge are shown in Figure 4.9, and its computer rendering by
Merlin-DASH® (Fu 2012) is shown in Figure 4.10. For production modeling
of load-rating purpose, conventional elastic sectional modeling technique,
instead of nonlinear modeling as described in Section 4.3.2, is used.

Two different linear elastic models were built for comparison. First-line
strip model was built by Merlin-DASH, customized bridge software for
RC, PC, and steel girders. For a slab bridge, a unit width of 12” (300 mm),
shown as a straight strip line in Figure 4.10, is assumed for modeling and
analysis purpose.

Based on AASHTO LRFD specifications (2013a), the equivalent width
of longitudinal strips per lane for both shear and moment with more than
one lane loaded, which is the case here for comparison, is
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Figure 4.9 Plane, elevation, and cross-sectional views of the skewed RC slab bridge.
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Single-strip modeling

Figure 4.10 Example | skewed RC slab bridge computer rendering by Merlin-DASH.

E=84.0+1.44/LW, slzﬁﬂ (4.5a)
L

where:
E is the equivalent width (in)
L; is the modified span length, less than 60" (22.6’ or 6.9 m in this case)
W, is the modified edge-to-edge width, less than 60’ (36" or 11 m in
this case)
W is the physical edge-to-edge width of the bridge
N, is the number of design lanes (two lanes in this case)

In this example one lane of loading is distributed within the equivalent
width of 125.077,10.42" (3.18 m). For skewed bridge, the longitudinal force
effect may be reduced by the factor » with a skew angle of 8 in degrees
(42° in this case):

r=1.05-0.25 tan® (4.5b)

This correction factor calculated is 0.825. Because the model is a one-foot
strip, the live load distribution factor within this one-foot strip can be con-
sidered as 0.0791 (=0.825 x 1/10.42’) for this example.

The second model as shown in Figure 4.11 is a more sophisticated finite
element model, with the whole bridge, including its skewness, modeled by
CSiBridge®. The bridge is a three-span skewed concrete slab bridge. It con-
sists of 16” (406-mm) thick flat slab supported by abutments and bents.
The slab is connected at its bottom to the abutments and bents. Abutments
are supported by fixed foundation springs. Bents consist of bent caps and
columns. The column bases are fixed and moments are released at the top.
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Figure 4.11 Example | skewed RC slab bridge modeling by CSiBridge.
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Figure 4.12 Merlin-DASH example | dead and live load moment results (kip-ft).

The concrete slab is modeled with shell elements, whereas abutments are
modeled with frame elements. The bent caps and columns are also modeled
with frame elements. Their comparison results are shown in Figure 4.12
for Merlin-DASH line strip model and in Figure 4.13 for CSiBridge finite
element model, respectively. From Merlin-DASH program the maximum
positive moment for dead load is found to be 12.3 kip-ft/ft (54.7 kN-m/m),
whereas CSiBridge finite element model shows 286 kip-ft across the whole
normal width of 26.8" (8.17 m), which is about 10.7 kip-ft/ft (47.6 kN-
m/m). As it is known that dead load distributions of a straight bridge
should be very close from one model to another or from one program to
another, the difference of this skewed example from a 2D to 3D model
reveals that the 2D modeling adopting an equivalent width is conservative
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Bridge response plot
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Figure 4.13 CSiBridge results. (a) Dead load moment diagram. (b) Live load moment
envelop.

in the analysis of a skewed bridge. Another benefit of using 3D finite element
model is that nonuniform moment distribution of the entire bridge due
to skewness can be obtained, not by assuming the uniform distribution
cross section-wise but by the line strip model. Other moment comparisons
are shown in Table 4.1. It is concluded that for this three-span continu-
ous concrete slab bridge, finite element model assuming two lanes loaded
with HL-93 vehicle on each lane provides more accurate results, whereas

Table 4.1 Comparison of moments based on line strip and FEM methods

Deadllive Line strip moment in FEM moment in k-ft/ft

moment kip-ft/ft (kN-m/m) (kN-m/m) Location in ft (m)
Dead positive 12.3 (54.7) 286/26.8 = 10.7 (47.6) 9.24 (2.8)
Dead negative —-15.3 (-68.1) —-665/32 = -20.8% (-92.4) 22.6 (6.9)
Live positive 22.3 (99.2) 333/32 =10.4 (46.3) 1.3 (3.4)
Live negative -16.9 (-75.2) —-647/32 = -20.2* (—-89.9) 22.6 (6.9)

2 If the width along the skewed line 43’ is used, dead negative moments are 15.5 and 15.0 kip-ft/ft,
respectively.
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simulated line beam model gives more conservative results for most of the
locations.

4.6 2D AND 3D ILLUSTRATED EXAMPLES:
RC T-BEAM BRIDGE

This example of a single-span RC T-beam bridge was adopted from AASHTO
LRFD manual (2013b). Cross-sectional view of the bridge is shown in
Figure 4.14. The simple span concrete T-beam bridge consists of 6” thick
concrete deck and four monolithically casted concrete beams. This is a non-
skewed bridge and ideal for line girder modeling. The beams are supported
at the ends by the abutments connected at the bottom, and its computer ren-
dering by Merlin-DASH (Fu 2012) is shown in Figure 4.15. For production
modeling of load-rating purpose, conventional elastic sectional modeling
technique, instead of nonlinear modeling as described in Section 4.3.2, is used.

Two different linear elastic models were built for comparison. First-line
girder model was built by Merlin-DASH. For the T-beam bridge example,
a T-beam with flange width of 6'-6 1/4” (2.0 m), shown as a straight beam
line (Figure 4.15), is considered for modeling and analysis purpose.

Based on AASHTO LRFD specifications (2013a), the distribution of live
loads for moment in interior beams with more than one lane loaded, which
is the case here for comparison, is
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Figure 4.14 (a, b) Cross-sectional views of the T-beam bridge.
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Single-beam modeling

Figure 4.15 T-beam bridge computer rendering by Merlin-DASH.

0.6 0.2 0.1
0.075+ (Sj [SJ Ky 3 (4.6a)
9.5 L 12.0L¢;

where:

S is the spacing of the beam in feet (6.52" or 2.0 m in this case)

L is the span of the beam in feet (26’ or 7.9 m in this case)

t, is the depth of concrete slab in inches (6” for the flange thickness or
152 mm in this case)

K, is the longitudinal stiffness parameters in in* (calculated as
98,280 in* or 4.09 x 10'° mm* in this case)

n is the modulus ratio between the beam and deck

I is the moment of inertia of the beam

e, is the distance between the centers of gravity of the beam and deck

K, =n(l + Aef,) (4.6b)

The second model as shown in Figure 4.16 is a more sophisticated finite
element model with the whole bridge modeled by CSiBridge. The concrete
beam and deck are modeled with shell elements. The abutment is frame ele-
ments. The abutment is fixed at the bottom.
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Deck (shell element)

Beam (shell element)
Abutment (frame element)

Figure 4.16 T-beam bridge computer model by CSiBridge.

The comparison results are shown in Figure 4.17 for Merlin-DASH
line girder model and in Figure 4.18 for CSiBridge finite element model,
respectively. From Merlin-DASH program the maximum positive moment
for dead load is 112.6 kip-ft (152.7 kN-m), whereas CSiBridge finite
element model shows 102.2 kip-ft (138.6 kN-m). In the live load analy-
sis, the line girder program is assuming HL-93 vehicle(s) with AASHTO
distribution factor, whereas finite element model has two lanes loaded
with HL-93 vehicle on each lane. It can be seen that for a normal girder
bridge, the single-beam model is comparable with the 3D finite element
model (Table 4.2).
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Figure 4.17 Merlin-DASH dead and live load moment results (kip-ft).
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Bridge response plot
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Figure 4.18 CSiBridge results. (a) Dead load moment diagram. (b) Live load moment
envelop.

Table 4.2 Comparison of moments based on line girder and FEM methods

Line strip moment in FEM moment in kip-ft
Deadl/live moment kip-ft (kN-m) (kN-m) Location in ft (m)
Dead positive 112.6 (152.7) 102.2 (138.6) 13 (4)
Live positive 285.5 (387.1) 183.3 (248.6) 13 (4)

4.7 3D ILLUSTRATED EXAMPLES: SKEWED SIMPLE-SPAN
TRANSVERSELY POST-TENSIONED ADJACENT
PRECAST-CONCRETE SLAB BRIDGES—
KNOXVILLE BRIDGE, FREDERICK, MARYLAND

This illustrated example is a transversely post-tensioned bridge, which is
nonlinear modeled to study the ultimate behavior after shear key joints’ crack-
ing. This is a two-lane simply supported single-span bridge with a 6.78-m
span and a 31.4° skew angle. The superstructure consists of eight adjacent
1.22 m x 0.381 m x 7.12 m PC beams and a typical 127-mm minimum
thick composite concrete deck, as shown in Figure 4.19a. The beams were
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Figure 4.19 Existing post-tensioned Knoxville slab bridge, Maryland. (a) Cross section.
(b) Plan view of precast beams and post-tensioning tie rods. (c) Plan view of

the strain transducer locations.
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transversely post-tensioned using four 25.4-mm diameter tie rods tensioned
to 355.9 kN and placed normal to the beams as shown in Figure 4.19b. Load
test was performed to measure the short-term live load strains on the bot-
tom and top surfaces of the bridge as a test vehicle drove over the bridge.
The strain data from the FEA model were compared to the strain data from
the field test, and then the model was refined based on the varying material
strengths until the results were sufficiently close to the field data.

Four main components composed the FEA model of the bridge: the pre-
cast prestressed solid concrete beams, the prestressing strands, the transverse
post-tensioning, and the concrete overlay. The precast-concrete beams and
the concrete overlay were modeled with solid brick elements, and the preten-
sioning strands in the precast-concrete beams and the post-tensioning tie rods
were modeled with link elements (Fu et al. 2011). In the first stage analysis,
concrete is assumed cracked between beams along the bonding so nonlinear
analysis was adopted. For simulating the effect of shear friction after crack
of the shear keys, contact elements (CONTA174 & TARGE170), in the finite
element program ANSYS, were employed at the location of interface between
beams. Contact friction is a material property that is used with the contact
elements and is specified through the coefficient of friction, which was taken
as 0.6 for the interface between slab beams. Both the solid brick and the link
elements have three degrees of freedom (translations) at each node. Because
this is for study and State of Maryland (U.S.) standard-generating purpose,
very refined models were made to line up all skewed angles, rod orientations,
and beam details. There were 46,080 solid brick elements and 3,520 link ele-
ments for a total of 49,600 elements for this skewed bridge.

The transverse strain from the FEA model, as shown in Figure 4.20,
shows a close fit to the field data with strain transducers marked 3215
(underneath) and 1641 (top side) along the longitudinal direction in
Figure 4.19c. The stress distribution at the concrete overlay—beam interface
and the top surface was then analyzed to examine the cause of the cracks
on the top surface of the concrete overlay. Generally, the greatest transverse
tensile stresses, with a potential of concrete cracking, exist near the abut-
ments and between the beams along the shear keys. With the model proved
valid, a series of parametric study of different post-tensioning forces and
configurations were conducted. The first stage is to study the level of post-
tensioning forces (Fu et al. 2010) by nonlinear analysis. Figure 4.21 indi-
cates that each beam behaves independently under wheel loads without a
transverse post-tensioning force. Therefore, only beams with applied wheel
loads show displacements, while the initial displacements of other beams
experience zero. Eight FEM bridge models with different span lengths
(6.10, 7.62, 9.14, 10.67, 12.19, 13.72, 15.24, and 16.67 m) were gener-
ated. As the transverse post-tensioning force of rods increases, displace-
ment significantly decreases and is stabilized approximately at 338 kN of
the post-tensioning force.
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Figure 4.20 Strain transducer nos. 3215 and 64| parallel to the slabs on the bottom
surface of beam 7.
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Figure 4.21 Displacements at midspan for different transverse post-tensioning forces.

Then, a second-stage parametric study on the orientation of the tendons
was conducted (Fu et al. 2012) on skewed bridges. In Figure 4.22, transverse
stress contour between concrete overlay and precast beam interface for a
7.6 m, 30° skewed bridge is shown. For comparison purpose, two types of
tendon arrangement were studied. On Figure 4.22a, third points with skewed
tendon parallel to the support are post-tensioned. On Figure 4.22b, four
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Figure 4.22 (a,b) Transverse stress at concrete overlay—beam interface of a 7.6 m, 30° skewed
bridge (insertions show the tendon locations).

tendons oriented normal to traffic and staggered, similar to the test bridge,
were used for this case. Insertions of both figures show the tendon locations of
their respective arrangements. It can be seen that the left figure shows better
results with less tension so the tendons, two close to the abutments and one at
the center, parallel to the skewed supports were recommended. Similar para-
metric study was done on other span length arrangements (Fu et al. 2012).
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Chapter 5

Prestressed/post-tensioned
concrete bridges

5.1 PRESTRESSING BASICS

There are two prestressing methods available for prestressed concrete
girders—pretensioning and post-tensioning. The main objective of pre-
stressed concrete girders is to increase the load-carrying capacity for
both strength and serviceability of concrete girders. Both prestressing
methods and their modeling techniques will be discussed in the follow-
ing sections.

For the pretensioning method, the process of producing prestressed
concrete girders is similar to that of reinforced concrete. However, unlike
reinforced concrete, special steel strands are used and pretensioned prior
to placing the concrete. Prestressed concrete bridge girders are typically
designed to resist high tensile stresses in the bottom flange of the girders at
midspan. This is achieved by placing the pretensioning steel strands in the
lower portion of the girders (McDonald 2005).

One consequence in attaining this desired strength at midspan is that
tensile stresses at the ends of the member in the top flange exceed design
code limits. Figure 5.1a provides a brief overview of the loading stages
for prestressed concrete girders. Figure 5.1b demonstrates the linear stress
distribution at the various stages of the prestressed concrete girder fabrica-
tion to the final installed condition. Stage 3, location 1 (at transfer length),
which is the primary concern, illustrates the tensile stress that develops in
the top flange of the girder.

For precast prestressed concrete girders, two techniques have been avail-
able for handling the tensile stresses that develop at the release of the pre-
stressing force. These two techniques are based on the position and pattern
of the prestressing strands. The two strand patterns consist of (1) all straight
strands with debonding at the ends of the member or (2) straight strands
with a certain number of the strands deflected upward at the ends of the
girder. Figure 5.2 illustrates the strand profiles for these two detensioning
techniques. Figure 5.3 illustrates the harping technique and displays the
hold-down devices used prior to the placement of formwork.

129
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Stage 2: Placement of concrete in forms and around tensioned strands.

Stage 3: Release of strands causing shortening of member.
Stage 4: Member placed on piers and/or abutments and deck slab, if any, cast.
Stage 5: Full-service load after all prestress losses.
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Figure 5.1 (a) Prestress loading stages. (b) Stress distribution at various loading stages.

Different from pretensioning, post-tensioning is the application of a com-
pressive force to the concrete at some point in time after casting. Post-
tensioning tendons may be installed through voids formed by ducts cast
into the concrete—in which case, they are internal tendons—or they may
be installed outside the concrete itself—in which case, they are external
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Figure 5.2 Prestressing strand profiles. (a) Harped strands. (b) Debonded strands.
The dashed lines indicate debonding material around prestressing strand.

tendons. In the most common technique of internal post-tensioning, cables
are threaded through ducts in the cured concrete and the stressed tendons
are locked with mechanical anchors. These cables are stressed to design
values by hydraulic jacks, and the ducts are thoroughly grouted up with
cement grout after stressing has occurred. Figures 5.4 and 5.5 show two
different types of post-tensioning. Figure 5.4 illustrates a post-tensioned
beam before concrete pouring and post-tensioning to show its rebar cages
and conduits. Figure 5.5 shows a perspective view of a typical precast bal-
anced cantilever segment with various types of tendons (FLDOT 2002).

Also illustrated in FLDOT (2002), Figure 5.6 shows a typical layout of
cantilever tendons that are anchored on the face of the precast segments,
which do not allow later inspection of the anchor head following ten-
don grouting. An alternate approach is to anchor the cantilever tendons
in blisters cast with the segments at the intersection of the top slab and
web where anchorages of these tendons can be inspected at any time. The
same arrangement can be made for bottom continuity tendons at midspan.
Figure 5.7 shows a typical layout of span-by-span tendons for an interior
span where all tendons deviate at a common deviation saddle.



132 Computational analysis and design of bridge structures
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Figure 5.3 Harped prestressing strands. (Data from FLDOT/Corven Engineering, Inc.,
New Directions for Florida Post-Tensioned Bridges, Volume |: Post-Tensioning
in Florida Bridges, Florida Department of Transportation, Tallahassee, FL,
February 2002.)

Figure 5.4 Post-tensioned beam before concrete pouring and post-tensioning. (Data
from FLDOT/Corven Engineering, Inc., New Directions for Florida Post-Tensioned
Bridges, Volume |: Post-Tensioning in Florida Bridges, Florida Department of
Transportation, Tallahassee, FL, February 2002.)
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Top slab keys

Cantilever tendons
anchored on the
segment face

Cantilever tendons anchored in
blisters and the anchor for top

Bottom continuity continuity tendons (when reversed)

anchor blister
Web shear keys

Bottom slab keys Bottom continuity tendons

Bottom temporary PT bars

Figure 5.5 Typical balanced cantilever segment. (Data from FLDOT/Corven Engineering, Inc.,
New Directions for Florida Post-Tensioned Bridges, Volume |: Post-Tensioning in

Florida Bridges, Florida Department of Transportation, Tallahassee, FL, February
2002.)

Expansion joint Continuous unit Expansion joint
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(a) (typical)
—B — Cantilever tendons

(b) Detail A

(c) Section B-B

Figure 5.6 (a—c) Cantilever post-tensioning tendons anchored on the segment faces. (Data
from FLDOT/Corven Engineering, Inc., New Directions for Florida Post-Tensioned
Bridges, Volume |: Post-Tensioning in Florida Bridges, Florida Department of
Transportation, Tallahassee, FL, February 2002.)
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Expansion joint Continuous unit Expansion joint
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¢ Pier Closure joint Closure joint ¢ Pier
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(c) Detail A Section B-B

Figure 5.7 (a—c) Interior span post-tensioning for span-by-span construction. (Data from
FLDOT/Corven Engineering, Inc., New Directions for Florida Post-Tensioned
Bridges, Volume |: Post-Tensioning in Florida Bridges, Florida Department of
Transportation, Tallahassee, FL, February 2002.)

5.2 PRINCIPLE AND MODELING OF PRESTRESSING

Any modeling method that satisfies the requirements of equilibrium and
compatibility and utilizes stress—strain relationships for the proposed mate-
rial can be used in the analysis. As it is commonly known, the prestressing
force used in the stress computation does not remain constant with time.
The collective loss of prestress is the summation of all individual losses,
which may be examined individually or considered a lump sum loss. The
four most critical conditions in the structural modeling of tendons are
(Fu and Wang 2002) the following;:

o Immediate loss of stress in tendon—Friction between the strand and its
sheathing or duct causes two effects: (1) curvature friction and (2) wob-
ble friction. The retraction of the tendon results in an additional stress
loss over a short length of the tendon at the stressing end. Loss will also
happen due to tendon slip before full grip of the anchorage. The com-
bined loss is commonly referred to as the friction and seating loss.

» Elastic shortening—The elastic shortening of the concrete due to the
increase in compressive stress causes a loss of prestressing force in tendons.

e Long-term losses—Several factors cause long-term losses: (1) relax-
ation of the prestressing steel, (2) shrinkage in concrete, and (3) creep
in concrete. In grouted (bonded) post-tensioning systems, creep strain
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in the concrete adjacent to the tendon causes a stress decrease in tendons.
For unbonded tendons, the decrease in stress along the tendons due
to creep in concrete is generally a function of the overall (average)
precompression of the concrete member.

o Change in stress due to bending of the member under applied
loading—For a rigorous evaluation of the affected member, change in
stress must be taken into account, particularly when large deflections
are anticipated.

In general, pretensioning/post-tensioning tendon modeling and its analy-
sis can be categorized into two major groups (which are described in the
following sections): (1) tendon modeled as applied loading and (2) tendon
modeled as load-resisting elements (Fu and Wang 2002).

5.2.1 Tendon modeled as applied loading

When tendons are modeled as applied loading, there are three modeling
techniques:

o Simple load balancing—The force of the tendon on the concrete
is considered to balance (offset) a portion of the load on the mem-
ber, hence the load balancing terminology. The shortcoming of this
method is that the immediate and long-term stress losses in prestress-
ing must be approximated and accounted for separately.

* Tendon modeling through primary moments—The primary moment
M, due to the prestressing force P at any location along a member is
defined as the prestressing force P times its eccentricity e. The eccen-
tricity of the force is the distance between the resultant of the tendon
force and the centroid of the member. The primary moment may be
used as an applied loading in lieu of the balanced loading for struc-
tural analysis. Bridge designers use this modeling technique more
commonly than building designers. In practice, the primary moment
diagram is discretized into a number of steps. Each discrete moment
is equal to the change in the value of moment between two adjacent
steps in the primary moment diagram.

* Equivalent load through discretization of the tendon force—The force
distribution is represented by a series of straight segments. Hence, the
force distribution would be represented by a series of sloping lines
with steps at the discretization points. The force distribution can be
further simplified by considering the force in each tendon segment
to be equal to the force at the midpoint of the segments (Figure 5.8).

As demonstrated in PCI (2011), for continuous bridges, support reac-
tions caused by restrained deformations due to post-tensioning result in
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Figure 5.8 Equivalent load through discretization of the tendon force. (a) Tendon as
external force of an element. (b) Equivalent tendon force of an element.
(c) Equivalent tendon forces along the central axis of the beam.

additional moments called secondary moments. A common approach to
evaluate secondary moments due to post-tensioning is to model the effect
of the post-tensioning tendon as a series of equivalent uniformly distributed
loads. Figure 5.9 shows the required equations for the calculation of the
equivalent loads for a typical end span of a post-tensioned beam.
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Figure 5.9 (a) and (b) Post-tensioning equivalent loads for two-span continuous bridge.
(Data from Precast/Prestressed Concrete Institute, Precast Prestressed Concrete
Bridge Design Manual, 3rd Edition, 201 1.)
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5.2.2 Tendon modeled as load-resisting elements

The tendon is not considered to be removed from the concrete member.
Rather, it is modeled as a distinct element linked to the concrete mem-
ber (Figure 5.10). The change in the prestressing force is automatically
accounted for in the equilibrium equations set up for the analysis of the
segment.

For tendons modeled as resisting elements, four post-tensioning analysis
types are shown in Figure 5.11: (1) beam type, (2) tendon type, (3) plane
stress type, and (4) solid type. The former two are used in routine bridge
analyses, whereas the latter two with more detailed modeling technique
are used more in research or forensic analysis (LUSAS 2012). For post-
tensioning, the tendons can be either external or internal where internal
tendons can be either bonded or unbonded (Figure 5.12).

5.2.3 2D and 3D modeling

Based on the discussion in Section 2.4.5, two-dimensional (2D) or three-
dimensional (3D) models can be generated based on the project’s needs.
For a 2D model, only one beam is considered and section properties of
that beam are based on the locations of their respective neutral axes. Two
2D beam models representing two different stages of noncomposite and

R - e Tendon truss element
< —— Tendon initial ! — o
— T T T T T length (force) i 1 Rigid link
NodeI Beam frame Node]
(a) (b)
Continuity tendon Cantilever tendon
o truss element DN truss element

Rigid link

Beam frame element

(©

Figure 5.10 Tendon modeled as an element linked to the concrete member. (a) Tendon
as element. (b) Tendon element geometry. (c) Finite element modeling of
the segmentally erected bridge with post-tensioning tendons.
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Analysis type: beam

\

Analysis type: tendon

T |

Analysis type: plane stress

(b) Analysis type: solid

Figure 5.11 2D and 3D post-tensioning analysis types. (a) 2D model. (b) 3D model. (Data
from LUSAS®, “LUSAS Bridge/Bridge Plus Bridge Engineering Analysis,” 2012,
http://www.lusas.com/products/information/eurocode_pedestrian_loading
.html.)

short-term composite models, respectively, are demonstrated in Figure 5.13.
Many customized 2D prestressed beam computer programs are available
for analysis where customization is made by dividing beams into small
segments of prismatic members with tendons modeled as applied loading
within each segment, which was discussed in Section 5.2.1. For a 2D beam
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Figure 5.12 Types of prestressing analysis.

osit:

Figure 5.13 2D model with its associated neutral axis (NA) locations. (a) Framing plan.
(b) Cross section.
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model, moments and shears are direct results from analysis, and there is
no need to integrate stresses to get beam moments for strength limit state
capacity check. No matter which code is adopted for design, stress limits
for concrete and steel are always given.

On the other hand, the 3D modeling technique has become more sophis-
ticated and more popular nowadays to understand the behavior of a
bridge during different construction stages. Instead of modeling tendons
as applied loading, they are modeled as resisting elements as described in
Section 5.2.2. In routine bridge analyses, prestressed beams are usually
modeled as beams while tendons are modeled as a series of truss elements
with embedded pretensioning forces. For a complete 3D bridge model, in
which deck are simulated by shell or solid elements with rigid connection
to beam elements, tendons can be modeled by spatial truss elements sharing
appropriate nodes with shell, solid or beam elements. An illustration of 2D
modeling is described in Section 5.3, and a more detailed demonstration of
3D modeling is covered in Sections 5.4 through 5.7.

5.3 2D ILLUSTRATED EXAMPLE OF A PROTOTYPE
PRESTRESSED/POST-TENSIONED CONCRETE
BRIDGE IN THE UNITED STATES

Based on AASHTO specifications (2013), a design case for a concrete alter-
nate with a continuous prestressed and then post-tensioned precast I-beam
bridge is analyzed as a single beam staged from simple to continuous beams.
The total length of the bridge is 198.86 m (652’-5"), with five continuous
spans of 39.5 m (129'-7") each (Figure 5.14a). The clear roadway width
is 13.41 m (44’), and out-to-out distance is 17.98 m (59’) with 3-3.66 m
(12’) lanes. Five 1880-mm (74") deep precast bulb-T girders are used in the
design with 3.81-m (12'-6") girder spacing (Figure 5.14b). A 200-mm (8”)
deck slab is used in the composite construction with another 13-mm (1/2")
wearing surface.

Precast girder is formed by the semi-light weight concrete with initial
concrete strength (f/) of 31 MPa (4500 psi) and final concrete strength
(f.)) of 48.3 MPa (7000 psi). Concrete strength of the cast-in-place con-
crete is 34.5 MPa (5000 psi). All the prestressing tendons are 1862-MPa
(270-ksi) stress-relieved seven-wire strands with modulus of elasticity of
1.9 x 10° MPa (28 x 106 psi). The prestressing steel strand’s diameter is
13 mm (1/2”), and the post-tensioning steel strand’s diameter is 15 mm
(0.6"). Figure 5.15 shows the profile of the post-tensioning conduits (pre-
stressing strands are not shown) and three cross sections at the end spans.
Cross sections A—A and C-C (Figure 5.15b) show the thickened webs at the
ends of the precast beam. The construction sequence is listed as follows:
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Figure 5.15 Post-tensioning (a) layout and their (b) cross sections at the end span of a
continuous precast prestressed/post-tensioned concrete bridge.

1. Erect precast prestressed beams on early-made concrete abutments
and supports

2. Install duct splices for post-tensioning tendons and pour beam splices
and diaphragms at piers. At this stage, stress and grout tendons T1

3. Pour in-span diaphragms. At this stage, stress and grout post-tension
tendons T2

4. Pour deck. At this stage, stress and grout tendons T3 for full
post-tensioning

5. Construct sidewalk and barrier/railing and complete the job

In the process three 2D beam models with different section properties are
built. The first noncomposite sectional model with different levels of ten-
don forces is used for stages 1, 2, and 3. The second short-term composite
sectional model with full tendon forces is used for stage 4, whereas the
third long-term composite sectional model with full tendon forces is used
for stage 5. Note here that short-term and long-term composite sections are
used by AASHTO to refer to the section properties of # and 37, respectively,
where 7 is the modulus ratio between steel and concrete materials. For the
consideration of pretensioning/post-tensioning tendon modeling and its
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analysis, the “tendon modeling through primary moments” as discussed
in Section 5.2.1 is used in the calculation by Merlin-DASH/PBEAM, a 2D
line girder program. This tedious procedure of generating primary fixed-
end moments can also be employed to a generic finite element analysis pack-
age, but the process would be cumbersome. Results show that the program
checks stress limits of the concrete (Figure 5.16) and the reinforcing steel
under the serviceability limit states as well as ultimate moments and shears
under the strength limit states.

Girder top stresses at service

1.0
0.5
0.0
= =051 Prestress
=5 Total with +(LL + I
g 101 /z\ /\ —+ Total with —(LL + I)
mb —=— Allowable tension
-1.5 4 —— Allowable compression
—2.0 4
—2.5 4
-3.0
0 65 130 195 260 325
(a) Distance (feet)
Girder bottom stresses at service
1.0
0.5
0.0 T T —
= —0.5 1 Prestress
=< Total with +(LL + I)
v —1.0 1 —— Total with —(LL + 1)
é,) —=— Allowable tension
L 1.5 —— Allowable compression
-2.0 -/
—2.5 1
-3.0
0 65 130 195 260 325
(b) Distance (feet)

Figure 5.16 (a) Top and (b) bottom stresses of a five-span precast, prestressed concrete
bridge.
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5.4 3D ILLUSTRATED EXAMPLE OF A
DOUBLE-CELL POST-TENSIONING CONCRETE
BRIDGE—VERZASCA 2 BRIDGE, SWITZERLAND

In European practice, post-tensioning is more popular. A Swiss bridge with
cast-in-place double-cell concrete beam is taking as an example in this
section. The Bridge Verzasca 2, which locates on the main road between
Bellinzona and Locarno, in the south of Switzerland, was built in 1990-
1991 and consists of six spans between 25.24 and 39.70 m (82.8' and
130.3’), with a total length of 203.6 m (668’). The pier supports are skewed
at an angle of 28.8°, whereas the abutments are placed perpendicular to the
bridge axis. The superstructure is a post-tensioned continuous girder with a
cast-in-place double-cell section (Schellenberg et al. 2005).

The cross section changes in the region over the piers where negative
moments are expected. In this region the three webs of the double-cell sec-
tion are widened. Also, the bottom flange is thickened continuously from
200 to 300 mm (8” to 12”) in this region.

Diaphragms are placed over each pier, providing a higher torsional rigid-
ity. Accounting for the diaphragms as well as a cross section of the beam,
a total of three cross sections can be determined. The post-tensioning ten-
dons are anchored approximately at the section of dead load point of con-
traflexure, where the webs change their width, providing required spaces
for the tensioning procedure.

Each tendon stretches over one span including both neighboring piers in
such a way that the tendons overlap over a single pier. Their distribution
over the cross section is shown in Figure 5.17.

5.4.1 Visual Bridge design system

Visual bridge design system (VBDS) is an AutoCAD-based finite element
program (Wang and Fu 2005). VBDS was specially developed for the calcu-
lation of bridge structures including their construction processes. The basic
idea is to define construction stages and the incremental actions of each
stage that can be accumulated to obtain the final results.

CAVO 4.1 CAVO 6.1
CAVO 3.1 CAVO 5.1
CAVO 1.1 / CAVO 81

/
CAVO 21

/
Section A—A CAVO 7.1

Figure 5.17 Location of the tendons in the cross section.
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To build the model for VBDS, the following steps must be completed:

¢ Define entity geometries in AutoCAD.

e Create beam, truss, or plate elements, assigning them material
properties.

e Assign section properties to the elements.

¢ Define construction stages and enter elements into each construction
stage.

¢ Define boundary conditions for each stage.

e Create load cases and apply them to the construction stages.

¢ Define creep and shrinkage properties.

5.4.2 Verzasca 2 Bridge models

To demonstrate the analyses of Verzasca 2 Bridge at different levels of
detail, five models are created:

® Model 1—Continuous girder with constant cross section (Figure 5.18)

® Model 2—Continuous girder with skew supports (Figure 5.19)

® Model 3—One girder built in a single stage (Figure 5.20)

® Model 4—Girder built with actual construction stages

® Model 5—Three girders skew supported (Figure 5.23, later in the
chapter)

The models become increasingly more sophisticated, with Model 5 being
the most complicated. This progression of complexity allows for not only
a better possibility of finding errors while building the models but also a
better interpretation of the results.

......
......
",
.,
s,

..,

Figure 5.18 Elements of Verzasca 2 Bridge model I.
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Figure 5.19 Elements of Verzasca 2 Bridge model 2.
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Figure 5.20 Elements of Verzasca 2 Bridge model 3.

5.4.2.1 Model I: Continuous girder with constant
cross section

The purpose of this very simple model is to have one that can be veri-
fied by hand. This model presents a good opportunity to check the results.
The bridge is modeled with only one beam, which has a constant cross
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Table 5.1 Spans of Verzasca 2

Span Length (m) Elements
| 33.57 30
2 36.26 30
3 39.69 30
4 36.51 30
5 29.40 25
6 25.24 25

section. Truss elements are placed as supports. This model is depicted in
Figure 5.18. The magnitudes of moment of inertia of the beam elements are
represented in gray. While all beam elements have the same properties in
this example, the gray elements form a straight line.

The spans are described in Table 5.1. A uniform weight of 219.3 kN/m
(15 kip/ft) is applied on each beam element. This represents the structural
weight for a reinforced concrete cross section of 8.6 m? (92.6 ft?), with a
density of 25.5 kN/m? (162 Ib/ft?) assumed.

5.4.2.2 Model 2: Continuous girder with skew supports

Skew supports have an influence mainly on the torsional moment of the
superstructure. The skew supports would be taken into account only if they
generate a change in the distribution of the vertical moments. To analyze the
influences on the torsional moment, skew supports are added in Model 2,
which is presented in Figure 5.19.

To model the skew supports, further elements have been created. They
are aligned in the direction of the supports and have other section prop-
erties as the already-existent beam elements. To prevent deformations of
these elements, their moment of inertia has been set 10 times higher than
the moment of inertia of the beam elements. Notice that the beam elements
need torsional stiffness to obtain the actual distribution of the internal
forces.

5.4.2.3 Model 3: One girder built in a single stage

Model 3 is further developed from Model 1. There are two key differences.
First, the cross section changes across the beam, with wider webs and bot-
tom flanges in the zones of the piers. Second, the post-tensioning tendons
are also included in the model.

The girder, which is modeled into 3D beam elements, is divided into
three different cross sections:
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e Section 1—In the middle of the spans

e Section 2—With thickened webs and a thickened bottom slab, used
where negative vertical moments are expected, in the zones next to
and over the piers

e Section 3—In the diaphragm areas

The vertical position of these elements is at the neutral axis of each cross
section, which, together with the horizontal measures, defines the geom-
etry of the beam.

To model the post-tensioning tendons, truss elements are created. Only
one truss element represents all eight of the individual tendons that are
distributed over the cross section, as seen in Figure 5.17. The geometry
of the tendon is approximately at the middle of the actual positions. It is
important that they end at the same vertical location as the beam elements,
so that they can be connected with vertical rigid elements. Therefore, the
line that represented the geometry of the tendon was cut with vertical
lines placed at every two, three, or even four elements of the beam. Again,
it was more important to have the connection at the suitable positions,
rather than have intervals with the same number of elements between
them. Suitable positions are (1) at the anchorage of the tendons, (2) at the
middle span, (3) over the pier, and (4) where section changes occur. The
tendon is divided between these points if the remaining length is longer
than four elements or if a straight line between these points would fail to
keep the geometry of the tendon.

Figure 5.21 shows the beam and tendon elements connected with rigid
elements. The two horizontal lines are not used for this model but are used
to assist in visualizing the upper and lower edges of the cross section. The
shade scale changes of beam elements as shown in Figure 5.21 indicate the
change of cross section. Different cross sections with different areas of steel
are used for truss elements to simulate the changes of total strands in the
longitudinal direction.

The boundary conditions stay the same as those for Model 1. In
Figure 5.22 the right part of Model 3 is shown. Notice that the support

-| AL—I— B = -
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Figure 5.21 Detail of Verzasca 2 Bridge model 3.
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Figure 5.22 Boundary conditions of Verzasca 2 Bridge model 3.

between spans 4 and 5 is fixed in the longitudinal direction of the bridge.
This point is marked with an additional X as X Z XX.

Besides the structural weight, Model 3 also takes into account the post-
tensioning forces. Although this model considers the bridge built all at
once, the definition of the loads already includes the incremental loads.
Therefore, instead of defining the structural weight of the whole model,
the weights are divided into six construction stages. The tendon forces
are also defined as they are applied on the structure during construction.
These forces will be discussed in Model 4 for the construction stages. For
this model, it is assumed that all these loads are applied at the same time.

5.4.2.4 Model 4: Girder built with actual construction stages

Model 4 is exactly the same as Model 3, but with the added consideration
of the construction stages. Span 5 is built in stage 1. These construction
stages include part of the neighboring span, ending where the post-tension
tendon is anchored (in the section of dead load point of contraflexure).
Then, in stage 2, the rest of short span 6 is built. Spans 4 to 1 are built
consecutively in stages 3 to 6.

Each stage also has a fixed sequence:

Cast the concrete

Stretch the tendon to 30% of the final stress after five days

Stretch the tendon to 70% of the final stress after 14 days

Remove the falsework and formwork

Stretch the tendon to the final stress, as soon as the next stage’s ten-
don is stressed to 70% of the final stress

The time sequence of the construction stages has been assumed according
to the dates that the plan for each stage was checked. Table 5.2 shows the
dates and the assumed construction time.

5.4.2.5 Model 5: Three girders skew supported

Model 5 (Figure 5.23) is the most complicated model of the Swiss bridge in
this series. In regard to the creep and shrinkage effects, there should not be



150 Computational analysis and design of bridge structures

Table 5.2 Assumption of the construction time

Building stage Control date of plan Construction time (weeks)
I July 18 6

2 September 9 4

3 October 8 6

4 December 8 6

5 January 29 6

6 March 31 6

Total 34 weeks 34 weeks

Figure 5.23 Elements of Verzasca 2 Bridge model 5.

essential differences between this model and Model 4. However, Model §
will provide more accurate results due to its static analysis, especially with
the effects of the skew supports.

The superstructure is modeled with three beams. Each represents one
web of the double-cell box cross section. Taking Model 4 as a starting
point, the geometry of the four middle spans can be copied and repro-
duced. As the abutments are placed perpendicularly to the longitudinal
axis, beams in the first and sixth spans have to be extended or shortened,
respectively. The geometry of the tendons is newly created according to the
construction plans. The three beams are connected with transverse beam
elements, which provide the transverse flexural rigidity of the section.

The cross section is divided into three by making two cuts in the middle of
each cell. The new area and moment of inertia are calculated for the beam in
the middle web and flanges. For both beams on the side, the remaining area
and moment of inertia are divided by two. The torsional inertia for each
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beam is one-third of the total torsional inertia. This distribution is used for
the three different cross sections along the bridge axis.

To simulate the transverse flexural rigidity, the section properties of the
virtual connections are calculated according to Bakht and Jaeger (1985),
where the following equations are given for cellular structures:

D,=0.5*E.*t*H" (5.1
Dy, =Gc*t* H? (5.2)
where:

D, is the transverse flexural rigidity
D, is the transverse torsional rigidity
t is the thickness of top and bottom flanges

H is the height between the centerline of both flanges

The acting forces are also distributed to the three beams. The structural
weight is divided according to the axial areas. The tendon forces are easily
distinguished, because they are located in the webs. The sequence of the
construction stages and their loads are the same as those in Model 4.

5.4.3 Verzasca 2 Bridge analysis results

The vertical bending moments in the beam along the bridge axis are shown
as results. All the results are given in kN-m. To simplify the discussions in
this section, the spans are still counted from left to right, span 1 between
abutment A and pier 1 and span 6 between pier 5 and abutment B.

5.4.3.1 Model I: Continuous girder with constant
cross section

The vertical moments of this simple model (Figure 5.24) serve as starting
points for the discussion of the results of the next models. Model 1 is built
in one single stage and has a uniform dead load of 219.3 kN/m acting on
the entire structure. The moments are distributed according to the span
lengths.

6149

Figure 5.24 Moment distribution, Verzasca 2 Bridge model I.
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5.4.3.2 Model 2: Continuous girder with skew supports

Model 2 takes into account the skew supports. It is easy to recognize the
better distribution of the negative moments by increasing the bending
moment over piers 2 and 4, from 25,850 to 26,596 kN-m and from 19,355
to 22,739 kN-m, while decreasing over pier 3 from 28,625 t0 27,913 kN-m.
Because the abutments are placed perpendicularly to the bridge axis, the
moments over piers 1 and 5 increase as well (Figure 5.25).

The torsional moments in the beam due to the skew supports are shown
in Figure 5.26. While these moments are not essential in the subject of
creep, they will not be taken into consideration in Models 3 and 4, but
are taken into account in Model 5, as the superstructure is modeled
three-dimensionally.

5.4.3.3 Model 3: One girder built in a single stage

Compared with Model 1, where the beam had a continuous cross section,
the higher moment of inertia in the region of the piers causes higher nega-
tive moments (Figure 5.27).

Figure 5.28 shows the vertical moments in the beam caused by the
post-tensioning procedure. In this case all tendons are also stressed at the
same time. As explained in Section 5.4, the tendons overlap in the region of
the piers. Thus the positive moments are much higher than the negatives,
although the distance to the neutral axis is 50% larger at midspan than over
the pier. The moments caused by time-dependent effects in Model 3 can be
neglected as the entire bridge was cast in one single stage.
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Figure 5.25 Moment distribution, Verzasca 2 Bridge model 2.
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Figure 5.26 Torsional moment distribution, Verzasca 2 Bridge model 2.
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Figure 5.27 Vertical moments due to structural weight, Verzasca 2 Bridge model 3.

Figure 5.28 Vertical moments due to post-tensioning, Verzasca 2 Bridge model 3.

5.4.3.4 Model 4: Girder built with actual construction stages

As Model 4 takes into consideration the construction sequence and the
age of the concrete in each new stage, the creep effect produces internal
moments.

Figure 5.29 shows the elastic moment distribution along the beam.
Compared with Model 3, all negative moments are reduced. While each
span was built ending as simply supported, the negative moments over the
piers are caused by only one span and the positive moments are higher.
For example, the negative moments over pier 5 are about 1500 kN-m after
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Figure 5.29 Accumulated moments due to structural weight and creep effect,Verzasca 2
Bridge model 4.
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Figure 5.30 Accumulated moments due to structural weight and post-tension, Verzasca 2
Bridge model 4.

the first stage, and not 0, because the first construction stage ends 3.75 m
over the support. Once span 6 is built continuously to span 5 in the second
stage, the negative moment over pier 5 increases to around 7800 kN-m.
Due to the structural weight of span 4, the moment over pier 5 decreases to
3700 kN-m and increases again with the structural weight of span 3, and so
on. In Figure 5.30, the distribution shows the addition of all moments due
to structural weight and post-tensioning, each in its corresponding static
system. Note that the cracking moment of the beam is around 12,600 kN-m
for section 1 and 16,380 kN-m for section 2 next to the diaphragms.

5.4.3.5 Model 5: Three girders skew supported

The results of Model 5 are similar to the results of Model 4, but now the
moments are distributed to three beams, whereas they were all on the same
beam in Model 4. The moments in the middle beam are 33% higher than
those in the beams at the sides. This can be explained by the fact that the
moment of inertia in the middle beam is 33% higher.

The skew supports that are not taken into account in Model 4 also affect
the distribution of the moments in the different beams. This effect is recog-
nizable in both end spans. The front beam has larger negative moments over
pier 5, because it is nearer to abutment B. Exactly the same effect occurs
over pier 1, where the back beam receives more negative moments, due to a
shorter first span.

Creep and shrinkage not only cause a redistribution of the internal forces
but are also essential factors whenever displacements are evaluated. For the
purpose of comparison, incremental displacements of all 19 stages in the con-
struction sequence are accumulated once for the elastic displacements and once
more for displacements due to creep and shrinkage, for AASHTO and for CEB-
FIP. Then displacements are divided into vertical and horizontal components.

From the vertical displacements shown in Figure 5.31, the construction
sequence can be reenacted. The peaks are located where the construction
stages changed. The sequence was from span 5 leftward to span 1.

The vertical displacements are mainly due to creep and the horizontal
due to shrinkage effects. The horizontal displacements due to shrinkage
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Figure 5.3 Vertical displacements due to structural weight and post-tensioning, Verzasca 2
Bridge model 5.

increase continuously from pier 4 in contrast to the displacements due to
the post-tensioning. The displacements at abutment A reach 33 mm (1.54")
with AASHTO and 29 mm (1.14”) with CEB-FIP specifications and are
proportional to the shrinkage coefficients at the time of five years.

The vertical displacements due to creep are more difficult to interpret
because of the number of changes in the internal forces during construc-
tion. In general, CEB-FIP yields higher deformations due to creep than
AASHTO.

5.5 3D ILLUSTRATED EXAMPLE OF US23043
PRECAST PRESTRESSED CONCRETE
BEAM BRIDGE—MARYLAND

American practice places precast beams from pier to pier and then casts the
diaphragms and the slab in the second step. The bridge US23043 was built
in 2001 in the state of Maryland. It is located on Route 113 and was part of
a multiphase project to create a bypass for the town of Showell. Figure 5.32
shows the perspective view of US23043 Bridge.

The 137.5-m (450’) long bridge consists of four spans, two of 38.12 m
(125’) and two of 30.5 m (100’). The supports and the abutments are
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Figure 5.32 US23043 Bridge, Maryland.

skewed with an angle of 30° to the bridge axis. The section consists of
11 precast and prestressed I-beams and a cast-in-place slab. The same
VBDS program as in Section 5.4 is used in this analysis.

5.5.1 US23043 bridge models

Two almost identical models are created: Model 1 and Model 2. The only
difference is that Model 1 has plate elements and Model 2 has beam ele-
ments to model the cast-in-place slab.

5.5.1.1 Model I: Slab modeled with plate elements

Model 1 is a highly detailed model of the bridge US23043. As the number
of elements is much higher than usual, accurate results are expected. This
model has beam elements for the precast AASHTO beams and diaphragms,
truss elements for the piers and the prestressing tendons, and plate elements
to simulate the cast-in-place slab. Figure 5.33 shows the 3D model that con-
tains beam, truss, and plate elements.

Although the precast AASHTO type V beams end at point “A” and are
supported at point “D,” the model supports the beams at point “B.” For the
construction periods in which the structure acts as simple spans, a joint at
point “B” is added, to admit relative rotations between the beams of the two
adjacent spans.
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Figure 5.33 Elements of US23043 Bridge model |.

The beam properties do not change along the bridge. The slab, which is
cast in a later stage, will not change the section properties of the beam ele-
ments because the slab is modeled with additional elements.

The supports are modeled as truss elements and prevent the verti-
cal displacements of the beam elements at these points. At the bottom
end of the truss elements, all displacements and rotations are restricted.
Figure 5.34 shows the restricted displacements with X, Y, or Z and the
restricted rotations with XX, YY, or ZZ at the end of the elements. In all
55 supports of the four spans, 11 beams have the same boundary condi-
tions in the first construction stage. Once the diaphragms are added, all
rotations of the beam are admitted. Then the lateral displacements are
restrained only at the abutments and the longitudinal displacements at
one end of the bridge.

¥ Z Y ZEZ
Figure 5.34 Part of US23043 Bridge model |, boundary conditions.
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Figure 5.35 Section of the AASHTO beams with strands.

The precast and prestressed AASHTO type V beams contain different
numbers of strands, depending on the span length. Figure 5.35 shows the
cross sections with the reinforcement for spans 1 and 2. The I-beam section
on the left is at midspan, and the one on the right is over the supports. In
the first two spans, 71 12,7-mm (1/2”) diameter strands are placed; 27 of
these are draped.

In the model, the prestressing truss is situated at the centroid of strands.
And, while spans 3 and 4 are shorter than spans 1 and 2, the number
of placed strands is smaller, which results in a different geometry of the
trusses.

While spans 1 and 2 are prestressed with 71 strands and spans 3 and 4 with
43, the resulting forces applied on the truss elements are (1) F,, = 9123.5 kN
and (2) F; ;= 5525.5 kN.

The construction sequence of the bridge US23043 has six stages:

o Stage 1—Place precast I-beams from pier to pier.

® Stage 2—Cast midspan diaphragms, leaving a gap in the middle of
the cross section.

e Stage 3—Pour the slab, except in the region of piers and in a gap in
the middle of the cross section.

* Stage 4—Cast the gaps of the midspan diaphragms and the slab.

* Stage 5—Cast the pier diaphragms.

® Stage 6—Pour the slab in the regions of the piers.



Prestressed/post-tensioned concrete bridges 159

Table 5.3 Construction sequence in Model |

Construction stage Day
Stage Im 0
Stage 2m |
Stage 3m 3
Stage 4m 8

In the model, these six stages are simplified into four. Stage 4 is included
as a part of stages 2 and 3, and stages 5 and 6 are combined. To distin-
guish between actual and modeled sequences, the stages in the modeled
sequence will be assigned both a number and the letter » (i.e., stage 1m,
stage 2m).

The construction schedule in the model, which is shown in Table 5.3,
considers the minimal possible construction time that has to be allowed
between the stages. According to the instructions on the construction plans,
40 hours must be allowed between each stage in the actual sequence,
except between stages 3 and 4, where only 16 hours is required. The age
of the precast AASHTO beam is assumed as 60 days, which is important
for the creep and shrinkage analysis.

The slab is built with plate elements to analyze the actual force distri-
butions more accurately. Because the bridge is skewed, triangle plate ele-
ments are chosen. Between precast beams, two lines of plate elements are
situated, which allow the transverse moment distribution in the slab to be
obtained.

The nodes in the slab are at the same vertical location as the nodes in
the beams, where elements with high rigidity connect them together. In
total, 4200 plate elements are created in Model 1; 200 of them are from
stage 4m.

5.5.1.2 Model 2: Slab modeled with beam elements

Model 2 is the same as Model 1, but the slab is represented by beam
elements. These beam elements are located at the center of gravity of the
slab, 1.1 m (3.6’) above the beam elements. Every second node of the slab
elements is connected laterally with the next line of the slab elements.
These connections are also simulated with beam elements and have the
same torsional and bending rigidity as the plate elements in the longitudi-
nal direction.

Creep and shrinkage properties will be assigned only to the elements in
the longitudinal direction. This is the essential difference between Models 1
and 2.
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Figure 5.36 Displacements in the beam due to structural weight and prestressing,
US23043 Bridge model |I.

5.5.2 US23043 bridge analysis results
5.5.2.1 Model I: Slab modeled with beam elements

Model 1 will show the results of creep and shrinkage effects on bridge
US23043. This model will provide the moments and longitudinal forces
of the plate, beam, and prestressing tendon. The cast-in-place slab is stress
free after hardening if no additional loads are applied, whereas the pre-
stressed beam elements carry the structural weight.

The elastic displacements shown in Figure 5.36 reach 13 mm (0.5”) in
one region. The displacements after five years are 148 mm (5.8”) consider-
ing creep and shrinkage with CEB-FIP and 64 mm (2.5”) with AASHTO
specifications. Figure 5.37 shows the displacements due to creep and shrink-
age and the total displacements after five years for both codes. Included in
these results are the creep displacements that took place between the time
the beams were precast and placed. These calculations, of course, depend
upon how the beams were supported in this period of time. In this model,
the structural weight is applied once the beam is placed at the site.

5.6 ILLUSTRATED EXAMPLE OF A THREE-SPAN
PRESTRESSED BOX-GIRDER BRIDGE

A three-span single-cell haunched prestressed box girder bridge (Ketchum and
Scordelis 1986) is taken as an illustrated example in this section. Figure 5.38
shows its elevation profile, and Figure 5.39 shows its cross-sectional geometry.
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Figure 5.37 All displacements in the beam based on AASHTO, US23043 Bridge model I.

@

@ @ ®
WS&Q m4T7137.2 m4T786.9 mm‘i
" ’ ' T

7.32m

2.74m 2.74m 2.74m
15.54 m
(a) X
0.61 m 0.23m
0.23m -
o 023 m o7 m i 0.61 m
b * *

(b)
Side-span approach

«—18.3 m—bl &

Bl © T [P RPN P H 15160 6D GG )i

K.

Center-span closure

Side-span closure

(c)

Figure 5.38 (a) Bridge elevation profile, (b) bottom slab thickness variation, and (c) seg-
ment division.

Pier

The haunched girder is cantilevered from the piers using cast-in-place segments
and is later made continuous with short, conventionally erected, cast-in-place
segments near the abutments and with the adjoining cantilevered girder at
midspan. Each cantilever segment is post-tensioned to the previous segments
with several cantilever tendons. After the closures at the abutments and at
midspan, the entire bridge is prestressed with several additional continuity
tendons, extending the full length of the bridge. In this example, there is no
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Figure 5.39 Cross section of the (a) pier and (b) main girder.

distinction between the 2D and 3D models, except that the 3D model can be
used for other purposes such as wind-load and stability analyses, which will
be discussed later.

The modulus of elasticity of the prestressing tendon is 1.9 x 105 MPa.
The modulus of elasticity of the concrete girder is 2.86 x 10* MPa. The
geometry properties for the girder cross section, pier cross section, and
tendons are listed in Table 5.4.

The unit weight of the concrete of this bridge is 24.8 kN/m?. In total,
37.2 kN/m will be imposed along the deck after closure. For comparison
purposes, the live loading is four lanes of AASHTO HS-20 without any mul-
tilane deduction. If the design is based on the AASHTO LRFD specifications
(2013), HL-93 can be employed. The modified ACI 209 creep and shrinkage

Table 5.4 Segmental bridge section properties

Moment of inertia Moment of inertia
Component (m*)/area (m?) Component (m*)/area (m?)
$2223 173.9/20.7 S21,24 155.1/20.2
$20,25 131.9/19.5 S 19,26 111.6/18.8
S 1827 94.0/18.0 S17,28 78.8/17.3
S 16,29 65.7/16.5 S 15,30 54.6/15.9
S 14,31 45.1/15.1 S 1332 37.1/14.4
$1233 30.4/13.7 S11,34 24.7/13.0
S 10,35 20.0/12.4 $9,36 16.1/11.7
$837 13.5/11.3 $738 12.2/11.2
$6,39 11.5/11.1 S| 15.3/13.3
S2 12.1/11.5 S$34 [1.2/11.1
$ 5,40 11.2/11.1 T 1-16,25-28 0/0.008292
TI17-18 0/0.0166 T 19-24,29-53 0/0.004146
Pier (rigid zone) 180.0/20.9 Pier 10.7/21.6

S for girder segment; T for tendon.
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model (1982) is adopted in the AASHTO LRFD specifications (2013).
SFRAME (Ketchum and Scordelis 1986), developed in the University of
California at Berkeley in the 1980s as a comparison with VBDS, however,
adopts the original ACI 209 as its creep and shrinkage model. Although
the creep models are different between two numerical models, when some
parameters are taken as standards, the two creep models are very similar in
nature. One great shortcoming of applying the LRFD creep model is that the
maximum volume—surface area ratio used in the evaluation is limited to six,
while some of the structures may require a ratio over six.

The construction sequence is modeled in 41 stages to simulate the erec-
tion and tendon prestressing of each section. It takes one week for each
launching and prestressing. At day 100, the 18.3-m long girder at the side
span starts to be cast, and the side spans and the center span close at day
168 and 182, respectively. All prestressing tendons are jacked at a unique
stress of 1393 MPa (202 ksi), and the losses are taken as 15% of the jack
stress. Unlike SFRAME, all losses are simply treated to be a constant along
their path in this analysis by VBDS.

The time-dependent analysis for the 27 years following construction is
performed by a smart step adjustment. The basic step is one week. It will be
increased by one week whenever the differences of two adjacent analyses are
less than a designated threshold or will be decreased by one week if they are
above the threshold. Usually it varies between 1 and 12 weeks.

Table 5.5 shows the results and their comparison between VBDS and
SFRAME. The differences between two numerical solutions are checked.
Stresses of cases for maximum dual cantilever, ready to serve and 27 years
later are shown. Figures 5.40 through 5.43 show some screens captured
from VBDS; they show only the stress distribution on the top flange of the
box girder at the maximum dual cantilever stage, after secondary dead load
imposed, 27 years later, and on the stress envelop of HS-20, respectively.
The jagged stress plots shown in Figures 5.40 through 5.42 are caused by the
axial forces induced by the cantilever or local tendons. Jagged locations are
where tendons terminate. The live load stresses show the smoothness across
the whole girder. The live load analysis indicates that the live load stress
along the girder may be incorrect if it is calculated by using simple girder
principles based on its moment and axial force envelope. Unlike the dead
load, which is already distributed over a statically determined structure
before closure, the live load will cause significant axial force over the girder
(-6300 kIN/4000 kN at the center of the main span) because the bridge
is fixed with two piers and the centroid of the girder shapes a flat arch.
Therefore, the main span behaves like an arch bridge. In this case, it may
not be sufficiently accurate to take the extreme moment and its correspon-
dent axial force or the extreme axial force and its correspondent moment to
calculate the stress over the girder in the main span. In VBDS, however, the
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Table 5.5 Segmental bridge stresses (kN/m?2) and comparisons at the center of the
main span and over the pier

Stage and category Position VBDS SFRAME
Maximum dual TC N/A N/A
cantilever BC N/A N/A
TP —2640 N/A
BP —11865 N/A
Ready to serve TC —4757 —4886
BC —8614 —10405
TP —3562 -3817
BP —12785 —13407
MC —14100 —17280°
MP —218900 —2305002
DC 1.1 (in) 1.9 (in)
27 years later TC —5430 —6025 (—5662°)
BC —6158 —3810 (—8774%)
TP —-3070 —2658
BP —12700 —13619
MC —3000 1522
MP —229300 —276500*
DC 4.9 (in) 5 (in)*
Four lanes of HS-20 TC -2215 —2334
BC 2932 3248
TP 2151 1554
BP -2742 —1603

2 Measured from graphs.

b Recalculated based on the provided moments and section properties.
BC—bottom at the center of the main span; BP—bottom over the pier; DC— displacements
at the center of the main span; MC—moment at the center span; MP—moment at the pier;
TC—top flange at the center of the main span; TP—top over the pier.

Figure 5.40 Stress (kN/m?) distributions on the top flange of the box girder at maximum
dual cantilever stage.
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Figure 5.41 Stress (kN/m?) distributions on the top flange of the box girder after closure.
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Figure 5.42 Stress (kN/m?) distributions on the top flange of the box girder after 27 years.
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Figure 5.43 Stress (kN/m?) distributions on the top flange of the box girder due to four
lanes of AASHTO live loads.

extreme stress is calculated by loading over the stress influence surfaces or
influence lines, not over the simple axial force or bending moment.

5.7 ILLUSTRATED EXAMPLE OF LONG-SPAN
CONCRETE CANTILEVER BRIDGES—JIANGSU,
PEOPLE’S REPUBLIC OF CHINA

The long-span prestressed concrete continuous rigid-frame bridges are
usually built with the balanced cantilever method. The layout of longi-
tudinal tendons is determined according to the stress states in the can-
tilever stage and completion stage, and the tendons are correspondingly
divided into cantilever tendons and continuity tendons (Pan et al. 2010).
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The conventional layout of longitudinal tendons is shown in
Figure 5.44, including cantilever tendons in the top slabs, cantilever
bent-down tendons in the webs, and continuity tendons in the bottom
slabs and webs. The layout and number of tendons are mainly deter-
mined based on the envelope of the bending moment of the girder
under all kinds of loads.

From the end of 1980s, the elimination of the bent-down tendons in the
webs, and instead the addition of vertical prestressing rods in the webs,
was proposed, as shown in Figure 5.45. This straight layout method
was well received by the construction industry because there were few
ducts in the webs, which was more convenient to the construction of
the box girder. However, a large number of vertical prestressing rods
may have led to rising costs. Also, after more than 10 years, exces-
sive deflections at midspan and inclined cracks in the webs appeared
in many long-span concrete cantilever bridges with this design method.
As a result, designers began to throw doubt on the elimination of the
webs’ bent-down tendons (as demonstrated in Figure 5.46).

In the early 2000s, designers brought their attention back to the webs’
bent-down tendons, and the common layout of longitudinal tendons
is shown in Figure 5.46. The phenomena of the excessive deflections
at midspan and the inclined cracks in the webs are seldom seen in
the long-span concrete cantilever box girder bridges constructed either
more than 20 years ago or more recently in the 2000s. It was therefore
concluded that the elimination of the webs’ bent-down tendons is one
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Figure 5.46 Current layout of longitudinal tendons with the webs’ bent-down tendons.
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of the main causes for inclined cracks, which are harmful to long-term
deflections, and that these tendons are actually very effective in limit-
ing the principal tensile stress.

5.7.1 The continuous rigid frame of Sutong Bridge
approach spans

Deflection is mainly a result of two opposite actions. The first action is the
dead loads and live loads, and the second one is the longitudinal tendons,
which usually produce the counterdeflections to the dead loads and live
loads. A lesson learned from the deflection problem in long-span cantilever
bridges is that the deflection control is as important as conventional stress
control in prestressing design. It is commonly known, that the cantilever
tendons are very efficient for balancing the dead loads in the cantilever con-
struction stage. Their effects on the deflections of the bridge would, how-
ever, be limited after the structural system transforms (like the closure of the
main span). Here, the focal point is to design the tendons applied after the
cantilevers are made continuous to avoid the excessive deflections.

The continuous rigid frame of Sutong Bridge approach spans (Pan et al.
2010) is a segmental, cast-in-place concrete cantilever bridge completed in
2007, and the span distribution is 140 + 268 + 140 m (460’ + 880’ + 460’),
among the longest spans in the world. Figure 5.47 shows the bridge in con-
struction. The width of the top slab of the box girder is 16.4 m (53.8’), and
the width of the bottom slab is 7.5 m (24.6’). The height of the box girder
varies from 15 m (50’) at the piers to 4.5 m (14.8’) at midspan. The thick-
ness of the bottom slab varies from 1700 mm (67”) at the piers to 320 mm
(12.6”) at midspan. The web thickness varies in steps from 1000 mm (40”)
at the piers to 450 mm (18”) at midspan. Figure 5.48 shows the arrangement
of the box girder in the bridge, and Figure 5.49 shows the segments and lay-
out of longitudinal tendons including the cantilever webs’ bent-down ten-
dons. The central span consists of 63 segments, whereas the two side spans
consist of 33 segments each, and the entire span is constructed in balanced
cantilevers. A similar approach as shown in Section 5.6 is used, except that
MIDAS program (MIDAS 2007) is adopted for this analysis.

Figure 5.47 Construction of the continuous rigid frame of Sutong Bridge approach spans.
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Figure 5.48 Typical section of the box girder (cm).
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Figure 5.49 Segments and layout of tendons in the continuous rigid frame of Sutong
Bridge approach spans.
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Figure 5.50 Layout of the preparatory external tendons in the continuous rigid frame of
Sutong Bridge approach spans.

Two sets of additional tendons are designed to avoid excessive deflections
due to uncertainties including material properties, concrete creep and shrink-
age, and prestress losses. The first set is the internal tendons preset in the
bottom slabs, and the other set is the external preparatory tendons. Both sets
would be applied after closure or during service if necessary. As shown in
Figure 5.49, there are a total of 15 internal tendons (Z1-Z135) in the bottom
slab in the main span. Z1 through Z5, Z7 through Z9, Z11 through Z13,
and Z15 are applied immediately after closure, and the rest are anticipated
to be applied one year after the bridge is in service. As shown in Figure 5.50,
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there are three external tendons (W1-W3) in the middle of the main span,
with each consisting of 25®/15.24.

5.7.2 Results of webs’ bent-down tendons

If the cantilever bent-down tendons in the webs as shown in Figure 5.49
are changed into the straight layout of tendons (shown in Figure 5.45), the
shear force provided by the cantilever tendons can be calculated, and the
comparison with the straight layout of tendons is shown in Figure 5.51.

Figure 5.51 shows that the webs’ bent-down tendons can provide more
shear force, which can balance the shear force induced by the dead loads.
Therefore, the shear stress in the web will be reduced, and the principal
tensile stress can be effectively limited.

5.7.3 Results of two approaches on deflections

Obviously, the preset additional internal tendons in the bottom slabs can
effectively improve the stress deflection. Using the CEB-FIP78 creep and
shrinkage prediction models, which are adopted in the previous bridge code
(JTG D62-85 19835), the increments of deflections of the bridge after the
completion were analyzed, and the increments with and without the preset-
ting internal tendons in the bottom slabs are shown in Figures 5.52 and 5.53,
respectively. Figure 5.52 shows that tensioning the presetting tendons would
induce a camber of about 3 cm at midspan.
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Figure 5.51 Shear force provided by cantilever tendons.
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Figure 5.52 Increment of deflections of the bridge after completion with the presetting
internal tendons.
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Figure 5.53 Increment of deflections of the bridge after completion without the presetting
internal tendons.

With respect to the preparatory external tendons, according to the field
observation, the external tendons were designed to be tensioned when the
deflection or stress status was about to exceed the prediction value. After
tensioning the three couples of external tendons, the upward deflection at
midspan will be 14 mm. Also, it will provide an increment of 3.5 MPa nor-
mal compressive stress in the bottom slab and a 0.4 MPa normal compres-
sive stress in the top slab.



Chapter 6

Curved concrete bridges

6.1 BASICS OF CURVED CONCRETE BRIDGES

6.1.1 Introduction

Due to urban development, more curved alignments, longer spans, more
skewed supports, and more segmental construction for concrete bridges are
expected. Construction methods can be cast in place with shoring or pre-
cast, curved, spliced “U” girders with a cast-in-place deck. Based on survey
(Nutt and Valentine 2008) in the NCHRP report 620, except the west-
ern United States, most states are tending toward segmental construction
(cantilever and span by span using both precast and cast-in-place concrete)
to avoid conflict with traffic. A common application of curved structures is
in freeway curved alignment or interchanges. Cross sections of curved box
girders may consist of single-cell, multicell, or spread box beams, as shown
in Figure 6.1. In the United States, only a very few spread box beams are
used for curved concrete bridges. As for the requirement of a more refined
analysis, many U.S. states use an 800-foot (244-m) radius as the trigger
where designers should consider three-dimensional (3D) analysis, such as a
grillage or finite element analysis (FEA) described in Chapter 5.

Sennah and Kennedy (2002) present highlights of references pertain-
ing to straight and curved box girder bridges in the form of single-cell,
multiple-spine, and multicell cross sections. The elastic analysis techniques
discussed include the following:

1. Orthotropic plate theory method
2. Grillage analogy method

3. Folded plate method

4. Finite strip method

5. Finite element method (FEM)

The orthotropic plate method lumps the stiffness of the deck, webs,
soffit, and diaphragms into an equivalent orthotropic plate. In the grillage

171
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(a) Single-cell box girder
O N | Y
(b) Multicell box girder

AYAVVAvE

Spread box beams

Figure 6.1 (a—c) Types of curved concrete bridge cross sections.

analogy method, the multicellular structure is idealized as a grillage of
beams. Special attention should be paid to the modeling of shear lag and
the torsional stiffness of closed cells. If properly done, the grillage model
by this method yields results that compare well with finite element tech-
niques. The folded plate method uses plates to represent the deck, webs,
and soffit of box girders. Diaphragms are not modeled. The plates are con-
nected along their longitudinal edges, and loads are applied as harmonic
load functions. The finite strip method is essentially a special case of the
FEM but requires considerably less computational effort because a limited
number of finite strips connected along their length are used. Its drawback
is that it is limited to simply support bridges with line supports and thus not
applicable as a general analysis tool for production design.

With the advent of powerful personal computers and computer programs,
the FEM has become the method of choice for complex structural problems.
Many curved box girder bridges were analyzed by this technique. The versa-
tility of this method has allowed users to investigate several aspects of bridge
behavior, including dynamics, creep, shrinkage, and temperature changes.

6.1.2 Stresses of curved concrete box under torsion

Curved bridges behave quite different from straight bridges. The curva-
ture results in off-center placement of loads and, subsequently, induces tor-
sion into the superstructure. The torsion, in turn, causes the shear stresses
to increase and plays an important role in a curved structure’s behavior.
Also, the curved geometry of the bridge will result in the development of
transverse moments, which can increase the normal stresses on the outside
edges of the bridge and can result in higher tension and/or compression
stresses (Fu and Yang 1996). Post-tensioned bridges also have an additional
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equivalent transverse load, which can result in significant tension on the
inside of the curve and compression on the outside edge (Fu and Tang 2001).
The magnitudes of such effects depend on the radius of curvature, span con-
figuration, cross-sectional geometry, and load patterns among other param-
eters. The global structural analysis is required to capture such effects.

In the early development by Hsu (1994), a set of equations is given for
solving single-cell torsion. A reinforced concrete prismatic member is sub-
jected to an external torque T as shown in Figure 6.2a. The external torque
is resisted by an internal torque formed by the circulatory shear flow g along
the periphery of the cross section. The shear flow g occupies a zone, called
the shear flow zone, which has a thickness denoted #,. This thickness ¢,, or
an equivalent thickness for a uniform shear stress, is a variable determined
from the equilibrium and compatibility conditions. It is not the same as the
given wall thickness b of a hollow member. Element A in the shear flow zone
(Figure 6.2a) is subjected to a shear stress T, = g/t, as shown in Figure 6.2b.

In bridge engineering, many reinforced concrete bridges consist of mul-
ticell boxes. Therefore, a set of simultaneous equations to analyze struc-
tural torsion for multicell boxes is needed (Fu and Yang 1996; Fu and Tang
2001). In this chapter, equations for single- and multicell box are listed.

6.1.2.1 Equations for multiple cells

Assume a structural section has N cells (Figure 6.3). According to restraint
condition 8 = 0, = 0, = ... = 0y, a set of simultaneous equations for cell i
can be obtained.

:

+— T;=4qll,

| —

AT

Figure 6.2 Hollow box subjected to torsion. (a) Shear flow in an element. (b) Shear
stress on element A.
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Figure 6.3 Shear stresses in a multicell section.

6.1.2.2 Equilibrium equations

A prestressed concrete element, as shown in Figure 6.4a, is reinforced
orthogonally with longitudinal and transverse (prestressing or nonprestress-
ing) steel reinforcements. The applied stresses on the element have three
stress components, G, G,, and T,. The longitudinal steels are arranged in the
I-direction (horizontal axis) with a uniform spacing of s. The transverse
steels are arranged in the #-direction (vertical axis) with a uniform spacing
of s as shown in Figure 6.4a. After cracking, the concrete is separated by
diagonal cracks into a series of concrete struts, as shown in Figure 6.4b. The
cracks are oriented at an angle o with respect to the l-axis. The principal
stresses on the concrete strut itself are denoted as 6,and o,. According to the
unified theory (Hsu 1993), after transformation, the governing equations
for equilibrium condition are shown as follows:

0; =G4 cos” oL+ G, sin* o+ pif + Ppfip (6.1)

Figure 6.4 Equilibrium in element shear. (a) Shear element. (b) Truss element.



Curved concrete bridges 175

G, = 04sin’ o+ 0, cos” L+ pifs + Pty (6.2)

T, =(—04 + 0,)sinacosa (6.3)

T =1,(2Ast4) (6.4)
where:

0), 0,, and T, are the three homogenized stress components of the com-
posite element (Figure 6.4a)

0, and ©, are the concrete stresses in d- and r-directions, respectively
(Figure 6.4b, where r-direction is perpendicular to d-direction and
not shown)

o is the angle between [ and d axes

frand f, are the stresses in steel in the I- and #-directions, respectively

fi, and f,, are the stresses in the prestressing steel in the /- and ¢-directions,
respectively

p;and p, are the steel ratio in the /- and #-directions, respectively

Py and p,, are the prestressing steel ratio in the /- and z-directions,
respectively

T is the external torque

A, is the cross-sectional area bounded by the centerline of the shear
flow zone

t; is the shear flow zone thickness

It should be noted that, for a multicell box under pure torsion, 6,=6,=06,=0
and, assuming a structural section has N cells (Figure 6.3), a set of simul-
taneous equations for cell i can be obtained.

Ty = —Og; SINQL; COSOL; (6.5)

T, = 11:(2 Aoits;) (6.6)

6.1.2.3 Compatibility equations

Similarly, the governing equations for compatibility condition were based
on the unified theory (Hsu 1993) and later extended by Fu and Yang (1996)
and Fu and Tang (2001). It should be noted that for a multicell box under
pure torsion, a set of simultaneous equations for cell 7 was simplified as

T _ (—€4; + €,)sInaL; cosa,; (6.7)
0=0;= szz;_ Vi (6.8)

y; =0 sin 20, (6.9)
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6.1.2.4 Constitutive laws of materials

The softening concrete stress—strain curve proposed by Hsu (1993, 1994) is
adopted here. General expressions for the constitutive laws of concrete and
steel for a multicell box are as follows:

Concrete struts:

ou = kiife (6.10)

ki = &1(€sis i) (6.11)

i = Ea(eas €1i) (6.12)
Steel:

fii = &slen) (6.13)

fi = &a(es) (6.14)

Combining governing equations for compatibility condition based on the
unified theory (Hsu 1993) with selected constitutive equations, in this case,
the softening concrete stress—strain curve, solution can be derived. For
details of the solution of a single cell, refer to Hsu (1993, 1994), Fu and
Yang (1996), and Fu and Tang (2001).

6.1.3 Construction geometry control

Curved bridges can be built segmentally or nonsegmentally where seg-
mental bridges may adopt precast or cast-in-place construction of bridge
members. The short-line match-cast joint method of precasting concrete
segments has proved to be the most versatile and reliable way of build-
ing precast segmental bridges. The geometry control of segments casting
in yard is a unique issue of precast segmental bridges, and its application
is critical to reproduce the designed bridge curves after assembling. This
long-standing topic is always a part of the design and construction of seg-
mental bridges, especially for curved segmental bridges. More details about
this topic will be discussed in Section 18.6.

6.2 PRINCIPLE AND MODELING OF CURVED
CONCRETE BRIDGES

A variety of modeling approaches can be applied when analyzing hori-
zontal curved bridges. Among these methods, plane frame analysis, spine
beam analysis, and 3D FEM are the most popular methods that are used
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in practice. Plane frame analysis is acceptable for curved bridges that have
a central angle less than 12°. For bridges that have a central angle greater
than 12°, curve geometry should be considered in the analysis model, and
3D spine frame analysis is required when a curved bridge is modeled as a
series of straight (or curved) frame elements in the centerline. Otherwise,
specialized curved beam elements are preferred. On the other hand, the 3D
FEAs are less vulnerable to applicability and modeling scope. Although this
analysis is still an approximate method, a closer to actual bridge behavior
can be generated by creating a more complex bridge model. With today’s
advanced technology with mesh-generating power, a bridge-designated
FEA program can build a finite element bridge model to ensure the correct-
ness of the model, and it is more frequently used in practice.

6.2.1 Modeling of curved concrete bridges

Curved concrete bridges, based on their level of required accuracy can be
modeled into different types, from spine model to grid model to 3D finite
element model.” Also, based on their emphases, bridges can be analyzed as
decoupled super- or substructural model or a global bridge model. A global
bridge, which includes the entire bridge with all frames and connecting
structure, may be needed for certain circumstances, especially for earth-
quake analysis as discussed in Chapter 17. The three types of modeling are
described briefly as follows:

1. Spine model. Spine models as shown in Figure 6.5a simplify the whole
cross section, no matter single- or multicell boxes. The 3D frame ele-
ment considers six degrees of freedom at both ends of the element and
is modeled at their neutral axis. In this model, prestressing can be
considered as equivalent loads with axial, vertical, and translational
equivalent forces, or prestress tendons can even be included in the
model as truss elements, as described in Chapter 5. Figure 6.6a demon-
strates a single-box sitting on two bearings by connecting the neutral
axis by rigid element. Different types of bearings, such as polytetraflu-
oroethylene (PTFE), stainless steel sliders, rocker bearings, or elasto-
meric bearings, may be used, and they should be modeled accordingly
with directional restraints or springs. For bearing-supported connec-
tions, only up to three translational degrees of freedom are restrained,
but the rotational degrees of freedom are free. Three 3D rigid truss
elements can be used to simulate the three translational restraints.
Figure 6.6b, adopted from Priestley et al. (1996), illustrates a typical

* 3D FEM model in this chapter refers to a finite element model in 3D that differs from spine
and grillage models. Usually a 3D finite element model contains plane shell elements and
other types of elements.
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Figure 6.5 Modeling of curved concrete box bridges. (Data from Nutt, R. and Valentine, O,
“NCHRP Report 620—Development of Design Specifications and Commentary
for Horizontally Curved Concrete Box-girder Bridges,” Transportation Research
Board,Washington, DC, 2008.) (a) Typical spine beam model. (b) Typical grillage
model.

monolithically single-column bent where the super- and substructures
are tied together. This model uses frame elements, effective bending
stiffness, cap with large torsional and transverse bending stiffness to
capture superstructure (Caltran 2012). The calculation of bending and
torsional stiffness can be found in Chapter 2.

2. Grillage model. However, spine model cannot capture the super-
structure carrying wide-roadway, high-skewed bridges. In these cases
grillage model as shown in Figure 6.5b is recommended (Caltran
2012). Grillage models are used regularly for modeling steel compos-
ite deck superstructures. For complicated concrete structures where
superstructures cannot be considered stiff such as very long and nar-
row bridges and interchange connectors, grillage models can be used.
This analysis approach requires the structure to be modeled as a 3D
grid of frame elements in which the superstructure is comprised of
both longitudinal and transverse beams located at the vertical center
of gravity of the superstructure. Section properties are based on the
box section with equivalent effective width as shown in Chapter 2.

For bridges with single- or multicell box (or spread multiple boxes)
as shown in Figure 6.1, properties can be calculated as shown in
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Figure 6.6 Super- and substructure connection. (a) Bearing-supported connection. (b) Mono-
lithic connection. (Data from CalTran,“Structural Modeling and Analysis,” LRFD
Bridge Design Practice, August 2012, http://www.dot.ca.gov/hq/esc/techpubs/
manual/bridgemanuals/bridge-design-practice/pdf/bdp_4.pdf.)

Figure 6.7 provided by VBDS (Wang and Fu 2005). For multicell
box bridge, either a spine beam model with multicell properties is
used or a grillage model with each beam line associated with its
respective web is adopted. The section properties for longitudinal
frame elements are modeled as shown in Figure 6.8 (Nutt and
Valentine 2008). A, is considered as the tributary cross-sectional
area of longitudinal segment as shown in the figure. A, for vertical
shear counts on the area of web only, and A, for transverse shear is
considering the area of tributary deck and soffit slabs in the same
figure. I, and I, represent the tributary moments of inertia with
respect to horizontal and vertical axes, respectively. ] is estimated by
using the total torsional moment of inertia divided by the number of
webs to assume equally divided. For multicell boxes, transverse sec-
tion properties can be assumed as combined transverse deck and
bottom slab properties with respect to the box neutral axis.
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Figure 6.7 Box sectional property calculation.
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Figure 6.8 (a, b) Grillage modeling of a longitudinal box cross section.
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3. 3D finite element model. 3D FEM is considered the most sophisticated
method among the three models. Earlier, it was most used in refined
local analysis as shown in the NCHRP Report (Nutt and Valentine
2008). However, with today’s advanced technology and meshing capa-
bility, it becomes a powerful tool in detailed local stress investigation
to make sure all is within the allowables. An illustrated example is
provided for the demonstration of this type of modeling.

6.2.2 Modeling of material properties

The mathematical properties of structural components are usually assumed
according to the codes issued by the responsible authority. These properties
for static loading, including stress—strain relationship, concrete-cracking
effect, yield, and ultimate strength of steel and concrete, were discussed in
Chapter 4 for RC bridges.

For nonstatic loading, which could affect bridge member stiffness, the
nonlinear properties of concrete are required in modeling, and they will be
covered in Chapter 17—Dynamic/Earthquake Analysis.

6.2.3 Modeling of live loads

When all of the girders in a span are parallel and the span is contained
entirely within the limits of a vertical and/or horizontal curve, the profile
effect is simply the sum of the vertical curve effect and the horizontal curve
effect.

Atotal :Avertical effect +Ahorizonta1 effect (6'15)

When analyzing concrete curved bridges using FEA, it is crucial to model
the live load value and position along the longitudinal direction of the
bridge to yield proper live load response. Also vehicular effects, especially
centrifugal forces, should be considered. The horizontally curved bridge is
applied by a lateral load due to the centrifugal force from traffic. According
to the AASHTO LRFD bridge design specification, the centrifugal force
is defined as the product of design truck weight and a C factor, which is
defined as

c=f% (6.16)

where:
g is the gravitational acceleration
R is the bridge curvature radius
v is the design lane speed
fis equal to 4/3 (to 1.5) for all limit state other than fatigue



182 Computational analysis and design of bridge structures

In the case of a multilane bridge, a multilane presence factor should be

included.

6.2.4 Modeling of lateral restraint and movement

Bearings in a horizontal curved bridge may be restraint in lateral to prevent
movement due to the centrifugal forces from traffic load, thermal move-
ment, and prestress shortening. The bearing should be so modeled to reflect
its actual movement and restraints in all directions.

6.3 SPINE MODEL ILLUSTRATED EXAMPLES
OF PENGPO INTERCHANGE, HENAN,
PEOPLE’S REPUBLIC OF CHINA

This illustrated example is a ramp bridge located in Pengpo Interchange, one of
the major transportation hubs in Henan, China. It has a total length of 343.465 m,
with a radius of 130 m for the first 150 m, a left transition curve for the next
50 m, and a radius of 400 m for the rest of the ramp bridge. The bridge is shown
in Figure 6.9. The bridge is designed as cast-in-place prestressed concrete con-
tinuous box girder bridge, with a bridge roadway width of 7.5 m + 2 x 0.5 m.
The span layout of this bridge contains two 6 continuous spans with the first
one 6 X 30 m and the second one 6 x 25.88 m (Figure 6.9). Typical cross section
of the bridge is shown in Figure 6.10. The bridge uses elastomeric bearing pads
with various sizes ranging from 500 x 87 mm? to 900 x 115 mm?.

The purpose of this analysis is to find the reason of damage to bearings
and substructure pier columns due to lateral movement. Pengpo Bridge sup-
port arrangement plan is shown in Figure 6.11a, and its movement sketch is
shown in Figure 6.11b. During the inspection, it was found that though the
bridge superstructure’s performance meets the original design requirement,
large shear deformation and transversal displacement occurred through-
out the bearings in the ramp bridge, ranging from 10 mm at bearing #0 to
90 mm at bearing #6.

To understand the cause of the damage, a 3D model of the first 150-m ramp
bridge was generated by CSIBridge, as shown in Figure 6.12. The elastomeric
bearing pads were modeled by introducing the stiffness values in vertical,
horizontal, and lateral directions provided by bearing pads. A lateral load
of moving vehicle centrifugal force was introduced following the AASHTO
instructions, which is triggered by 20 tons of vehicles traveling at about 60
km/hour. The deflection is shown in Figure 6.13. The CSIBridge model results
show that displacements among the supports are different from 7.25 mm at
bearing #0 to 56.3 mm at bearing #6, which is reasonably close to the field-
inspection results. It is detected from the results that the centrifugal force
from traffic may be the main reason that this example bridge got damaged.
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Figure 6.9 (a) Sketch. (b) View of Pengpo Bridge, Henan, China.
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Figure 6.10 Typical cross section (mm) of Pengpo Bridge, Henan, China.
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Figure 6.11 Pengpo Bridge: (a) support arrangement plan and (b) its movement sketch.

Figure 6.12 CSIBridge FEA model.

Figure 6.13 CSIBridge model after centrifugal load has been applied.
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6.4 GRILLAGE MODEL ILLUSTRATED
EXAMPLES—FHWA BRIDGE NO. 4

This skewed bridge example as shown in Figure 6.14a is used to illustrate the
modeling technique. This monolithic concrete bridge is one of the FHWA
examples series (Mast et al. 1996) and is also used as an illustrated example
in Chapter 17. It consists of three spans. The total length is 97.5 m (320’), with
span lengths of 30.5, 36.6, and 30.5 m (100’, 120’, and 100’), respectively.
In the longitudinal direction, the intermediate bent columns are assumed
to resist the entire longitudinal force, whereas the seat-type abutments pro-
vide vertical but no longitudinal restraint. As shown in Figure 6.14a, all sub-
structure elements are oriented at a 30° skew from a line perpendicular to a
straight bridge centerline alignment. The superstructure is a cast-in-place con-
crete box girder with two interior webs. The intermediate bents have a cross-
beam integral with the box girder and two round columns that are pinned
at the top of spread footing foundations. Because this model was used for

G, Abutment B

@ Bent 1

Sv’f“‘l

30° Skew ‘

G Abutment A

Rigid link (typical)

\— Bent column

(typical)

Support node
at abutment (typical)

z
@

Figure 6.14 Details of super- and substructural elements. (a) Grid model. (Continued)
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Figure 6.14 (Continued) Details of super- and substructural elements. (b) Details of bent
elements. (Data from FHWA 1996.)

earthquake analysis, the intermediate bent foundations were modeled with
equivalent spring stiffness for the spread footing to capture the soil effect. In
this grillage model, section properties, A, A,, A, I, I, and ], are calcu-
lated as described in the early section and later in Chapter 17 for verification
purpose. The superstructure has been modeled with four elements per span,
and the element axes are located along the centroid of the superstructure. The
bents are modeled with 3D frame elements that represent the cap beams and
individual columns. As columns are pinned to the column bases, two elements
were used to model each column between the top of footing and the soffit of
the box girder superstructure. A rigid link was used to model the connection
in between. The final model is shown in Figure 6.14a. Note that unlike what
is demonstrated in Chapter 17, no plastic hinge is modeled here.

6.5 3D FINITE ELEMENT MODEL ILLUSTRATED
EXAMPLES—NCHRP CASE STUDY BRIDGE

To demonstrate the 3D finite element model of curved concrete bridge, the
bridge example B-1 in the NCHRP study by Nutt and Valentine (2008) is
adopted. This fictitious bridge is a cast-in-site curve bridge with a curve
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R of 122 m (400’) and spans of 61 m + 91 m + 61 m (200" + 300" + 200’).
The box section has two cells as shown in Figure 6.15. In this model, box
girder is modeled instead by 3D plane shell elements, bents are modeled
by 3D frame elements, and bearings are modeled by rigid truss elements.
As shown in Figures 6.16 and 6.17, flanges and outer webs are meshed
into three-node triangular plane shell elements so as to incorporate curva-
ture, whereas the middle web is meshed into four-node rectangle plane shell
elements. In the longitudinal direction, the box girder is meshed in every
1.2 m (4’) and around 0.6’ (2') in the transverse direction. The entire bridge
is modeled into 14,700 plane shell elements as well as 18 truss and frame
elements as support.

In addition to structural weight as dead load, as described in the NCHRP
Report (2008), a concentrated load of 100 kip (445 kN) is applied in the
middle of the midspan with three different locations, on the top of the outer
web, middle web, and inner web. Figure 6.18 shows the major principal
stress distribution on the top of flange due to structural weight. Figure 6.19
shows the longitudinal stress distribution in the transverse direction at the
pier due to structural weight. Figure 6.20 shows the longitudinal stress

430"

0" 10%”

j% b
170" 08"
170" 10" 120"
3

0 8%” —I

LS, 10,,i3, O”I 257 4 ¢ 3 O,L 5 10"<J

3

Figure 6.15 Typical cross section of a box girder. (Example B-1, Data from Nutt, R. and
Valentine, O., “NCHRP Report 620—Development of Design Specifications
and Commentary for Horizontally Curved Concrete Box-Girder Bridges,”
Transportation Research Board, Washington, DC, 2008.)

Figure 6.16 3D view of finite element model.
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Figure 6.17 Meshes in 3D finite element model.

216 1

Figure 6.18 Major principal stress on top flange due to structural weight (kip/sf).
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Figure 6.23 Girder moment distribution due to 100-kip concentrated load on the top
of outer web (kip-ft).

distribution in the transverse direction in the middle of midspan due to a
concentrated load on the top of outer web. Straight lines in both Figures 6.19
and 6.20 are obtained by the beam theory from moment calculated by
stress integration over the entire cross section.

Alternatively, the same bridge is modeled using grillage model as shown
in Figure 6.21. The box girder is modeled by three beams at web loca-
tions with a longitudinal mesh of 1.2 m (4’). The transverse beams are
also meshed at a space of 1.2 m (4’) in the longitudinal direction. The
total number of 3D frame elements for box girder is 2275, and the total
number of elements in the model is 2309. Figures 6.22 and 6.23 show the
moment distribution on the girder due to structural weight and 100-kip
(445 kN) concentrated load on the top of outer web, respectively. In com-
parison with the finite element model, the total moments on three beams at
pier location due to structural weight and in the middle span due to 100-
kip (445 kN) concentrated load on the top of outer web are —87,490 kip-
ft (118,615 kN-m) and 4,875 kip-ft (6,609 kN-m), respectively, whereas
the integrated moments from plane shell elements on these locations are
—81,054 kip-ft (-109,889 kN-m) and 4,217 kip-ft (5,717 kN-m) accord-
ingly, which are very close in this example.
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Chapter 7

Straight and curved
steel I-girder bridges

7.1 BEHAVIOR OF STEEL I-GIRDER BRIDGES

7.1.1 Composite bridge sections
under different load levels

A composite steel I-girder bridge can be considered as a series of
I-girders with their concrete deck acting compositely with the steel
girders (Figure 7.1). Figure 7.1c shows three different noncomposite or
composite steel sections and their respective stress diagrams. For steel
girder bridge analysis, the respective section properties are used at dif-
ferent load stages. For steel multigirder bridges with cast-in-place con-
crete decks, there are four general loading stages in the construction
sequence:

e Stage 1—Erection of structural steel framing (girders and cross
frames)

e Stage 2—Placement of the structural deck slab (wet concrete)

e Stage 3—Placement of appurtenances (e.g., barriers, railings, over-
lays) representing the long-term (LT) loading

® Stage 4—DBridge in-service condition (e.g., carrying live loads; vehicu-
lar, rail, pedestrian) representing the short-term (ST) loading

The normal stress distribution 6(x) in the concrete slab of a composite
beam does not have a constant value but varies where the maximum
flexural normal stress occurs at the junction point of the slab and steel
girder web, as illustrated in Figure 7.2. This phenomenon is caused by
the lag of shear strain at the top of the concrete slab and is referred to
as shear lag effect. Effective width of a cross section at a given loca-
tion depends on the structural layout and loads. For design purposes,
it is convenient to define the effective width for the concrete slab. The
effective (b,) and transformed widths (b,,) are illustrated in Figure 7.2.
Results of a recent study as shown in NCHRP Report (Chen et al. 2005),

193
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Figure 7.1 (a—c) Steel section properties and their respective stress diagrams.

which was later adopted by AASHTO load and resistance factor design
(LRFD) specifications (2013), recommend that the full slab width half-
way between adjacent girders can be counted as the effective width for
the concrete slab. Calculation of the effective widths and their respective
section properties will be shown in the example of Section 7.3. For each
of the loading stages described earlier in this section, a distinct set of
section properties exists and must be used in their respective analyses to
properly ascertain design forces and deflections to evaluate strength and
serviceability criteria.

Steel I-girder can be made of rolled beams or welded plate girders. For
typical bridges, fabricators usually prefer rolled beams. Generally, rolled
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I: be :I

()

H

— —
|<—s =beam spacing —>|
(b)

Figure 7.2 Definition of effective width and transformed width of a steel composite section.
(a) Actual stress distribution and (b) effective width and transformed width.

beams are more economical than welded girders. Other considerations are
delivery or specific requirements, such as camber and curvature. Typical
diaphragms or cross frames as shown in Figure 7.2 are designed for

e Lateral loads transferring.

e Stability of the bottom flange for all loads when it is in compression.
¢ Stability of the top flange in compression prior to curing of the deck.
¢ Live loads distribution.

Diaphragms or cross frames can be specified as either of the following:

® Permanent—if they are required in the bridge’s final condition
o Temporary—if they are required only during construction

The difference between diaphragms and cross frames is that diaphragms
consist of a transverse flexural component, whereas cross frames consist of a
transverse truss framework; both carry vertical shear and moment from one
beam to the others. For straight bridges, the general recommendation is to
place cross frames either parallel to skewed supports or normal to the gird-
ers if the deflection between girders is constant at cross-frame connections
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and the skew angle is equal to or less than 20°. Otherwise place cross frames
normal to the girders.

The behavior of the steel girder bridges may be grouped as either (1) straight
and nonskewed or (2) curved and/or skewed bridge. According to G13.1
by the AASHTO/NSBA Steel Bridge Collaboration (2011), the behavior
of curved and skewed steel girder bridges can be broadly divided into two
categories:

Basics—Curved or skewed steel girder bridges, or both, experience the
same effects of gravity loading (dead load and live load) as straight girder
bridges.

Curvature and skew effects—Torsional and warping stresses, flange lat-
eral bending, load shifting and warping, and twisting deformations.

In Section 7.1.2, different effects will be characterized as effects of
curvature.

7.1.2 Various stress effects

Early steel bridges are primarily straight and simple-span bridges and can
be analyzed by hand. The advent of computers can easily handle indeter-
minate structures, such as continuous span bridges, but are still mainly
straight bridges subjected to major-axis shear and bending moment effects
of the main girders. A curved girder and/or skewed girder bridge, in addi-
tion to the basic vertical shear and bending effects, will be subjected to
torsional effects (Nakai and Yoo 1988). Torsion in steel girders causes
both normal stresses and shear stresses. Because I-shaped girders are in
opened sections and thus have low St. Venant torsional stiffness, they
carry torsion primarily by means of warping. The total normal stress in an
I-shaped girder is a combination of any axial stress, major-axis bending
stress, lateral bending stress, and warping normal stress (Figure 7.3). The
total shear stress is the sum of vertical shear stress, horizontal shear stress,
St. Venant torsional shear stress (generally relatively small), and warping
shear stress (Figure 7.4). For nonskewed straight steel bridge analysis, only
the major-axis bending stress (second term on Figure 7.3) and the vertical
shear stress (first term on Figure 7.4) are dominant, and the rest of the
terms can be ignored in the design phase, but have to be included in other
load combinations for code checking.

The relatively low St. Venant torsional stiffness of I-shaped girders is a
result of their open cross-sectional geometry. The St. Venant torsional shear
flow around the perimeter of the cross section can develop only relatively
small force couples. Without significant force couples, compared to the close
section (described in Chapter 8 for steel box girder bridges), the ability of
I-shaped girders to carry torque through St. Venant torsional response is low.

I-girders carry torsion through the combination of pure torsion and
restrained warping. Diaphragms and/or cross frames provide lateral
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Figure 7.3 lllustration of the general I-girder normal stresses, which can occur in a
curved or skewed I-shaped girder.

restraint to girders. The total torsional resistance is the sum of nonrestrained
torsion (pure torsion) and restrained torsion (warping), as expressed in
Equation 7.1.

T=GJo'-EC,0" (7.1)

where:
G is the shear modulus of elasticity of steel
J is the torsional constant of cross section and can be approximated
using Equation 7.2 for rolled and built-up I shapes
E is the modulus of elasticity of steel
C,, is the warping constant of cross section and can be approximated as
1,h%/4 for rolled and built-up I shapes
I, is the lateral moment of inertia about y-axis
b is the distance between centerlines of top and bottom flanges
0 is the rotation angle of cross section along the girder axis

For the calculation of section properties, including C,, refer to AISC,
Design Guide 9: Torsional Analysis of Structural Steel Members (2003).
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Figure 7.4 lllustration of the general |-girder shear stresses, which can occur in a curved
or skewed |-shaped girder.

The normal warping stresses for I-girders caused by torsion represent
one source of what are called flange lateral bending stresses. These are an
important part of the design equations for flange stresses in I-girders. In
that case, all terms on Figures 7.3 and 7.4 have to be counted for.

7.1.3 Section property in the grid
modeling considerations

During the development of any structural analysis, section properties are
assigned to the members. The distribution of forces through the system
is highly dependent on member stiffness parameters such as EI,, EIL,, GJ,
and EC,. EC,, the warping stiffness parameter, is not used in a generic
structural analysis method based on the beam theory with six degrees
of freedom (DOFs) per node. For special analyses, cross-sectional warp-
ing deflection, the seventh DOF can be included to consider the warp-
ing of thin-wall cross sections. Thus, the additional warping stiffness is
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required. For curved structure, EC,, is often the dominant contributor to
the individual girder torsional stiffness. Without consideration of EC,,
the local twisting responses of the girders cannot be modeled accurately.
On the other hand, a full three-dimensional (3D) finite element analysis
(FEA), in which the thin-wall sections are modeled by plane shell elements,
bypasses the need for the modeling of warping stiffness within the single
beam element used to model the girder in two-dimensional (2D) grid anal-
ysis approaches.

A rigorous solution of grid analysis to take care of the warping prob-
lem of a thin-wall beam requires the warping deflection as an additional
DOF. Several researchers (e.g., Hsu and Fu 1990; Fu and Hsu 1995) have
included the warping deflection as the seventh DOF, in addition to the
regular six DOFs, at each node for the curved beam analysis to consider
the warping effect. For the case of partial warping restrained, an effec-
tive torsional constant, K, was proposed by Fu and Hsu (1994) and later
improved by Elhelbawey and Fu (1998) to consider warping effects in a
regular six DOFs analysis. A simple, easy-to-apply effective torsional con-
stant for the rotational stiffness of a restrained open section was developed
to take both the pure torsion and the warping torsion into account. This
effective (equivalent) torsional constant, K,,, can be easily calculated and
used for any generic finite element structural analysis program.

The original torsional constant for most common structural shapes, ],
can be approximated by Equation 7.2.

J= th% (7.2)

where b and ¢ are the width and thickness of the thin-wall elements, respec-
tively. The effective (equivalent) torsional constant, K,,, developed by Fu
and Hsu (1994), can be expressed as

K, :]coshg/{cosh;—l.O}C (7.3)

where:
A% is the GJ/EC,,, (A = l/a, where a is used in AISC documents)
C is the correction factor that equals {1.0/[1.0 + 2.95 (b/])?]}
[ is the unbraced length
b is the flange width

Once the effective torsional constant is determined, the stiffness matrix
for a grid structure can be derived by using the traditional straight beam
method with three DOFs (torsional rotation, bending rotation, and deflection)
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per node. The stiffness matrix of an element in a grid model with warping
partially restrained is as follows:

I Gfi@ 0 0 7"GZK"? 0 0
0 4EI,  -6EI, 0 2EI, 6EI,
! I i I?
0 —6EI,  12EI, 0 -6EI, —12EI,
[Kg] _ 12 13 12 13 (74)
“Gke g 0 Gk 0 0
! i
0 2EI,  —6EI, 0 4EI, 6EI,
! I? i I
0 6EI, —12EI, 0 6EI,  12EI,
I P I? P

A similar study was done years later by the NCHRP Project 12-79 Report
725 (White et al. 2012) with two equivalent equations with warping fix-
ity at each end of a given unbraced length L, (Equation 7.5a) and warping
fixity at one end and warping free boundary conditions (Equation 7.5b),
where J,, is equivalent to K,, in Equation 7.3.

-1
], sinh(pL,) _ [cosh(pLy)~1]
oo = {1 pL,  pLisinh(pL,) 7
inh(pL,) |
_q|q__sinh(®Ly) (7.5b)
]eq(s fx) ]|: prCOSh(PLb):|

A cross frame between girders for a grid analysis can be formed by steel
beam, X-type, and K-type cross frames. For the 3D-modeling purpose, at
least four or five nodes are needed for the definition of a cross frame as seen
on the right side of Figure 7.2. For a 2D grid model, idealization in beam
solutions is used to simulate the exact equivalent beam stiffness of this cross
frame. In the NCHRP Project 12-79 Report 725 (White et al. 2012), it is
called Timoshenko beam element.

This approach simply involves the calculation of an equivalent moment of
inertia, I, as well as an equivalent shear area As,, (as shown in Equations 7.6
and 7.7) for a shear-deformable (Timoshenko) beam element representation
of the cross frame.

1. The equivalent moment of inertia is determined first based on pure
flexural deformation of the cross frame (zero shear). The cross frame
is supported as a cantilever at one end and is subjected to a force
couple applied at the corner joints at the other end (Figure 7.5).
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Figure 7.5 Calculation of equivalent moment of inertia based on pure bending. (Data
from White, D.W. et al. “Guidelines for Analysis Methods and Construction
Engineering of Curved and Skewed Steel Girder Bridges,” NCHRP Project
12-79 Report 725, TRB, Washington, DC, 2012.)
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(7.6)

2. Using an equivalent Timoshenko beam element rather than an Euler—
Bernoulli element, the cross frame is still supported as a cantilever but
is subjected to a unit transverse shear at its tip (Figure 7.6).
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Figure 7.6 Calculation of equivalent shear area based on tip loading of the cross frame
supported as a cantilever. (Data from White, D.WV. et al. “Guidelines for Analysis
Methods and Construction Engineering of Curved and Skewed Steel Girder
Bridges,” NCHRP Project 12-79 Report 725, TRB,Washington, DC,2012.)
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7.2 PRINCIPLE AND MODELING
OF STEEL I-GIRDER BRIDGES

7.2.1 Analysis methods

It is always recommended to perform some kind of simplified verification of
the results of more complex analysis models by means of simpler analysis
models or hand calculation, or both. These types of checks are extremely
valuable to allow the designer an opportunity for better understanding the
behavior of the structure and validating the correctness of the more com-
plicated analysis. It is also advised to perform a number of simple check
calculations directly based on the analysis results. For instance, the simplest
check when performing an analysis is to see whether the summation of dead
load reactions equals the summation of the applied dead loads and whether
the distribution of dead load reactions among the various support points
matches the anticipated internal load distribution in the structure.

Depending on the complexity of the steel framing, the level of analysis
required can range from simple hand calculations to 3D finite element mod-
eling, which are briefly discussed here:

1. Beam charts. In the United States, there are a number of standard
beam design charts and other design aids that can be of use to the
designer. The AISC Manual includes a table of beam shear, moment,
deflection, and reaction graphs and formulas for the cases of uniform
load and point load. Although these patterns of loading are typically
too simplified to be of direct benefit to bridge engineers, these design
aids can serve a valuable purpose by providing a handy resource for
finding approximate analysis methods for use in the preliminary
design or in the checking of more complicated analyses.

2. Line girder analysis method. This method is referred to as approximate
method in the AASHTO LRFD specifications (2013). The line girder
analysis method uses load distribution factors to isolate a single girder
from the rest of the superstructure system and evaluates that girder indi-
vidually. When modeling, beam elements are lined up with the neu-
tral axis. For composite sections, there are four stages, as described
earlier, where their neutral axes and sections may change accordingly.
Figure 7.7 shows the perspective view of a composite section with its
associated neutral axis locations. The live load distribution factors can
be simply determined by some approximate formulas for both straight
bridges and curved bridges (AASHTO 2013).

3. Grid analysis method. This method is also referred to as plane
grid or 2D grillage analysis method. In this method the structure is
divided into plane grid elements (as shown in Figure 7.8) with three
DOFs at each node (vertical displacement, rotation angles about the
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Figure 7.7 Line girder model with its associated neutral axis locations.
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by the steel diaphragms or
slab tributary area
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composite girders

Figure 7.8 Grillage model representing the concrete deck on a steel I-girder bridge.
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longitudinal and transverse axes). This method is most often used in
steel bridge design and analysis.

4. Plate and eccentric beam analysis methods. This method is an
advancement of a 2D grid/grillage analysis model. The deck is mod-
eled using plane shell elements, whereas the girders and cross frames
are modeled using beam elements offset from the plane shell elements
to represent the offset of the neutral axis of the girder or cross frame
from the neutral axis of the deck.

The offset length is typically equal to the distance between the cen-
troids of the girder and deck sections. This method is more refined than
the traditional 2D grid method. For this modeling approach, beam ele-
ment internal forces obtained from this method need to be eccentrically
transformed to obtain the composite girder internal forces (bending
moment and shear) used in the bridge design. More details and sketch
of the model are further discussed in the next point, 3D FEA methods.

5. 3D FEA methods. The 3D FEA method is meant to encompass any
analysis or design method that includes a computerized structural analysis
model where the superstructure is modeled fully in three dimensions:
modeling of girder flanges using line or beam elements or plate-, shell-,
or solid-type elements; modeling of girder webs using plate-, shell-, or
solid-type elements; modeling of cross frames or diaphragms using line
or beam, truss, or plate-, shell-, or solid-type elements (as appropriate);
and modeling of the deck using plate-, shell-, or solid-type elements.
This method is fairly time consuming and complicated and is argu-
ably deemed to be most appropriate for use for complicated bridges
(e.g., bridges with severe curvature or skew or both, unusual framing
plans, unusual support/substructure conditions, or other complicating
features). 3D analysis methods are useful for performing refined local
stress analysis of complex structural details (AASHTO/NSBA 2011).

However, there are some complications associated with 3D analy-
sis methods. For instance, in a 3D analysis, generally used girder
moments and shears are not directly calculated. Instead, the model
reports stresses in flanges, webs, and deck elements. If the designer
wishes to consider girder moments and shears, a postprocessor
with some kind of conversion or integration of the stresses over the
depth of the girder cross section will be required. A demonstration
of this kind of conversion is shown in Figure 7.9. In this figure force
results of a steel girder section are shown where top and bottom
flanges are modeled by beam elements (element numbers 30 and 90)
and web by two shell elements (element numbers 838 and 898).
Neutral axis is in the middle for a symmetric section. Resultants
for beam elements are shown in F,_ (axial force = 649.72 kip or
2890 kN), F, (transverse force = 9.95 kip or 44.3 kN for the top
flange), F, (vertical force = 0.28 kip or 1.2 kN for the top flange),
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Figure 7.9 Conversion of FEM stress resultants to beam moments and shears.

M, (transverse moment = 0.58 kip-ft or 0.8 kN-m for the top flange),
and M, (vertical moment = 18.71 kip-ft or 25.4 kN-m). Resultants
for shell elements are shown in F, (horizontal force = 102.62 kip or
456.5 kN for the web top element) and F, (vertical force = 26.84 kip
or 119.4 kN for the web top element). By integrating all resultants
of these four elements, moment, shear, and torsion can be obtained
at the central or any location of the cross section. This process can
be a significant undertaking, particularly with regard to proper pro-
portioning of deck stresses and deck section properties to individual
girders.

When and how to use a refined 3D FEA for engineering design is
a controversial issue, and in the United States such an approach has
not been fully incorporated into the AASHTO specifications to date
(2013). The typical AASHTO methodology for design is generally
based on the assessment of nominal (average) stresses calculated by
simplified methods, such as P/A or Mc/1, and not localized peak stresses
obtained by shell- or solid-based finite element models. Refined analy-
sis can provide substantially more detailed and accurate information
about the stress state of the structure. This could allow for more cost-
effective and reliable design but often comes with increased engineer-
ing effort and increased potential for error. The results are often more
sensitive to the input parameters and the mathematical assumptions
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that are employed by the software. For instance, a given element will
have a unique formulation, interpolation, integration, and software
implementation, all of which will affect results. However, if properly
modeled, in the forensic or load test cases, such refined analysis is com-
monly adopted due to its refinement and accuracy. 3D FEA models are

described here:

a.

In-plane shell-beam model. Hays Jr. et al. (1986) and Mabsout
et al. (1997) modeled the deck slab using quadrilateral shell ele-
ments in plane with five DOFs per node and the steel girders
using 3D beam elements with six DOFs per node (Figure 7.10).
The bridge deck slab and steel girders shared nodes where the
steel girder is present. This model is essentially a 2D FEA, and
it is not capable of capturing the effect of the offset between the
center of gravity of the steel girder and that of the deck slab.
Furthermore, it cannot capture the system’s actual boundary con-
ditions, that is, the supports in the actual system are located at
the bottom of the steel girder rather than at the center of gravity
of the deck slab.

3D brick—shell model. Tarhini and Frederick (1992), Eamon and
Nowak (2001), Baskar et al. (2002), and Queiroz et al. (2007)
used eight-node linear solid brick elements with three displacement
DOFs in each node to model the concrete deck. The girders were
modeled using quadrilateral shell elements, which contain three
displacement and two rotational DOFs per node (Figure 7.11).
The cross frames were modeled using 3D two-node truss elements
with three displacement DOFs per node. Tarhini and Frederick

Shell element Shared node
/,- ————— : ————————————————————— h; 7

Beam element

Figure 7.10 In-plane shell-beam model.
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(1992) modeled full composite action by imposing no release at
the interface nodes at the concrete deck and girders. Queiroz et al.
(2007) vmodeled the longitudinal and transverse reinforcement in
the deck slab as a smeared layer of equivalent area in solid brick
elements.

3D shell-beam model. Tabsh and Tabatabai (2001) and Issa et al.
(2000) modeled deck slab using four-node rectangular shell ele-
ments with five DOFs per node. Each component of the steel girder,
that is, top and bottom flange and web, was modeled separately.
Top and bottom flanges were idealized as two-node beam elements
with six DOFs per node. The steel web was idealized using four-
node rectangular shell elements and the cross frames were ideal-
ized using two-node beam elements. Rigid beam elements were
used to model the full composite action between the concrete deck
and steel girders as shown in Figure 7.12.

3D shell-shell model. Fu and Lu (2003) idealized the bridge deck
with isoparametric quadrilateral shell elements, and the reinforce-
ment was modeled as a smeared 2D membrane layer with isopara-
metric plane stress element. The steel girder flanges were modeled
using eight-node plane shell elements and web by eight-node
plane stress elements. This modeling selection clearly generates an
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Figure 7.13 3D shell-shell model.

incompatibility at the flange and web connection. However, the
authors did not discuss this issue or its potential effect on the results.
The shear studs were modeled using bar elements (Figure 7.13).

e. 3D brick—beam model. Ebeido and Kennedy (1996), Barr et al.
(2001), Chen (1999), and Sebastian and McConnel (2000) used
eccentric beam model as shown in Figure 7.14 to idealize the
bridge superstructure in which the bridge deck was modeled using
four-node plane shell elements. The longitudinal steel girders and
cross frames were idealized using 3D two-node beam elements
with six DOFs for each node.
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Figure 7.14 3D brick—beam model.

Chung and Sotelino (2006) used four different techniques to model an
I-girder bridge superstructure. In their approach the bridge deck was mod-
eled using shear flexible shell elements (S8R in the commercial software
ABAQUS, 2007) and the steel girders were modeled by four different models,
named G1, G2, G3, and G4, to assess the suitability of each technique. In the
G1 model, the girder flanges and webs were modeled using shell elements. The
shell elements used to model the flanges were placed at the mid-surface of the
flanges using the offset option in ABAQUS to obtain the correct moment of
inertia of steel girders. The only difference between the G1 and G2 models is
that in the latter the flanges were modeled using beam elements placed at the
location coinciding with the center of the flange. The use of beam elements
reduced the computational cost as compared to G1 model. In the G3 model,
the web was modeled using a beam element and both flanges were modeled
using shell elements. This model was considered further to investigate the
incompatibility that possibly exists between model G1 where the in-plane
rotational DOF of the flange shell and drilling rotational DOF of the web
shell are shared at the flange and web joint. Rigid links were used to connect
the shell and beam elements to ensure full composite action. In the G4 model
either Euler beam elements or shear flexible Timoshenko beam elements were
used to model the steel girder. All four models were evaluated numerically by
looking at the maximum deflection due to concentrated load applied at the
center of a simply supported I-shaped beam (Figure 7.15). It should be noticed
that the analytical solution to this problem is readily available from the theory
of elasticity. G1 and G2 models required significant mesh refinement to con-
verge to the analytical solution as compared to G3 and G4 models.
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Figure 7.15 Convergence of finite element girder models. (Data from Chung, W. and
Sotelino, E.D., Engineering Structures, 28, 6371, 2006.)

7.2.2 Modeling in specific regions

One phenomenon rarely considered in the modeling process in the United
States is the effect of curb and parapet. Bridge investigation shows that, if a
slab deck effectively acts with the parapets, it is better able to carry a load
near the edges. However, the practice in the United States is not to count on
the contribution of the edge stiffening in the design process. If the existing
bridge needs to be load rated or the serviceability, such as deflection, is the
concern, the edge stiffening may be considered in the bridge model.

The resistance offered by steel girders to different loads on the bridge
depends on the amount of composite action between the deck and steel
girders. To model the partial composite action in the FEA, different methods
are proposed. Tarhini and Frederick (1992) modeled the partial compos-
ite action with three linear spring elements with properties based on the
amount of expected slip.

Baskar et al. (2002) used two different techniques to model the composite
action in ultimate strength. In the first method, the surface interaction technique
was used to model the composite action. This technique allows incompatible
strains and slip between the nodes in two different sets. More specifically,
the bond strength at steel and concrete interface and the strength of shear stud
were combined and modeled as shear between two surfaces. A bilinear curve
similar to shear force versus slip curve for shear stud was used to model the
slip. The surface behavior option in ABAQUS was used to model the vertical
tensile strength of the stud. This method was unable to capture local effects
such as slab failure and stud connector failure. In the second method, general
beam elements were used to model the shear studs and the area of the beam
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element was modified to account for the strength of the embedded shear stud
in concrete. Both techniques were evaluated by comparing their results with
the experimental load versus deflection plot for a cantilever beam subjected to
a point load at the tip. The results obtained using the surface interaction tech-
nique were found to be in good agreement with the experimental data. However,
even though the second technique was able to closely match the results in the
initial stage of the deformation, it had a slower convergence with the post peak
load versus deflection plot, and more mesh refinement than in the first method
was required for the results to converge to the experimental results. This kind of
nonlinear analysis technique is mostly used for research purpose.

A steel I-girder bridge may be designed and built composite or non-
composite. Negative moment region could be complicated as it might be
considered as noncomposite with or without shear connectors, even the
bridge was designed and built composite. For analyzing a continuous com-
posite steel girder bridge, no matter using line girder analysis method or
grid analysis method, assumption has to be made in the negative moment
region. AASHTO LRFD specifications (2013) state that stiffness charac-
teristics of beam—slab-type bridges may be based on the full participation
of concrete decks due to the fact that crack does not mean ineffective
until total concrete failure. Figure 7.16a models the noncomposite sections,
whereas Figure 7.16b demonstrates a case that if shear connectors with
steel reinforcements are considered in the negative moment region, full
composite sections are used throughout the analysis. However, when
calculating stresses in the negative moment area, steel section properties
with steel reinforcements in the slab, instead of the full composite section,
are conservatively used.

T i
(b)

Figure 7.16 Elevation view of (a) noncomposite and (b) composite sections considered
in the analysis and design.
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7.2.3 Live load application

For steel girder analysis, the following girder influence surfaces should be
analyzed in terms of

Moment (M)

Shear (V)

Torsion (left of the joint)
Torsion (right of the joint)
Deflection (D)

Reaction (R)

Diaphragm internal forces

For grid analysis, any influence surface as shown in Figure 7.17 can be consid-
ered as a series of influence lines. For instance, Figures 7.18 and 7.19 are con-
sidered as a set of moment influence surface for Joint 3 of girder 2. Vehicular
loading and lane loading move laterally within the traffic lane or outside the
lane as long as the distance between vehicles are maintained to yield the high-
est reaction (distributed force) for the concerned (primary) girder. Ordinates

Influence surface
for bending moment
atC

Influence surface
for bending moment
atD

Influence surface
for bending moment
atG

Influence surface
for reaction at F

Figure 7.17 Sample influence surfaces of a curved steel I-girder bridge. (a) Inner girder
in-span bending moment at C. (b) Inner girder interior support bending
moment at G. (c) Outer girder interior support bending moment at D.
(d) Second interior girder interior support reaction at F.
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of their respective influence lines are used to multiply the fraction of vehicular
loading to that girder, and areas under their respective influence lines are used
to multiply the fraction of lane loading to their respective girders.

To determine the extreme live load locations and corresponding extreme
values, influence lines are obtained from the influence surface for each
girder. Figure 7.17 shows the 3D perspective views for exemplar positive
and negative moment influence surfaces. Their exemplar 2D views for all
four girders from the DESCUS-I program (2012) are shown in Figures 7.18
and 7.19. Placement of live loads on one influence surface is shown in
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—G2 1
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—— G4
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Figure 7.18 DESCUS-I example—positive moment influence lines of girder 2.
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Figure 7.19 DESCUS-| example—negative moment influence lines of girder 2.
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— — = =

Girder 4 Girder 3 Girder 2 Girder 1

Figure 7.20 Placement of live load on influence surface.

Figure 7.18 for a 2D plot or in Figure 7.20 in 3D perspective view where
each downward force can be considered a fraction of a truck axle.

7.2.4 Girder-substringer systems

A typical girder—substringer configuration is illustrated in Figure 7.21.
In this figure, three main girders are shown. At intervals associated with
typical brace points of the main girders, floor beams span between them.
Within each girder bay, a series of smaller, more closely spaced substringers
are carried on the floor beams and support the deck.

Typical 2D and advanced grid analysis methods (methods 2 and 3 as
described in Section 7.2.1) can readily capture the distributions of dead loads
and live loads in such a system. The tradeoffs are the increased complexity
in live load application; the proliferation of load placement options, which
comes with the consideration of transverse location in addition to longitudi-
nal, the proliferation of output, and potentially the postprocessing demands
of assembling composite section forces from disparate model elements.

An analysis approach that may be considered is the use of a basic 2D grid
model to explore only the load distribution properties of the system. A man-
ageable regime of unit line load placements, unit area load placements of one
lane in width, and full-deck area load can provide moment, shear, and reac-
tion results for the stringers and girders. By comparing such results to cases

Figure 7.21 Cross-sectional view of a girder—substringer system.
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in which similar loadings are applied directly to isolated models of a stringer
or girder, effective live load distribution factors can be extracted. These fac-
tors could then be used in line girder analyses, provided the capacity for the
override of typical AASHTO distribution factors is available. The stringers in
such models would be supported at floor beam locations and the girders at
pier locations. The flexibility of the stringer supports at floor beam locations
is arguably built in by virtue of the method used to construct distribution fac-
tors. The reaction results from the stringer model would provide input to floor
beam analyses.

Usually, 2D grid model is assuming hinge or roller at a support location.
Considering the flexibility of the bent, the vertical stiffness offered by the
long-span steel straddle bent will be less than that offered by the concrete
hammerhead bent because the straddle bent cap possesses significant verti-
cal flexibility, whereas the concrete hammerhead is essentially rigid in the
vertical direction. If several supports of a multispan continuous steel girder
bridge are concrete hammerhead bents, with one support being a long-span
steel hammerhead bent, the response of the girders to vertical loading will be
different from that of the girders supported by all concrete hammerhead bents
(Figure 7.22).

For example, consider a bridge with a relatively wide, multigirder cross
section, supported at one or more bents by a steel straddle bent (Figure 7.23).
In this case, the vertical stiffness offered by the support for the leftmost
girder in the cross section will be different from that offered by the support
for the rightmost girder in the cross section.

7.2.5 Steel I-girder bridge during construction

The sequence of erection, as well as the number of girders in place and con-
nected by cross frames during erection, will affect the response of the girders
to loading. In the United States, many owner agencies require that contract

Deck Deck

I ]: }/— Girder (TYP) I I }/—Girder (TYI

Z Steel straddle Concrete Concrete
hammerhead
bent cap column Typ)
(TYP)

Section A-A Section B-B
Section view of bridge Section view of bridge
(a) on steel straddle bent (b) on concrete hammerhead bent

Figure 7.22 Section views of (a) a bridge with girders sitting on a steel straddle bent
versus (b) girders sitting on a concrete hammerhead.
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Figure 7.23 Straddle bent cap modeled by support stiffness. (a) Girders supported by
straddle bent cap and (b) support stiffness.

plans clearly indicate the assumed erection sequence and designers should
be ready to assess different erection sequences during shop drawing review
if the contractor chooses to erect the girders in a different way. Depending
on the complexity of the steel framing and the proposed erection sequence,
the level of analysis required can range from simple hand calculations to
3D finite element modeling. In general, for a simple framing plan such as a
simple-span bridge with no skew, hand calculations may be sufficient. On
the other hand, for a large curved steel I-girder bridge where vertical and
lateral displacements may be of concern to ensure proper fit-up or where
lateral bending stresses at certain stages of erection may be of concern, a full
3D FEA may be warranted (White et al. 2012).

The 2D or 3D model can be created for the completed steel framing and
then reconstructed stage by stage in accordance with the proposed erection
sequence. For the analysis of the steel erection sequence, dead loads and
construction loads need to be determined and applied to the appropriate
elements in the model. Dead loads typically include the self-weight of the
structural members and detail attachments. Wind loads must be considered
in the analysis of the steel erection sequence.

Increasingly, engineers are required to evaluate the stability of steel members
under partial stages of completion, for instance, the behavior of a beam sus-
pended by a crane or spreader beams during lifting or the behavior of partly
completed spans during erection with beams cantilevered or partly suspended
by holding cranes. Prior to the casting of deck concrete, uneven solar heat-
ing may cause the misalignment of girders and other construction issues.



Straight and curved steel |-girder bridges 217

Therefore, analysis based on such temperature changes during erection may
be required as well. The erection of the steel framing, whether the bridge is
straight or curved, is one of the most critical stages with regard to ensuring
stability, and these factors may need to be considered in the models during
construction.

Deck placement effects must be considered in the design of steel bridges.
When a portion of the deck slab is pouring, deck concrete casted in previ-
ous stages may be cured enough to form a composite action. Therefore, the
moment of inertia in the previously poured sections has to be so adjusted to
reflect the stiffness changes. The deck placement sequence also has an effect
on other aspects of bridge behavior including uplift, deflections, and bearing
rotations. Staging analysis process due to deck placement based on ACI209
(2008) are shown here.

1. Creep coefficient (¢[t,,]): The general form of the creep equation is

_ (t-1)"
o) = 0 (7.8)

where:
(¢ —t,) is the time since application of load
v and d (in days) are constants
@, is the ultimate creep coefficient

(Pu:((pu)avg Ve (7.9)

where:
(Pu)avg =2.35
v, is the cumulative product of six applicable correction factors for
loading age, relative humidity, volume—surface ratio, and concrete
composition (slump, aggregate, and air content)

2. Strength at age ¢ (f,,,,). The general form of the strength equation is

t
fcmt - +bt fcm28 (7.10)
where:
fem2s (in MPa or psi) is the strength of concrete at an age of 28 days
a (in days) and b are constants depending on the concrete type
3. Modulus of elasticity at loading age #, and age ¢ (E,,,and E_,,):

mcto

Emcto = 33’Y£1.5\/ fcmto (PSl) or Emcto = 0'043’YC1.5'\/ cmto (MPa) (7113)

Ecmto

. Bemo (7.11b)
1+o(t, )

cmt
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where:
E... (MPa or psi) is the effective modulus and is used to compute the
modulus ratio between concrete and steel

Y. (kg/m? or 1b/ft3) is the unit weight of concrete

7.3 2D AND 3D ILLUSTRATED EXAMPLE
OF A HAUNCHED STEEL I-GIRDER
BRIDGE—MDI140 BRIDGE, MARYLAND

Bridge No. 6032 is on MD140 over Maryland Midland Railroad, MD27,
and West Branch in Carroll County, Maryland. It was originally built in
1952. However, due to severe deterioration over years, the superstruc-
tures of this bridge including all girders and deck were rebuilt in 2005.
Description of the structure is given in Table 7.1. The rebuilt of this bridge
was partially funded by the Federal Highway Administration’s Innovative
Bridge Research & Construction (FHWA-IBRC) Program as an application
of a high-performance steel (HPS) bridge.

In the design process, AASHTO 2D line girder method was adopted. As
mentioned in Section 7.2.1, for the line girder approximate method, certain
conditions have to be met, such as

Table 7.1 Description of the MD140 Bridge structure

Item Description

Structure identification Bridge #06032
Location MD 140 over MD27—in Carroll County

Structure type
Span length(s)
Girder web depth
Roadway width

Structure width
Cross-frame type
Girder spacing

Structural steel
Abutments
Construction phases

Pouring sequence

| 5-Steel-girder bridge

148’152’ (45.11-46.33 m) two-span bridge

Varied from 45" to 81" (11432057 mm)

61’ (18.6 m) clear roadway width with 5’ (1.5 m) sidewalk
Northbound

6’ (1.8 m) median and 50" (15.2 m) clear roadway width
with 5’ (1.5 m) sidewalk Southbound

130" (39.6 m) out-to-out superstructure

K-type intermediate cross frames; channel-end diaphragms

5@10-0" (3.05 m),2@7'-3" (2.21 m), median 50"
(1.52 m),2@7'-3" (2.21 m),4@9'-9" (2.97 m)

F, =70 ksi (483 MPa)

Concrete abutment

Three phases; (1) girders 6—11, (2) girders 1-5, (3) girders
12-15

Pouring sequence nos. |-3 for phase |, sequence nos. 4-6
for phase 2, sequence no. 7 for phase 2 closure, sequence
nos. 8-10 for phase 3, sequence no. | | for phase 3 closure
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Figure 7.24 MDI140 haunched |5-steel girder system.

Assumed constant deck width, parallel beams with about the same stiffness
Use of design trucks

Designed within the bound for that structural type

Limited ranges of applicability, such as applicable for straight bridge
and for constant girder spacing only (When exceeded, the AASHTO
LRFD specifications mandate refined analysis.)

This bridge fits all the conditions, and 2D line girder method was
adopted for the analysis, and the girder sections were designed accord-
ingly. Figure 7.24 shows the parabolic-haunched 15-steel girder system
with one interior girder isolated for the analysis. The prospective view
of this line girder is shown in Figure 7.7. The calculation of the section
properties in three stages, noncomposite (N = infinity), LT composite
(N = 3n), and ST composite (N = n) sections, are shown in Figure 7.25.
This table lists the 2D beam section properties at the interior pier loca-
tion used in the analysis where S,,,, Sy, and S, refer to section moduli
at the top and bottom of the steel girder and the top of concrete slab,
respectively. Also, Q,,, is the first moment of inertia of the slab, and I,
is the moment of inertia of the composite section wherein AASHTO Q,../I.
is used for the calculation of the shear connector fatigue requirement.
Herein, # is the modulus ratio of the steel girder to concrete deck and
N is the actual modulus ratio used in that stage where N is the infinity
mean steel section only. For 4000 psi (27.6 MPa) normal concrete, 7 = 8
is used.

As this bridge was the first few applications of HPS in the state of
Maryland, full bridge testing, including 3D FEA, in all phases and stages
was conducted. As described in Table 7.1, this 15-girder system was recon-
structed in three phases: (1) the first phase—girders 6-11, (2) the sec-
ond phase—girders 1-5, and (3) the third phase—girders 12-15. Each
phase has three pouring sequences. 3D FEAs by ANSYS were conducted
(Figure 7.26).
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Location : 0 Top flange Value : 0

Location : 0 Bottom flange Value : 0

[oX)
(=}

Figure 7.26 Stress diagrams of MD 140 Bridge (in ksi). (a) Top-flange stress diagram. (b) Bottom-
flange stress diagram.

Bridge testing results of these nine stages were collected and compared
with the FEA results for all phases of construction. For the FEA, steel gird-
ers were represented by 2D shell elements joined together in an I shape
and the concrete deck was represented by 3D solid elements as shown in
Figure 7.11—3D brick-shell model. When analyzing fresh concrete pouring
as dead loads, steel-only cross sections were used, rather than composite
sections used in analyses in later phases.

The graphic results shown for the 3D finite element staging analysis
are for the third construction phase where girders 1 through 11 have
been constructed and concrete deck was poured in the first and second
phases. The third-phase construction is for girders 12 through 15, and
the pouring sequence is starting from the north-side 46.33-m (152’) span
(Figure 7.27), the second pour on the south-side 45.11-m (148’) span
(Figure 7.28), and then the third closure pour in three consecutive days. The
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Figure 7.27 Total deflection after deck pouring on girders 12 to 15 in north span.
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Figure 7.28 Total deflection after deck pouring on girders 12 to 15 in south span.
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study was made with the consideration of creep and shrinkage that the deck
being constructed still matched up in elevation to the deck poured in the
previous phase, not causing noticeable misalignments in the deck.

7.4 2D AND 3D ILLUSTRATED EXAMPLE OF A
CURVED STEEL I-GIRDER BRIDGE—ROCK CREEK
TRAIL PEDESTRIAN BRIDGE, MARYLAND

The Rock Creek Trail Pedestrian Bridge serves as a connection for the
Rock Creek Hiker—Biker Trail and provides a safe crossway for pedestri-
ans and cyclists. The bridge spans over Veirs Mill Road (MD-586) near
Rock Creek Park in Montgomery County, Maryland. Table 7.2 lists the
parameters of the curved portion of the bridge. At the erection stage of
the construction process, the curved inner girder at the supports of Piers 1
and 3 was uplifted after the temporary supports were released. Due to the
aberrant response of the curved spans during construction, the spans were
modeled and studied for two stages: (1) bridge under construction with
dead load only and (2) bridge under live load. This two-span, two-girder

Table 7.2 Description of the Rock Creek Trail Pedestrian Bridge structure

Description Variable
Number of girders 2

Number of spans 2

Radius of curvature of girder | (inner) 220.0’ (67 m)
Radius of curvature of girder 2 (outer) 230.0’ (70 m)

Span lengths of girder |

Span lengths of girder 2
Spacing between girders
Roadway width

Overhang width, left and right
Curb width, left and right

Design slab depth (excluding integral wearing
surface)

Integral wearing surface
Haunch depth and width
Type of concentration
Ultimate strength of concrete
Yield strength of steel

Live loading

2@161.33' (49.2 m)
2@168.67' (51.4 m)
10.0’ (3 m)

29.0' (8.8 m)

2.33' (0.7 m)

133/ (0.4 m)

9.0” (229 mm)

0.5” (13 mm)

5.0” and 24.0” (127 and 610 mm)
Composite

4.0 ksi (27.6 MPa)

50 ksi (A992) (345 MPa)

H-10 and pedestrian loading
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(a) Rock Creek Trail Pedestrian Bridge (b) 2D grid model

Figure 7.29 Rock Creek Trail Pedestrian Bridge and its 2D grid model.

bridge is used in this section as a demonstration for 2D grid model and 3D
finite element model.

In 2D grid model, DESCUS-I program (2011) was used in the design
phase. To establish the curved grid model, torsional constant J,, (Equation
7.5a and b, or K,, in Equation 7.3) for the curved steel section and moment
of inertia I,, for the cross frame as described in Section 7.1.3 were adopted
by the program. The bridge and its grid model are shown in Figure 7.29a
and b, respectively.

A 3D finite element model of the same bridge was established by Bridge
Analysis Generator in SAP2000 (2007) (later version named CSiBridge)
without considering the vertical altitude difference and the supereleva-
tion. The concrete deck and two steel I-girders are simulated with shell
elements, and diaphragms are simulated with frame elements, as shown
in Figure 7.30. Table 7.3 lists the comparison of reactions for these two
models.

(a) Steel girders only with no deck (b) Composite steel girder with deck

Figure 7.30 3D finite element models of Rock Creek Trail Pedestrian Bridge by SAP2000.
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Table 7.3 Reaction comparison

Grid model Shell element (kip) Frame element (kip)

Inner Outer Inner Outer Inner Outer
reactions reactions reactions reactions reactions reactions
Steel 7.9 56.4 6.73 62.48 8.82 57.65
girders 2735 82.5 289.17 55.61 318.47 31.78
7.9 56.3 6.00 63.82 8.07 59.01
Sum = 483.81 Sum = 483.80
Steel 11.70 137.57 20.24 134.07
glr:jhers 650.72 115.34 716.59 51.43
Wi

concrete 9.94 140.83 18.44 137.39

deck Sum = 1066.10 Sum = 1078.16

7.5 2D AND 3D ILLUSTRATED EXAMPLE OF
A SKEWED AND KINKED STEEL I-GIRDER
BRIDGE WITH STRADDLE BENT

In early 1960s in the United States, before heat curving on steel girders was
made popular, girders were made kinked at field splice locations to accom-
modate complex (curved or flaring) framing. It is recommended to provide
close cross frame(s) with the splice to help resist lateral loads on the girder
due to the kink.

In this illustrated example, 2D and 3D models were generated by
DESCUS-I and CSiBridge (2011), respectively. This two-span concrete—steel
composite bridge consists of five I-girders with three different sections. The
2D grillage model is shown in Figure 7.31. The bridge layout line is com-
prised of three segment lines kinked with three different slopes as shown in
Figure 7.32 for the perspective view and Figure 7.33 for the plan view of the
3D finite element model. The bridge diaphragms are inverted K-type braces
with top and bottom chords. Most of them are normal to the layout line,
except at those kinked locations. The bent is comprised of a concrete cap

Figure 7.31 2D grillage model.
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Figure 7.32 Perspective view of the 3D finite element model.

Figure 7.33 Plan view of the 3D finite element model.

beam and two concrete columns, supporting the superstructure, as shown in
Figure 7.34. In the 2D grillage model, all supports can be considered fixed
at the vertical direction.

As illustrated in Figure 7.35, concrete deck was modeled by shell elements,
whereas the five I-girders were modeled by 3D frame elements. The connec-
tions between concrete deck and steel girders are simulated by displacement
constraints with corresponding nodes constrained together. To better simu-
late the bearing, foundation springs at the start and end abutments are fixed
at vertical and horizontal directions as shown in Figure 7.36.
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Springs

Cap beam
(frame element)

<=

Concrete columns
(frame element)

Fixed supports

Figure 7.34 Bent region modeling detail of the 3D finite element model.

Girder frame element

Cross-frame element

Figure 7.35 Superstructure modeling detail of the 3D finite element model.
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Concrete deck
(shell element)

Bearings S i

\

Foundation springs

Steel girders
(frame element)

Figure 7.36 Modeling detail of the 3D finite element model in the abutment area.

7.6 2D AND 3D ILLUSTRATED EXAMPLE OF A GLOBAL
AND LOCAL MODELING OF A SIMPLE-SPAN
STEEL I-GIRDER BRIDGE—I1-270 MIDDLEBROOK
ROAD BRIDGE, GERMANTOWN, MARYLAND

MD Bridge No. 1504200 I-270 over Middlebrook Road is a simple-
span composite steel I-girder bridge with a span length of 42.7 m (140’).
Located at I-270 over Middlebrook Road near Germantown, Maryland,
it carries three traffic lanes in the southbound roadway and five traffic
lanes in the northbound roadway. This bridge has a 76° parallel skew
of its bearing lines. The bridge diaphragms are inverted K-type braces
with top and bottom chords. All of them are parallel to the bearing lines.
A research project sponsored by the U.S. Department of Transportation’s
Research and Innovative Technology Administration (RITA), under
the Commercial Remote Sensing and Spatial Information (CRS&SI)
Technologies Program required a pilot testing bridge to develop and per-
form a LT field monitoring test of a wireless Integrated Structural Health
Monitoring (ISHM) system. The Middlebrook Road Bridge with active
fatigue cracks at the connection plates of the K-type bracing was selected.
Complete pilot testing was performed using acoustic emission (AE), accel-
erometer, deflection, and strain sensors for bridge information collection.
To simulate the bridge behavior under traffic load, global and local mod-
els were built, of which the global model was used to monitor the global
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behavior and stresses near the crack area, whereas the local model was
used to find the stress concentration factor (SCF) at the exact crack loca-
tion, called hot spot.

Stress concentration factor. For steel bridges, weld toes are usually the
critical fatigue damage regions. However, the monitoring sensors installed
in bridges are not necessarily located in these areas. To know the hot spot
stress near the weld toe, it is necessary to convert the nominal stress obtained
from the monitoring sensors into the corresponding hot spot stress near the
weld toe for fatigue life evaluation. The SCF is defined as the ratio of the hot
spot stress value to that of the nominal stress and can be calculated from
stress values obtained from the global model of coarse mesh and the local
model of refined mesh. With the SCF value obtained, the hot spot stress can
be obtained by multiplication of the nominal stress with the SCF value. The
SCF value of a welded joint is commonly obtained by experiment or numeri-
cal finite element method.

Globalmodel. A 3D model of the Southbound consisting of eight I-girders
as shown in Figure 7.37 was generated by CSiBridge (2011). The concrete
deck, eight I-girders, and connection plates, which connect diaphragms and
girder webs, were modeled by shell elements, whereas all the diaphragms
were modeled by truss elements. The translations of x-, y-, and z-directions
are fixed at the abutments. To locate the hot spot, a global model refined
mesh around the hot spots was built for analysis, and a detailed view of this
global model is presented in Figure 7.38.

Figure 7.37 Global model of I-270 Middlebrook Bridge.
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Figure 7.38 Zoom-in view of the global model.

Local model. To study the behavior of the bridge, the entire superstruc-
ture was first analyzed by a large, coarse finite element model. The global
model contains only the main components of the bridge and is mainly for
modal analysis, displacement output of the whole bridge, critical fatigue
location determination, and so on. However, to investigate the stresses or
strains of a certain area or a certain joint, it is necessary to employ a series

Figure 7.39 Local model at midspan girder 3.
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of small, refined submodels, or the local models, which are extracted from
the global model. When extracting local models, enough buffer zones sur-
rounding the focus area should be included in the refined local models so
that the effect of the notch stress concentration may be negligible. Local
model at midspan girder 3 is shown in Figure 7.39.

The interest of this project is to determine the location of fatigue crack,
crack path, and crack rate; the global model of the whole bridge cannot be
more refined, and therefore the local model of this critical region can be
facilitated for this purpose. It is a common issue and also crucial in modeling
a local refined model that the boundary conditions of a local model are set
up correctly to truly reflect its mechanical connections to the global model.

Boundary conditions of the local model—To set up the boundary condi-
tions, the following guidelines should be followed:

1. The boundary nodes should apply the same displacements obtained
from the global model.

2. The boundary nodes should apply the same external forces obtained
from the global model as internal forces.

In the local model to investigate the hot spot at the connection plates of
the K-type bracing, equivalent forces were applied at the other ends of the
K-type bracing. Results obtained from the local model can be used for the
calculation of SCF for fatigue study of the hot spots.



Chapter 8

Straight and curved steel
box girder bridges

8.1 BEHAVIOR OF STEEL BOX GIRDER BRIDGES

The steel box girder may be defined as a longitudinal structural member with
four steel plates, two webs, and two flanges, arranged to form a closed box
section as shown in Figure 8.1a. For modern highway structures, the more com-
mon arrangement for the box girder is an open top, which is usually referred
to as the tub girder. In this case, two steel webs with narrow top flanges similar
to those of the plate girders are joined together by a full-width bottom flange
as shown in Figure 8.1b. Due to buckling, the thin steel plates’ resistance to
compression is reduced in comparison to their strengths. An economic design
may be achieved when longitudinal and/or transverse stiffeners are provided.
Such stiffeners may be of open or torsionally rigid closed sections, as shown in
Figure 8.1¢ for web/bottom flange and top flange, respectively.

During fabrication and erection, the section may be completely open
at the top, or it may be braced by a top lateral-bracing system connected
to the top flanges (Figure 8.2). A composite box girder bridge may take
the form of single box, multibox also called twin box, or multicellular
box (Figure 8.3). To close the top opening and complete the box, a rein-
forced concrete deck slab is added, which acts compositely with the steel
section by means of shear connectors to ensure full interaction between
them. During construction, the steel girders are subjected to the wet con-
crete load and other construction loads without the composite action that
results from the hardened concrete deck.

During the construction stage, the open box girder behavior may be
more complicated than it is closed after the deck concrete is cast. The
usual practice of assuming the system to be noncomposite during con-
struction requires substantial top-flange bracing to form a quasiclosed
box section. The noncomposite steel section must support both the
fresh concrete and the entire construction loads, hence steel box gird-
ers are at their critical stage during construction. The open section of
the bath-tub girder is a major concern because of its relatively low tor-
sional stiffness. A lateral-bracing system is usually installed to increase
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Lateral bracing

'4

(@) (b)

(©

Figure 8.1 Steel box girders. (a) Unstiffened closed box girder. (b) Unstiffened tub girder
with lateral bracing. (c) Stiffened closed box girder.

Top lateral-bracing system

Figure 8.2 Twin-box girder bridge. (Courtesy of TXDOT.)

the torsional stiffness. Bracing systems commonly consist of a horizontal
truss attached to the girder near its top flange to increase its torsional
stiffness. Consideration of distortional effects may be limited to local
regions between internal intermediate diaphragms. The distortion of
the cross section can be reduced by using closer internal cross frames
and diaphragms. External bracing between girders may be necessary in
curved bridges to control the deflections and rotations of the girders,
thereby facilitating the placement of the concrete roadway deck. The box
girder cross section possesses a high torsional stiffness after the concrete
deck gains its full strength because the cross section is considered as a
fully closed section. However, internal intermediate diaphragms and top-
flange lateral bracing may still be needed as a box girder is an unstable
open section with very little torsional stability before the concrete is

hardened.
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Figure 8.3 Steel/concrete composite box girders. (a) Single box. (b) Multibox (twin-box).
(c) Multicellular box.

Horizontally curved box girders applicable for both simple and continu-
ous spans are used for grade separation and elevated bridges where the
structure must coincide with the curved roadway alignment. This condi-
tion occurs frequently at urban crossings and interchanges and also at
rural intersections where the structure must conform to the geometric
requirements of the highway. Horizontally curved bridges will undergo
bending and associated shear stresses as well as torsional stresses due to
the horizontal curvature even if they are subjected only to their own gravi-
tational load. The bridge can be treated as a series of interconnected beams
where the beam theory can be used for the behavior of the individual ele-
ments. Figure 8.4 shows the general behavior of an open box section under
gravity load showing separate load effects. An arbitrary uniform load on a
simple-span box girder (Figure 8.4a) contains bending and torsional load
components that have corresponding bending and torsional effects, which
will be described further in Sections 8.1.1 and 8.1.2.

8.1.1 Bending effects

The bending load (Figure 8.4b), causes the section to

1. Deflect rigidly (longitudinal bending)
2. Deform (bending distortion)
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Figure 8.4 General behavior of an open box section under gravity load showing separate
effect.

8.1.1.1 Longitudinal bending

A survey conducted by ASCE Task Committee on horizontally curved
steel box girder bridges revealed that box girders in the United States
typically have an average span-to-depth ratio of 23 for single spans and
25 for continuous girder spans (Heins 1978). For girders with such a large
span-to-depth ratio, any vertical load may cause significant longitudinal
bending and thus longitudinal bending stresses in the girder.

Assuming elastic behavior, normal stresses due to longitudinal bending,
f is given according to the beam theory as

f=" (8.1)

where:
M is the bending moment
S is the section modulus

Shear stresses associated with the moment gradient also occur and are
calculated by

f=t2

= (8.2)
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Figure 8.5 (a) Normal and (b) shear stress components of longitudinal bending stress.

where:
V is the shear force
I is the moment of inertia of the section
Q is the first moment of area under consideration
t is the width of the section where shear stress is considered

Normal and shear components of longitudinal bending stress are illus-
trated in Figure 8.5a and b, respectively.

8.1.1.2 Bending distortion

When any vertical load is applied on a box girder, bending distortion in trans-
verse direction, or local transverse bending, occurs at the same time as longitu-
dinal bending. This local bending effect could be significant before a box girder
is closed on top. The AASHTO guide specifications (2003) state that if the box
girder does not have a full-width steel top flange, the girder must be treated as
an open section. In open box girders, this distortion causes outward bending
of the webs, upward bending of the bottom flange, and in-plane bending of the
top flange (Figure 8.4b). The transverse bending could cause the cross section
to change shape. Therefore, to prevent bending distortion, the top bracing (ties
and struts) as shown in Figure 8.2 is usually placed between top flanges.

8.1.2 Torsional effects

In their studies (Hsu 1989; Hsu et al. 1990; Fu and Hsu 1995), Hsu and
Fu modified Vlasov’s theory on curved thin-walled beams (Vlasov 1965;
originally developed for open sections such as I-girders shown in Equation
7.1) to represent the behavior of both open and closed sections for box
girder analysis. The torsional load (Figure 8.4c) causes the section to

1. Rotate rigidly (mixed torsion)
2. Deform (torsional distortion)
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8.1.2.1 Mixed torsion

In curved box girder bridges, a vertical load may cause the girder twisted
about its longitudinal axis because of the bridge curvature. Uniform tor-
sion occurs if the rate of change of the twist angle is constant along the
girder and longitudinal warping displacement is not restrained and main-
taining a constant. St. Venant analyzed this problem and found that the
St. Venant shear stresses occur in the cross section (Figure 8.6). If there is
a variation of torque or if warping is prevented or altered along the girder,
longitudinal torsional warping stresses develop.

In general, both St. Venant torsion and the warping torsion are developed
when thin-walled members are twisted. Box girders are usually dominated
by St. Venant torsion because the closed cross section has a high torsional
stiffness. Box girders have large St. Venant stiffness, which may be 100-1000
times larger than that of a comparable I-section. The longitudinal normal
stresses resulting from the restrained warping in closed box sections are
usually negligible (Kollbrunner and Basler 1969).

St. Venant stiffness of the box section is a function of the shear modu-
lus of the steel (G) and the torsional constant | (or K,), which is related
to the cross-sectional geometry. In curved box girder bridges, St. Venant
torsion provides most of the resistance that is given by

T=G]Z—Z (8.3)

where:
T is the torque on the cross section of the member
0 is the twist angle of the cross section
z is the longitudinal axis of the member

For box sections, as shear stress flows are formed in closed cells, equivalent
torsional constant for open sections as shown in Chapter 7 is no longer
applicable. The torsional constant J in Equation 8.3 for a single-cell box
girder is given by

_L_L_L_L_L

Figure 8.6 St. Venant torsion in a closed section.
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4A*

/= D b/ (8.4)

where:
A is the enclosed area of the box section
b is the width of the individual plate element in the box
t is the thickness of the plate element in the box

For the approximation of the torsional constant of a multicell box, the
intermediate webs can be ignored as shear stress flows over these webs are
negligible due to countereffects from two adjacent cells. Therefore, Equation
8.4 is still applicable as if the intermediate webs were removed. When
calculating torsional constant using Equation 8.4, open-section segments
such as cantilevered flanges can be ignored as resistance to torsion from
these segments is not comparable to that from closed cells, or simply sum
the torsional constant of these open segments (Equation 7.2) and that of
closed cells (Equation 8.4) as the total of the entire section.

For analysis purposes, top lateral bracing, as shown in Figure 8.2, may
be transformed to an equivalent thickness of plate ¢,, by

(EY(240) ost s
tgq—[Gj( b )(cos asino) (8.5)

where:
E is the steel modulus of elasticity
G is the steel shearing modulus of elasticity
A, is the area of the lateral-bracing diagonal
b is the clear box width between top flanges
o is the angle of lateral-bracing diagonal with respect to transverse
direction

Kollbrunner and Basler (1966) provide a more complete list of equivalent
thickness for quasibox girder as shown in Table 8.1.
To properly close the section and minimize warping stresses, the cross-
sectional area of the lateral-bracing diagonal A, should be at least 0.03b.
The internal stresses produced by St. Venant torsion in a closed section
are shearing stresses around the perimeter, as shown in Figure 8.6, and

defined by

T

- L 8.6
T oAr (8-6)
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Table 8.1 Equivalent thickness of the top bracing for the quasiclosed box

Type no. Type of lateral bracing Equivalent thinness (£,,)
1 A
F £
G dIA,+2)3/(3A
Ay
2 A
E 2Mb
2, W L L” G 2d%/A,+4b3 1A, + A3/(6A)
| YK simaa - APIA LG
Ay A,
3 A
E___ 2
== G d/(24,) +213/(6A)
4 )
= I
2b'[ s 5, qT G /A +8d%IA, +)3/(6A))
where:

T is the St. Venant shear stress in any plate
T is the internal torque

A is the enclosed area within the box girder
t is the thickness of the plate

8.1.2.2 Torsional distortion

Torsional load causes the cross section to deform through bending of the
walls (Figure 8.4c). Normal stresses as shown in Figure 8.7 result from
warping torsion restraint and from distortion of the cross section. If the
box girder has no cross frames or diaphragms, the distortion is restrained
only by the transverse stiffness of the plate elements. In an open box girder
cross section, due to the lack of distortional stiffness, the torsional distortion
can be prevented through the use of internal cross frames (Figure 8.8) con-
necting top and bottom flanges. Figure 8.9 illustrates the general box girder
normal stresses, which can occur in a curved or skewed box-shaped girder.

Closed box sections, on the other hand, are extremely efficient at carrying
torsion by means of St. Venant torsional shear flow because the shear flow
around the circumference of the box has relatively large force couple dis-
tances (Figure 8.10). For this reason, a box-shaped girder can carry relatively
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Figure 8.7 Warping stresses in a box girder.

Lateral ties (struts)

(a) Solid diaphragm (b) Cross frame

Top bracing system

Top bracing system
(c) (single diagonal type)

Figure 8.8 (a—c) Bracing system terminology.

large torques with relatively low shear flows. The shear flow around the
circumference of the box follows a consistent direction (clockwise or coun-
terclockwise) at any given location along the length of the girder. As a result,
when combined with vertical shear in the webs, this shear flow is always
subtractive in one web and additive in the other.

In addition, box girders are subjected to cross-sectional distortion when
subjected to eccentric loading such as overhang loads and eccentrically
applied live loads. This cross-sectional distortion results in out-of-plane
(transverse) bending stresses and longitudinal warping normal stresses
in the webs and full-width flanges of the box cross section. These bend-
ing stresses may be estimated by using a beam-on-elastic-foundation
(BEF) analogy method (Wright et al. 1968), which was further improved
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Figure 8.9 lllustration of the general box girder normal stresses, which can occur in a
curved or skewed box-shaped girder.
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stress x y

Figure 8.10 lllustration of the general box girder shear stresses, which can occur in a
curved or skewed box-shaped girder.

by implementing a equivalent BEF (EBEF) analogy into the beam element
model as the supplement (Hsu et al. 1995; Fu and Hsu 1995; Hsu and Fu
2002). As stated in AASHTO (2013), the effects of cross-sectional distortion
are typically controlled by providing adequately spaced internal intermedi-
ate diaphragms. Cross-sectional distortion, the resulting stress effects, and
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the design of internal intermediate diaphragms are discussed in detail in Fan
and Helwig (2002).

It should be noted that all box girders, even straight box girders, are
subjected to torsional loading. Because of the curvature, any vertical
load applied on a curved girder bridge, such as structural weight, and
centric or eccentric concentrated load will cause torsion. For a straight
girder bridge, torsion is caused by eccentric loads such as construction
loads or live loads.

8.1.3 Plate behavior and design

Box girders are formed by plates to resist in-plane and out-of-plane load-
ing. For a closed box as shown in Figure 8.11a, all four sides can be treated
as plates. For tub girder bridges most frequently used in the United States,
the bottom flange is treated as the plate, which can be unstiffened as shown
in Figure 8.11b or stiffened as shown in Figure 8.11c. The important geomet-
ric parameters are thickness ¢, width b, and length a, as seen in Figure 8.11b.
The ratio b/t, often called the plate slenderness, influences the local buckling
of the plate panel; the aspect ratio a/b may also influence buckling patterns
and may have a significant influence on strength (SCI 2000; ESDEP course).
In a tub girder bridge, the longitudinal length a and the transverse width
b can be assumed as the junctions between web and bottom plate and the

/”>
(a) (b)

(c)

Figure 8.11 Box girder bottom flange under in-plane action. (a) Unstiffened plate with small
aspect ratio a/b. (b) Unstiffened plate with large aspect ratio a/b. (c) Stiffened plate.
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locations of the vertical bracing, respectively. If the aspect ratio a/b is relatively
small, the postbuckling mode appears as shown in Figure 8.11a. As the
aspect ratio increases, the critical mode changes, tending toward the mul-
timode situation, all depending on the a/b aspect ratio. In this case, the
stiffened bottom flange (as shown in Figure 8.11c¢) is recommended to
assure higher buckling mode for higher strength capacity.

8.2 PRINCIPLE AND MODELING OF STEEL BOX
GIRDER BRIDGES

There are many methods available for analyzing curved bridges. Of all the
available analysis methods, the finite element method (FEM) is considered to be
the most powerful, versatile, and flexible method (FHWA/NSBA/HDR 2012).
Among the refined methods allowed by AASHTO LRFD specifications
(2013) the three-dimensional (3D) FEM is probably the most involved
and time consuming method, and it is the most general and comprehensive
technique for static and dynamic analyses capturing all aspects affecting
the structural response. The other methods proved to be adequate but are
limited in scope and applicability. Due to the recent development in com-
puter technology, the 3D FEM has become an important part of engineer-
ing analysis and design. FEA packages are used practically in all branches
of engineering nowadays. A complex geometry, such as that of continuous
curved steel box girder bridges, can be readily modeled using the finite
element technique, in which steel plates and concrete deck of a box girder
may be modeled as plane shell elements. The method is also capable of
dealing with different material properties, relationships between struc-
tural components, boundary conditions, as well as statically or dynami-
cally applied loads. The linear and nonlinear structural response of such
bridges can be analyzed with good accuracy using this method. Live load
application is the same as that shown in Chapter 7 (Section 7.2.3) where
girder influence surfaces are generated to obtain the maximum effects due
to live load.

8.2.1 2D and 3D finite element method

In a two-dimensional (2D) grid analysis, the entire tub girder section with
concrete slab, steel top and bottom flanges, webs (with or without longitu-
dinal stiffeners), and top-flange lateral bracing is modeled as a beam. The
stiffness of the beam can be calculated from the whole cross section of the
girder or empirical estimates as shown in the illustrated example. When cal-
culating sectional properties, internal vertical diaphragms or cross frames
can be ignored. A relatively torsionally stiff beam element along the cen-
terline of each box (i.e., the shear center) is used to connect the slab at the
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web positions. This can be done with short dummy transverse slab beams
modeled with either no stiffness before the hardening of concrete during con-
struction or assigning transverse slab bending stiffness. This form of 2D grid
model for a twin-box bridge with cantilevers is illustrated in Figure 8.12.
For a box girder bridge, a 3D finite element model can be used to
more accurately simulate each part of the section and bridge component.
As shown in Figure 8.13, web and flange plates of a box girder bridge are mod-
eled by plane shell elements, whereas bracing or diaphragm components
are modeled by beam or truss elements. As far as finite element modeling
is concerned, the same five modeling techniques described in Chapter 7
(Figures 7.10 through 7.14) can be adopted for box girders. Among the
five, 3D brick—shell model and 3D shell-shell model are more suited for
box sections where the bottom flange is modeled by using shell elements
and longitudinal stiffeners by eccentric beam elements to correctly quan-
tify the lateral and torsional stiffness of the cross section. Girder flanges
can be modeled by beam or, more commonly, shell elements; webs are
modeled by using shell elements (at least two to capture the parabolic-
curved shear); and cross frames and bracing are modeled by using truss/
beam elements with their respective proper areas and bracing configura-
tion. The deck typically can be modeled by using eight-node solid ele-
ments (Figure 8.14) or four-node plane shell elements (Figure 8.15).

Main beam element
(box section)

Transverse element

Dummy members

(between main beam Support
(a) and transverse elements)
Acctual
(b) section

Figure 8.12 (a, b) 2D grillage model for a twin-box girder bridge.
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Figure 8.13 Finite element model of a box girder bridge with internal bracing system.

Concrete deck
(solid element)

Girder
(shell element)

Figure 8.14 3D brick—shell model.

Deck (shell element
with smeared layer
of reinforcement)

Shear stud
(bar element)

Flange
(plate element) = Web
\ ! J (plane stress
D element)

Figure 8.15 3D shell-shell model.
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8.2.2 Consideration of modeling
steel box girder bridges

8.2.2.1 Design considerations

Steel box girders are at their critical stage during construction because the
noncomposite steel section must support both the fresh concrete and the
entire construction loads. A comparison study using different modeling tech-
niques was made recently (Begum 2010). Curved and straight box girders
in the study are two span bridges that have the same general construction,
consisting of a bottom flange, two sloped webs, and top flanges attached to
the concrete deck with shear connectors. The negative bending region, where
the bottom flange is in compression, is stiffened by longitudinal stiffeners. There
are internal diaphragms or cross frames at regular intervals along the span
and lateral bracing at top flange. The cross frames maintain the shape of the
cross section and are spaced at regular intervals to keep the transverse dis-
tortional stresses and lateral bending stresses in flanges at acceptable levels.

8.2.2.2 Construction

From a designer’s point of view, the most critical stage is during construction
when the box is quasiclosed and the casting sequence of the concrete may
affect girder stresses and deflections. Most steel box girder bridges are using
disk, pot, or spherical bearing (Figure 8.16), although elastomeric bearing
pads have been successfully employed in some applications. Collectively,
these bearings are known as high-load multirotational bearings and suited
for curved steel box girder bridges. Of the three bearing systems, spherical
bearings have the greatest rotation capacity and most trouble-free mainte-
nance record. Pot bearings have been troublesome; disk bearings, on the
other hand, have fewer documented failures than pot bearings. The main
purpose of these bearings is to allow the girders to expand and contract to
accommodate daily and annual thermal changes that the bridge undergoes
as well as accommodating construction and live load rotations.

Free or fix of bearings should be correctly simulated in the superstructure
analysis model to accurately analyze the response of the structure to various
loading conditions. The bearing orientations must be reproduced and mod-
eled correctly, especially for curved bridges, not only for thermal load analy-
sis but also for dead load (DL), live load, and centrifugal force analyses.

Depending on the specific configuration of a structure, improper modeling
of bearing conditions (boundary conditions) could have a significant impact
on the correctness of the analysis results. Boundary conditions should be
carefully modeled, and, in cases where the support stiffness is not known
with certainty (e.g., with integral abutments), it may be advisable to run
more than one analysis with different assumptions to assess the sensitivity
of the structural response to the different boundary condition assumptions,
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Figure 8.16 High-load multirotational bearings. (a) Disk bearing. (b) Pot bearing. (c) Spherical
bearing.

with consideration given to designing for the resulting force and deflection
envelopes. Note also that during bridge erection, bearing points may be tem-
porarily blocked (partially fixed), so the construction cases may not have
guided or nonguided (free) bearing points. This may be a consideration if
significant thermal movements are anticipated at partially erected structural
conditions.

Compared to I-shape girder, a steel box girder is stiff and difficult to adjust
in the field. NCHRP Report 12-79 (White et al. 2012) advises to detail tub
girders for no-load fit or steel DL fit (with consideration given to possible
temporary shoring or hold cranes; if sufficient shoring or temporary support
is provided, detailing for no-load fit may be more appropriate). It should be
noted that almost all structural analyses are based on the assumption that
the structure is under initial no-load (undeformed, unstrained) geometry.
The stresses and forces in the system are based on the deformations from
this configuration, including any lack-of-fit effects (White et al. 2012).

8.2.2.3 Description of the noncomposite bridge models

A two-span noncomposite, single steel box girder bridge as shown in
Figure 8.17 is used in this chapter as an example to illustrate different
modeling methods. The total span length of this bridge is 97 m (320’).
A lateral-bracing system is installed at the top-flange level in the open-top
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Figure 8.17 Cross-sectional dimensions (in) of the box.

box girder to form a quasiclosed box, thereby increasing the torsional
stiffness. Crossed diagonal bracing systems are considered part of lateral-
bracing systems. Internal transverse bracing or internal cross frames are
provided at regular intervals in the box. In the negative bending region,
longitudinal stiffener is provided in the bottom flange. The cross-sectional
dimensions are shown in Figure 8.17.

To compare the differences resulting from curvature, the same bridge
is modeled as both straight and curved bridges. There are four different
types of models, which are as follows:

1. Straight box shell model (M1)
2. Curved box shell model (M2)
3. Straight box beam model (M3)
4. Curved box beam model (M4)

8.3 2D AND 3D ILLUSTRATED EXAMPLES
OF A STRAIGHT BOX GIRDER BRIDGE

The finite element modeling and analysis performed in this example for
a straight bridge and in the next example for a curved box girder bridge
is done using a general purpose, multidiscipline finite element program,
ANSYS. ANSYS has an extensive library of truss, beam, shell, and solid
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elements. Shell elements were used to model the structural components
of the box girder bridges (webs, bottom flange, top flanges, and the solid
diaphragms), whereas truss and beam elements were used to model top
bracing trusses and cross frames:

1. Shell 63 (elastic shell). It is a four-node element that has both bending
and membrane capabilities. The element has five degrees of freedom at
each node; translations in x, y, and z directions; and rotations about
y and z axes (of the element’s local coordinate system). Large deflec-
tion capabilities are included in the element. This type of element can
produce good results for a curved shell surface provided that each flat
element does not extend over more than a 15° arc.

2. Link 8 (3D spar). It is a two-node, 3D truss element. It is a uniaxial
tension—compression element with three translational degrees of
freedom at each node. The element used for bracing is a pin-jointed
structure with no bending capabilities. Plasticity and large deflec-
tion capabilities are included. The required inputs for this element
are material properties and cross-sectional area.

3. Beam 188 (3D linear finite strain beam). It is a 3D linear (two-node) or
quadratic beam element. Beam 188 has six or seven degrees of freedom
at each node. These include three translations and three rotations in x,
v, and z directions (of the element’s local coordinate system). A seventh
degree of freedom (warping displacement) can also be considered. This
element is well-suited for linear, large rotation and/or large strain non-
linear applications. The beam elements are one-3D line elements.

4. Beam 4 (3D elastic beam). It is a uniaxial element with tension,
compression, torsion, and bending capabilities. The element used
for longitudinal stiffeners has six degrees of freedom at each node;
translations in x, y, and z directions; and rotations about x, y, and
z axes (of the element’s local coordinate system). Stress stiffening
and large deflection capabilities are included. The required inputs
for this element are cross-sectional properties such as moment of
inertia, area, and torsional constant.

Results from the ANSYS finite element models can be used in understanding
the box bridge behavior. In addition, they can be used to compare the stress
profiles. Therefore, creating the same general construction of straight and
curved bridge models with same boundary conditions is required.

8.3.1 Straight box shell model (MI)

Straight box bridge model is made using Shell 63 elements for webs, the
top flange, and the bottom flange. Shell 63 elements are used as well to
model longitudinal and transverse stiffeners and solid diaphragms at the
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Figure 8.18 Stress contour of straight box shell model (insertion shows moment distribution).

support location. The plate thicknesses and the material properties are
required inputs for Shell 63. Link 8 elements were used to model the top
bracing truss and the cross frames. The stress contour of the straight box
is shown in Figure 8.18.

8.3.2 Straight box beam model (M3)

The straight box beam model is made using Beam 188. Beam 4 (with a hinge
at an end or a truss element) is used at supports to provide bearing support
and apply boundary conditions. In the beam element model, the bracing and
stiffener effects are not considered. Two cases are modeled: (1) two bearings
are provided at all supports and (2) two bearings are provided in the middle
support (at pier) and single bearing is provided at end supports. The inser-
tion in Figure 8.18 shows the bending moment throughout the span.

8.3.3 Comparison results

To better understand the structural behavior, the same box girder bridge
is also analyzed with DESCUS-II, a dedicated design and analysis system
for straight or curved box girder bridges by using beam models. Tables 8.2
and 8.3 compared analysis results from these two systems. Table 8.2 com-
pares support reactions, moments, and bending stresses for 2D and 3D mod-
els. In the model, twin bearings are supplied to all supports. Not like the
curved model shown in Section 8.4, twin bearings at all supports behave
no different from twin bearings at support 2 only. Table 8.3 compares the
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Table 8.3 Stress comparison of straight steel box girder

Bending stress in kiplin? (MPa)

Location Shell model (ANSYS) Beam model (ANSYS)
Top DL stress at 4th pt -14.63 (—100.87) -14.162 (-97.64)
Bottom DL stress at 4th pt 10.53 (72.6) 10.266 (73.5)
Top DL stress at 10th pt 25.9 (178.57) 25.07 (172.85)
Bottom DL stress at 10th pt -14.9 (-102.73) -18.173 (-125.3)

stresses. Except the bottom stress at the interior support, other stresses are
very close between the 2D and 3D FEM models.

8.4 2D AND 3D ILLUSTRATED EXAMPLES OF
A CURVED BOX GIRDER BRIDGE—METRO
BRIDGE OVER 1495, WASHINGTON, DC

8.4.1 Curved box shell model (M2)

This curved box having a radius of 91 m (300’) is modeled using Shell
63 similar to that of the straight box shell model. This model was the
same as model M1, except that it is horizontally curved and two spans of
160 ft (48.8 m) each. Both M1 and M2 have the same general construc-
tion as mentioned in the description of the noncomposite bridge model.
The stress contour of the curved box is shown in Figure 8.19.

—21500_16722-11944 _7167 ~2389 2389 7167 11944 1672231500

Figure 8.19 Stress contour of curved box shell model.
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8.4.2 Curved box beam model (M4)

In this model, Beam 188 is also used to model the curved box girder. The
model is similar to that of the straight box except the curvature. Similar
to the straight box beam model, Beam 4 (with a hinge at an end or a truss
element) is used at supports to model boundary conditions. Two cases
regarding boundary conditions are modeled: (1) Two bearings are pro-
vided at all supports and (2) two bearings are provided at the middle sup-
port (at pier) and single bearing is provided at end supports. Figure 8.20
shows the bending moment diagram throughout the span.

The stability of the single box girder under the maximum overturn-
ing combination of DLs, wind load, and live load with its centrifugal
effects is also analyzed. Figure 8.21 shows the reaction forces where the
insertion shows the twin-bearing intermediate support at the pier loca-
tion. The maximum bearing conditions under various load combinations
are checked. The beam element shown in solid circle in the insertion of
Figure 8.21 representing the shear center is connected with rigid links
supported by two hinges at bearings. Tables 8.4 through 8.6 compare beam
and shell models for curved box girder bridges. Tables 8.4 and 8.5 compare
support reactions, moments, and bending stresses for 2D and 3D models.

Line stress
y
o x
z
S 3 I |
—0.753E+08 —0.254E+08 0.244E+08 0.742E+08 0.124E+09
—0.504E+08 —538393 0.493E+08 0.991E+08 0.149E+09

Figure 8.20 Bending moment diagram.
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Figure 8.21 3D beam element model with boundary conditions and their reactions.

Table 8.4 is for twin bearings at all supports, and Table 8.5 is for twin
bearings at interior support only. Slight shifts on support reactions,
moments, and bending stresses between twin bearings at all supports and
at support 2 only are noticed. Table 8.6 compares the stresses. All bend-
ing stresses for beam model are higher (or more conservative) than those
by 3D FEM model.

8.5 2D AND 3D ILLUSTRATED EXAMPLES OF THREE-
SPAN CURVED BOX GIRDER BRIDGE—ESTERO
PARKWAY BRIDGE, LEE COUNTY, FLORIDA

This three-span steel box girder bridge project is part of Estero Parkway,
Lee County, Florida. The bridge was designed as a three-span continuous
bridge during construction (Figure 8.22), but opened to traffic as a two-
span continuous bridge (Figure 8.23) with spans of approximately 97.5—
70.1 m (320’-230’) with a 1036.3 m (3400’) radius. Top view of the bridge
under construction is shown in Figure 8.24. Table 8.7 lists parameters
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Table 8.6 Stress comparison of curved steel box girder

Bending stress in kiplin? (MPa)

Location Shell model (ANSYS) Beam model (ANSYS)
Top DL stress at 4th pt -9.124 (62.91) —13.693 (-94.41)
Bottom DL stress at 4th pt 5.73 (39.51) 9.926 (68.44)
Top DL stress at 10th pt 25.68 (177.06) 27.616 (190.41)
Bottom DL stress at |0th pt -17.96 (—123.83) -20.018 (-138.02)

Figure 8.22 Estero Parkway Bridge constructed as a three-span continuous bridge.

of the Estero Parkway Bridge. Calculation of the box section properties
(at midspan location) in three stages, noncomposite (N = infinity), long-
term composite (N = 3#), and short-term composite (N = 7) sections, are
shown in Figure 8.25. Equivalent thickness of top lateral-bracing plate ,,
is calculated using Equation 8.5. The steel section during construction is
considered a quasiclosed section enclosed by top lateral bracing, webs,
and the bottom flange, whereas the composite box sections for long-term
and short-term consideration are enclosed by the top slab and the steel
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Figure 8.23 Estero Parkway Bridge opened to traffic as a two-span continuous bridge.

Figure 8.24 Top view of the Estero Parkway Bridge under construction.
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Table 8.7 Description of the Estero Parkway Bridge

Description

Variable

Number of girders

Number of spans

Radius of curvature of girder | (inner)
Radius of curvature of girder 4 (outer)
Span lengths of girder |

Span lengths of girder 4

Spacing between girders

Roadway width

Overhang width, left and right

Curb width, left and right

Design slab depth (excluding integral wearing surface)
Integral wearing surface

Haunch depth and width

Type of connection

Ultimate strength of concrete

Yield strength of steel

Live loading

4

2

3386.5' (1032.2 m)

3476.5' (1059.6 m)
322.15'-229.74’ (98.2-70.0 m)
340.93'-225.61" (103.9-68.8 m)
30.0’ (9.1 m)

96.0" (29.3 m)

8.58" (2.6 m)

8.58" (2.6 m)

9.5” (241 mm)

0.5” (13 mm)

2.5” and 24.0” (64 and 610 mm)
Composite

4.5 ksi (31 MPa)

50 ksi (A992) (345 MPa)

HL-93 by AASHTO LRFD

section itself. Equation 8.4 is used for the calculation of torsional constant
J (or K,). Also, Qg is the first moment of inertia of the slab and I, is the
moment of inertia of the composite section where Q,,/I, is used for the
calculation of the shear connectors. Herein, # is the modulus ratio of steel
girder to concrete deck and N is the actual modulus ratio used in that stage
where N = oo means steel section only. For 4000-psi (27.6 MPa) normal
concrete, n = 8 is used.

Bridge was modeled with 3D FEM for detailed design. To investigate
the bridge behavior under construction, DESCUS-II was used to build
several grid models. Figure 8.26 shows a 3D rendering of the girders only.
Thickened sections can be seen in the negative moment area with spans of
approximately 97.5-70.1 m (320’-230’). Due to heavy box sections and
traffic control, three-span arrangement was proposed and constructed as
shown in Figure 8.27 with spans of 39.6-57.9-70.1 m (130'-190'-230’)
while the two-span finished model is shown in Figure 8.28. Design has
to make sure that the negative moment areas near the temporary sup-
ports may carry steel and concrete DLs and construction loads. Analyses
demonstrated that the strength capacities and displacements are adequate
during all construction stages.
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Figure 8.26 Rendering of the Estero Parkway Bridge.

Figure 8.27 A three-span continuous bridge during construction.

Figure 8.28 A two-span continuous bridge when complete.
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Chapter 9
Arch bridges

9.1 INTRODUCTION

The arch bridge is one of the oldest types of brides and has been in existence
in the world since more than 2000 years (Brown 2005). The Romans were
the first to take the advantages of the arch in building bridges. There are
more than 900 ancient Roman bridges found in Europe; most of them are
arch bridges. Applying arch into bridges and buildings has a long history also
in the East. The Anji Bridge, the oldest open-spandrel segmental stone arch
bridge with a central span of 37 m, was built in AD 605 in Hebei, China
(Figure 9.1). The use of cast iron as dovetails to interlock stone segments and
open spandrels so as to reduce structural weight and to increase water flow
during flooding made it a milestone in the long history of arch bridges. Its sur-
vival of at least eight wars, ten major floods, and numerous earthquakes, espe-
cially the 7.2-richter-magnitude earthquake in 1966, Xingtai (40 km away
from the site) demonstrates the strength and advantage of the arch bridge.

Arch is sometimes defined as a curved structural member spanning an
opening and serving as a support for the loads above the opening. This
definition omits a description of what type of structural element; a bending
and/or an axial force element makes up the arch. Nomenclatures used to
describe the arch bridges are outlined in Figure 9.2. A true or perfect arch,
theoretically, is one in which only a compressive force acts at the centroid of
each element of the arch. The shape of the true arch can be thought of as the
inverse of a hanging chain between abutments. It is practically impossible
to have a true arch bridge, except for one loading condition. However, an
arch is usually subjected to multiple loadings, which will produce bending
stresses in the arch rib that are generally small compared with the axial
compressive stress.

Arch bridges have great natural strength. In addition to pushing straight
down, the weight of an arch bridge is carried outward along the curve of
the arch to the supports at each end. These supports carry the load and
keep the ends of the bridge from spreading out. When supporting its own
weight and the weight of crossing traffic, every part of the arch is under

265
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Figure 9.1 The Aniji Bridge, Hebei, China, built in AD 605 and still in use.
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Figure 9.2 Nomenclatures used in the arch bridge.

compression. For this reason, arch bridges must be made of materials that
are strong under compression. Most ancient arch bridges were merely built
by stones that stay together by the sheer force of their own weight. Today,
materials like steel and prestressed concrete have made it possible to build
longer and more elegant arches. In the first decade of the twenty-first cen-
tury, many arch bridges with main spans ranging from 400 to 550 m were
built in China, which demonstrate its competitiveness against cable-stayed
bridges in situations where the foundation is favorable. Table 9.1 lists the
top 10 longest arch bridges in the world.
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Table 9.1 Top 10 longest arch bridges in the world

No. Name Main span (m) Year of built Location
I Chaotianmen Bridge 552 2009 Chonggqing, China
2 Lupu Bridge 550 2003 Shanghai, China
3 Bosideng Bridge 530 2012 Hejiang, China
4 New River Gorge Bridge 518 1977 Fayetteville, North Carolina
5 Bayonne Bridge 510 1931 Kill Van Kull, New York
6 Sydney Harbor Bridge 503 1932 Sydney, Australia
7 Woushan Bridge 460 2005 Chongging, China
8 Mingzhou Bridge 450 2011 Ningbo, China
9  Zhijing River Bridge 430 2009 Dazhiping, China
10 Xinguang Bridge 428 2008 Guangzhou, China

9.1.1 Classifications of arch bridges

An arch bridge has many variations according to structural arrangements,
structural behaviors, and materials. Based on the arrangements of the main
arch and the deck system, arch bridges are usually classified as (1) deck
arch bridge, (2) half-through arch bridge, and (3) through arch bridge (Fox,
2000). As shown in Figure 9.3, a deck arch bridge is one where the bridge
deck locates completely above the crown of arch; a through arch bridge
is one where the deck locates at the springing line of the arch; and half-
through arch bridge is one where the deck locates at an elevation between a
deck arch and a through arch. When choosing a type of arch bridge among
these three arrangements, the deck elevation is the primary control factor.
Horizontal outward thrust at abutments distinguishes an arch bridge from
other types of bridge. The counterbalance of such outward thrust from the
abutments, which reduces the bending effects in the arch, however, requires
foundations capable of resisting huge horizontal thrust. Situations where foun-
dations are not permissive, the arch can be tied horizontally by the deck or
external tendons. When tied, the horizontal outward thrust is balanced inter-
nally, instead of externally by foundations. In this regard, arch bridges can be
classified as (1) thrusting arch bridge and (2) nonthrusting arch bridge. A non-
thrusting arch bridge, which is often called a tied-arch bridge, is widely used as
there is no additional horizontal thrust requirement in the foundation.
Traditionally, a deck-through arch bridge is tied as the tie at the deck level
connecting two ends of the arch. It is the most effective way to balance the
outward thrust. A half-through arch bridge can also be tied at the deck level,
in which tying forces are transferred to the main arch from side arches in
two side spans. Chaotianmen Bridge and Lupu Bridge (both in China as
shown in Figures 9.3b and 9.8 later in the chapter, respectively) are the first
two world record keepers for arch bridges by their main span. Both of them
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(b)

Figure 9.3 Types of arch bridges. (a) Deck arch bridge. (New River Gorge Bridge, http://
en.wikipedia.org/wiki/New_River_Gorge_Bridge.) (b) Half-through arch bridge.
(Chaotianmen Bridge, China, Courtesy of China Communications Construction
Company Ltd.). (Continued)

are tied half-through arch bridges. Although a deck arch bridge can be tied
at the deck level in a similar pattern, a tied deck arch is not commonly used.

When an arch bridge is tied, externally, the whole structure will behave as
a single span of a simply supported girder bridge. The moment distributed
to the arch and tie is related to the stiffness ratio of the arch to tie. A tied-
arch bridge can further be classified as (1) stiffened arch with flexible tie,
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Figure 9.3 (Continued) Types of arch bridges. (c) Through arch bridge. (Pentele Bridge,
Hungary, Courtesy of SkyscraperCity.com.) (d) Multispan deck arch bridge.
(Paso de los Toros Bridge, Uruguay, Courtesy of Taringa.net.)

(2) stiffened arch with stiffened tie, and (3) flexible arch with stiffened tie. As
local moments due to live loads are inevitable, a flexible tie girder will dis-
tribute more live loads to arch and the arch requires a higher bending stiff-
ness to resist moments; a stiffened tie girder will distribute less live loads to
arch and the arch does not need a higher bending stiffness. Stiffnesses of the
arch and the tie girder are dependent on each other; it is possible to optimize
the size of each according to the goal established for aesthetics and/or cost.

Multispan arch bridges are also commonly used. Compared to a single-span
arch bridge, a multispan arch bridge balances horizontal thrusts due to dead loads
at interior piers. Figure 9.3d shows an example of multispan deck arch bridge.
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Because compression is predominated in the arch, the arch can be built
by stone, concrete, or steel. A composite system of concrete-filled steel tube
has also been widely used since the last two decades. High-strength pre-
stressing tendons are commonly used as the tie in tied-arch bridges. In long-
span arch bridges, the main arch can be made of steel trusses, as the New
River Gorge Bridge shown in Figure 9.3a. More details of this type are
discussed in Chapter 10—Steel Truss Bridges.

An arch bridge can be so designed and built to release live load moments
at crown and/or springing. As shown in Figure 9.4, an arch bridge can be
classified as (1) nonhinge arch, (2) one-hinged arch, (3) two-hinged arch,
and (4) three-hinged arch.

Fixed (hingeless) arch

One-hinged arch

Two-hinged arch

Three-hinged arch

(b)
Figure 9.4 lllustration of (a) fixed and (b) hinged arch bridges.
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9.2 CONSTRUCTION OF ARCH BRIDGES

Because of the curve of the arch and the restrictions of site access such as
deep valleys and confined construction space, construction methods of the
main arch include conventional segmental assembling, on-site rotation, and
other sophisticated erecting methods. The segmental assembling construc-
tion of an arch bridge is similar to the segmental erecting of a cable-stayed
bridge. The erected arch is usually hoisted by temporary cables from a tem-
porary pylon. This conventional method is commonly used worldwide. The
Hoover Dam Bypass Bridge (USA, 2009) and Lupu Bridge (China, 2003), as
shown in Figures 9.5 and 9.9a later in the chapter, respectively, are examples
of segmental erecting construction.

The rotation method is unique to arch bridge construction, in which the
two halves of the arch are assembled in the lower position along the bridge
axis or on shores perpendicular to the bridge axis. When the two half
arches are assembled along the bridge axis, the arch will be lifted up and
rotated vertically to closure position. Alternately, when they are assembled
on shores, the arch will be rotated horizontally to closure position. The
rotation method is widely used in mountain areas in China and had been
greatly developed in the last two decades. For example, the Zhenzhu Bridge,
as shown in Figure 9.6, was built by vertically rotating the arch from up
to down, in which the two halves of the concrete arch were casted on-site

Figure 9.5 Cable-stayed segmental erecting of arch bridge. (Hoover Dam Bridge, Nevada,
USA, Courtesy of galleryhip.com/hoover-dam-bridge-construction.html.)
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Figure 9.6 Vertical casting and rotating of arch bridge. (Zhenzhu Bridge, China, 2008,
Courtesy of Guizhou Bridge Construction Group Ltd.)

vertically and then vertically rotated to closure position. The construction
of the Yajisha Bridge, which will be introduced in detail in Section 9.2.2,
combines rotations in both vertical and horizontal methods.

In addition to these two predominant construction methods, a concrete
arch can be designed to use CLCA method (Kawamura 1990) to cast con-
crete on-site. CLCA stands for concrete lapping with pre-erected composite
arch. When using CLCA method to erect an arch, the concrete arch con-
tains steel tubes as the core of the composite section, which will be acting
as the falsework to form the whole composite arch. The steel tubular arch
will be erected first by using either segmental erecting or rotation method
and then concrete will be filled into the tube. After the core of the compos-
ite section is formed, the concrete-filled steel tube arch will be used as the
falsework to support the form works to cast the outer concrete on-site.

In Sections 9.2.1 and 9.2.2, Lupu Bridge and Yajisha Bridge will be used
as two examples to introduce the common construction methods of an arch
bridge.

9.2.1 Lupu Bridge, People’s Republic of China

The Lupu Bridge (Figures 9.7 and 9.8) is crossing over Huangpu River,
Shanghai, China. Once the world record keeper, this bridge is a steel
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Figure 9.7 Lupu Bridge side span.

Figure 9.8 Lupu Bridge, once world record keeper, China, 2003.

half-through tied box girder arch bridge and it is also the only steel arch
bridge in the world that is completely welded. High-strength strands are
used as the tie connecting two ends of the deck at side spans. Horizontal
thrusts due to dead loads are balanced through two side arches (Figure 9.7).
The tie system is separated from the deck system. Two major obstacles,
which made the construction of Lupu Bridge unique, are the assembling
of large steel box arch segments in skew and the connecting of the steel
box arch to concrete springing. Highlights of the construction are briefed in
Subsections 9.2.1.1 through 9.2.1.3.

9.2.1.1 Foundations

Huge vertical loads plus horizontal thrust under live loads demand founda-
tions with higher bearing capacity. As shown in Figure 9.7, foundations at side
spans also require resistance to uplift. Because of the very thick soft clay of the
river, the on-site geotechnical condition does not favor a mass foundation and
thus leaves piled foundation the best option for Lupu Bridge. The foundations
consist of long steel tube piles with large diameter. The larger surface area of
the piles implies that they are frictional rather than bearing piles. The founda-
tions are also strengthened by the use of large-diameter soil-cement stirring
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piles to resist the horizontal force and limit the displacement due to this force.
These stirring piles are connected to each other to improve the integrity of
the system. The large number of foundations and addition of stirring piles are
partly due to the great working and construction loads.

Due to the horizontal force generated by live loads, the abutment and
foundations are also strengthened in the horizontal direction by the use of
prestressing concrete. In addition to vertical piles, inclined piles are also
used to the abutments.

9.2.1.2 Arch ribs

The arches are segmentally constructed using a cable-stayed cantilever
method shown in Figure 9.9a. Each section of the arch was stayed back to
the temporary towers at either side of the arch after being welded to the
previous section. This significantly reduces the bending stresses in the arch
during construction and instead puts the constructed arch section into com-
pression, as it would be upon completion. Cables from the temporary tow-
ers to the ground are connected at the location of the foundations that will
be resisting uplift on completion of the bridge. Using the same foundations
reduces the cost as extra supports were not needed during construction.

As shown in Figure 9.9b, each erecting segment contains two segments of
the main arch ribs laterally, where these two segments are connected by a
horizontal wind brace box section. A mobile carriage is used to lift braced
arch sections up from barges. A computer-controlled system was used to
synchronize the strand jacks during deck lifting. The carriage then holds the
section in place while it is welded to the previous section. This secure system
is favored as it reduces differential movement between the existing and new
segments, allowing smoother application of the welding process.

9.2.1.3 Deck girders

For the midspan girders, a conventional suspension bridge construction
method is used. After the closure of the main arch, high-strength tie cables
are installed to connect the two ends of the deck at side spans. The horizon-
tal forces from the deck ends are transferred to the main arch at springing
through the side-span arches, as shown in Figure 9.9.

After the tie cables are installed and tensioned, the construction towers
and stayed cables are removed. The segmental erection of the deck girder
starts. The transporting and lifting of deck girder segments are similar to
those of arch segments. The girders are installed from the center of the arch
outward, to ensure that the sag in the horizontal cables is uniform and no
distortion of the deck occurred. Another reason is that the load being put
on the arch can be carried in compression whereas if spans are introduced
at other points, large bending moments will be induced in the arch.
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(b)

Figure 9.9 The construction of Lupu Bridge. (a) Elevation view. (b) View of lifting an arch
segment. (c) Deck construction.

9.2.2 Yajisha Bridge, People’s Republic of China

The Yajisha Bridge, crossing over Pearl River, Guangzhou, China, is a half-
through arch bridge with a main span of 360 m and two side spans of 76 m.
The main arch is fixed at springing. As shown in Figure 9.10, the main arch
contains several concrete-filled steel tubes, and steel tubes are connected with
other steel tubes as a truss. The bridge was started to be built in July 1998
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Figure 9.10 Yajisha Bridge, China, 2000, a half-through steel tubular concrete arch
bridge with a main span of 360 m.

and finished in June 2000. What distinguishes the Yajisha Bridge is not its
truss-like steel tubular concrete main arch as shown in Figure 9.11, but its
combined construction method of vertical rotation and horizontal rotation.
Each of the two half arches is first assembled on shore at a lower vertical
position. After assembled on falsework, the half arch is vertically lifted to
the design elevation and then rotated horizontally to meet the bridge axis.

9.2.2.1 Cross section of the main arch

The main arch comprises six steel tubes, each with a diameter of 750 mm,
as shown in Figure 9.11. Three steel tubes are connected by steel plates,
horizontally forming an arch rib. Two ribs on the top and bottom are con-
nected by steel tubes with a diameter of 450 mm as vertical and diagonal
truss members, forming a composite arch cross section (Figures 9.11 and
9.12d). After closure, top and bottom ribs are filled with concrete. The
composited arch section varies from 4000 mm at crown to 8039 mm at
springing, while maintaining a constant width of 3450 mm.

9.2.2.2 Vertical rotation

Main arch is split into several segments, and each segment is fabricated off-
site. Each of the half arch is first assembled segment by segment with the
support of falsework on shore. The axis of the arch at this stage is almost per-
pendicular to the designed bridge axis. As shown in Figures 9.12a and 9.13,
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Figure 9.11 Cross section of the main arch of Yajisha Bridge.

half of the main arch is assembled at a lower position vertically. During
the assembling, side-span arch and counterweight are built. A temporary
construction tower is built on top of the abutment, which is connected to
the foundation with a circular track of a 33-m diameter, allowing later
horizontal rotation. Construction cables and temporary bracings are used
to lift the arch. A temporary joint at the springing is designed and built to
allow the vertical rotation of the arch.

Concrete in the top and bottom ribs is not filled at this stage. Total
vertical lift weight is 2058 tons. The vertical rotation angle is 24.7014°.
Figure 9.12b shows the vertical lifting. After the arch is lifted to the design
position, the temporary joints at springing are fixed by reinstalling top and
bottom cutout ribs. Fixing the vertical joints at the end of this stage is
required to ensure stability in the next stage. After the falsework in the side
span is removed, the half structure is ready to rotate horizontally.

9.2.2.3 Horizontal rotation

The horizontal rotation mechanism comprises of a fixed platform in the bot-
tom and a lateral girder connecting two abutments on upstream and down-
stream sides on the top as the moving part. The rotation axis is located at
the center of the lateral girder. The two half arches in upstream and down-
stream sides are connected laterally and rotated horizontally as a whole.
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(b)

Figure 9.12 Vertical and horizontal rotation of Yajisha Bridge. (Courtesy of Guizhou
Bridge Construction Group Ltd.) (a) Half of the main arch is assembled on
false work at lower position along the river course. (b) Half of the main arch
is rotating vertically to its design position. (Continued)
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Figure 9.12 (Continued) Vertical and horizontal rotation of Yajisha Bridge. (Courtesy of
Guizhou Bridge Construction Group Ltd.) (c) Half of the main arch is rotating
horizontally to meet the bridge axis. (d) Before closure.
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Figure 9.13 Vertical rotation of Yajisha Bridge.

The connection between the upper moving part and the lower circular track
consists of 14 bearing feet, which are concrete-filled steel tubes and casted
into the bottom of the upper moving part. A stainless steel plate of 3 mm
thick is built on top of the track as the contact surface with the bottom of
the bearing feet.

The rotating force is applied to the bottom of the upper moving part by
jacking cables, which are anchored on top of the lower fixed part. The total
horizontal rotated structure weighs 13,685 tons. The two half structures
are rotated by 117.1117° and 92.2333°, respectively, to reach the design
axis. Figure 9.12c and d shows the horizontal rotation of the arch bridge.

9.3 PRINCIPLE AND ANALYSIS OF ARCH BRIDGES

9.3.1 Perfect arch axis of an arch bridge

The shape of an arch affects the internal force distributions, and it is impor-
tant to choose the best shape when designing an arch bridge. Comparing with
the shape of a suspending cable, which is in tension only under a uniform dead
load, it can be understood that it will be in compression if the uniform load
direction is reversed. The perfect arch axis, in which the arch is in compres-
sion only under a designated uniform load, is often referred in the arch bridge
design. To use the perfect arch axis under uniforme dead loads is preferable
in most arch bridge designs, especially in masonry or concrete arch bridges.

As shown in Figure 9.14, an arch is under a uniform load of g. The per-
fect arch axis can be derived from the assumption that moment at any point
p on the arch is zero:

qx§+Hy=q?lx (9.1)
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Figure 9.14 Perfect arch shape under a uniform symmetric load.

Substituting x and y with //2 and f, respectively, at the crown, the horizon-
tal thrust H can be obtained as

_a-
-1 9.2)

Substituting Equation 9.2 into Equation 9.1, the perfect arch shape can be
derived as

A [x
y—lx(l lj (9.3)

From Equation 9.3, it can be seen that the perfect axis for an arch under
uniform dead load is a parabola. In most arch bridges, the dead loads along
the bridge axis do not vary much and can be assumed as uniformed, which
is the reason that the parabola arch axis is commonly used. In addition
to parabola, catenary and circularity can also be used as an arch axis.
It should be noted that when perfect arch axis is referred it implies that the
arch is under a uniform dead load.

From Equation 9.2, a common fact of arch bridges is proved that the
horizontal thrust is inversely proportional to the arch rise.

9.3.2 Fatigue analysis and affecting factors

Long-span arch bridge provides a favorable driving condition for the vehi-
cles. However, the repeated action of traffic to the bridge will lead fatigue
damage to the members of the arch structure, especially the hangers in
the tied-arch bridge. Most bridges were damaged not because of the load
beyond capacity but because certain hangers lost the strength due to fatigue
damage.
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The tied-arch bridge is an internally indeterminate structure so all the
parameters will affect the hangers’ stress state. The factors that cause the
hangers’ fatigue include the size and material properties of the hangers
themselves or the loads applying on the hangers. This section discusses
how the arrangement of hangers affects the fatigue (Pellegrino et al. 2010).

An example of a concrete-filled steel tube tied-arch bridge was studied
by Yao (2007) and is used here to explain the fatigue effect. Span is 61 m
(2007), carriageway width is 15.2 m (50’), and the ratio of rise to span is
1:5. The original spacing of hangers is 5.1 m (16.7’). Hot-extruding PE
high-tensile cable PES7-55 is used. The load will use normal vehicle design
load in this example.

9.3.2.1 Positions of hangers

First, the difference among the stress state of different hangers will be dis-
cussed. The tied-arch bridge and the numbers of the hangers are shown in
Figure 9.15. After analysis, the result is shown in Table 9.2. The stress range
(SR) ratio of a hanger is its stress range over that of the middle hanger. The
result in Table 9.2 shows that the middle hanger has a higher stress range,
thus more prone to fatigue damage than the side hangers without consider-
ing the flexural rigidity.

Figure 9.15 Study of a tied-arch bridge with different middle and side spaces.

Table 9.2 Study of baseline tied-arch bridge with side spaces b = 5.1 m (16.7")

Hanger numbers I 2 3 4 5 6

Maximum stress (ksi) ~ 60.83 63.57 64.38 65.00 6541 6541
Minimum stress (ksi) 51.78 53.42 53.69 53.77 53.77 53.77
Average stress (ksi) 49.05 58.49 59.04 59.38 59.60 59.60
Stress range (ksi) 9.05 10.15 10.69 11.24 I1.64 11.64
SR ratio 0.776 0.871 0.918 0.965 1.000 1.000
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Table 9.3 Study of a tied-arch bridge with different middle spaces d

Hanger numbers Side hanger (1) Middle hanger (6)

Spacing (ft) 134 167 251 33.4 134 167 251 33.4
Maximum stress (ksi) 46.65 60.83 9041 121.92 51.78 6541 96.57 128.08
Minimum stress (ksi) 39.79 51.78 7740 104.11 42.05 53.77 7876 104.79
Average stress (ksi) 4322 56.30 83.90 113.01 4691 5959 8767 116.44
Stress range (ksi) 6.86 9.05 I13.01 178l 9.73 11.64 178l 2329
SR ratio 0.758 1.000 1.438 1970 0.836 1.000 1.530 2.000

9.3.2.2 Space of hangers

The space of hangers is an important parameter that influences the fatigue. In
this example (Figure 9.15), the space d is chosen as 4.1 (13.4), 5.1 (16.7'), 7.7
(25.1"), and 10.2 m (33.4), respectively. The result is shown in Table 9.3, and
the SR ratio of a spacing is its stress range over that of 5.1 m (16.7).

Based on Table 9.3, a conclusion could be drawn that a closer spacing of
hangers will benefit hanger fatigues more than a sparse spacing. This can
be understood from the simple fact that the stress ranges due to live loads
are greater in a sparse layout than a finer layout.

9.3.2.3 Distance between side hanger and arch springing

The distance between side hanger and arch springing (b shown in Figure 9.15)
will be selected as 2.5 (8.3'), 5.1 (16.7’), 7.7 (25.1’), and 10.2 m (33.4'),
respectively, which means the ratio of this distance to the distance between
other hangers is 0.5:1, 1:1, 1.5:1, and 2:1, respectively. The result is shown in
Table 9.4, and the SR ratio is based on the ratio of b to d, taking 1:1 as one.

The result in Table 9.4 draws the conclusion that the change of the dis-
tance between the side hanger and springing makes little influence on the
middle hanger but makes great influence on the side hanger.

About the side hanger, either increase or decrease of the distance between the
side hanger and springing will lead to higher stress range. When the distance
is extended, tension in the side hanger as a point to bear the load will increase.
When the distance is too small, however, the side hanger will be short so that
the vertical tensile stiffness will increase and that will also lead to higher stress
range. Hence, to enable the hangers have the most effective work, the distance
between the side hanger and springing should be in a proper range.

The fatigue problem in hangers of a tied-arch bridge is a complicated one
that many factors such as the section area of hangers, flexural rigidity of
hangers, and the impact force of the vehicles will have considerable influ-
ences on the fatigue. Besides, the dimensions of the bridge such as span and
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the ratio of rise to span as well as the performance of steel and concrete
could not be ignored.

9.3.3 Measuring of hanger-cable force

For arch bridge (or any other cable-related bridges), hanger-cable force can
be measured to provide an indication on the damage degree of bridge. The
measurement methods of hanger force were studied by many researchers.
Among them, the frequency method was the most commonly used one in
practical projects. But in some measurement formula, the bending stiffness
of cable must be recognized. While the true bending stiffness was difficult
to measure because the hanger cables are made up of several steel wires and
the stiffness of wires will be changed constantly. The measurement formula
of hanger-cable force, which was based on the function of deflection curve
shape, is introduced here (Li et al. 2014).

According to the conservation principle of energy, the total energy (the
kinetic energy and the strain energy) of a free-damped vibrating elastic
body should be unchanged at any time. Transverse vibration curve of a
uniform cross-sectional cable is assumed to be a deflection curve under
uniform load. The deflection curves satisfy the boundary conditions, and
the maximum kinetic energy E,,., of the cable is

!
1
Epnax = 20)2.[) m[Y(x)] dx (9.4)

The maximum strain energy V, . of the cable is

i
Vs = j EI[Y"(x)] dx + 1TOJ'[Y'<x)]2 dx
2 (9.5)

ZJ.q )dx + = TOI[Y

According to the conservation principle of energy

Ekmax = Vmax (9.6)

Natural vibration frequency ® can be obtained as follows:

I qlx dx+T0I [Y'( 'x)]zdx
J‘m (9.7)
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Approximated displacement function of the first-order vibration mode is built
by using the deflection curve of a fixed-end rebar under the uniform load g.

14 2 3 4
Yl(x):ZZEI{(J;j —2(7) +(’;j }(Ostl) (9.8)

Approximated displacement function of the second-order vibration mode is
built by using deflection curve of a fixed-end rebar under the antisymmetric
uniform load.

2 3 4
) 3(7) —14(’;] +12(’;j
ql << 1)

288E] 2
+ 95.7(sinhx—xJ

Y,(x) =

21 21
2 4
(157 (7))
ql4 l l l 1
x)=-— (Sxﬁlj (9.10)
288EI I—x I—x
+95.7 smh( j ( j
[ 21 21

So, inherent frequencies ® can be calculated:

(4/5)-(EI/I*)+(2/105)- T,

= 9.11
o (1/630) - mi® -1
,  3.59059(EI/I)+2.13849x107T,
©} = Y (9.12)
4.44568x10""ml
where:

o is the inherent frequency

T, is the cable tension

EI is the bending stiffness

[ is the length of the rebar

m is the mass per unit length of the rebar

In Equations 9.11 and 9.12, cable tension T, has an explicit relationship with
the inherent frequency £, so cable tension can be easily calculated from a
measured frequency. When using a natural frequency f;, cable tension Ty, is

mlf? 42ﬂ (9.13)
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Figure 9.16 Demonstration of dynamic testing instrument on a hanger cable.

When using the second-order natural frequency f,, cable tension T} is

T, = 0.8207ml*f3 - 167.9% (9.14)
Because the second-order vibration function is an approximated function,
the result of Equation 9.14 is also an approximation.

Eliminating bending stiffness in Equations 9.13 and 9.14, cable force
can be calculated from the first and second natural frequencies as given in
Equation 9.15, in which the effect of bending stiffness EI is considered but
not needed to measure directly.

Ty = ml*(4.3865f7 —0.2742f7) (9.15)

Instead of measuring the bending stiffness of a cable, which is not practical in
testing on-site, the second order of natural frequency can be obtained at the
same time when the first-order frequency is analyzed from a frequency spec-
trum analyzer as shown in Figure 9.16. Therefore, Equation 9.15 has a great
advantage of when to include the bending stiffness effect on cable forces.

9.4 MODELING OF ARCH BRIDGES
As high-strength hangers and/or tied cables are part of the structure, an arch
bridge is usually considered as a cable structure with the same consideration as

a cable-stayed bridge. The principle and modeling of an arch bridge is similar
to a cable-stayed bridge in many aspects. For example, the analyses of an arch
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bridge contain complicated construction stage analyses, and cables or hangers
need to be tuned to reach an ideal design state. These analyses are all spe-
cific topics in cable-stayed bridge analyses. Therefore, a special-purpose FEA
package that can perform multistage construction analysis and cable-tuning
is required. As the arch is under compression, nonlinear effects such as initial
stress problem, stability, and even large displacement are often needed in arch
bridge analyses. Basic principles in modeling an arch bridge, such as whether
a three-dimensional (3D) model is necessary or not and how fine the mesh is
adequate, are the same as those in modeling a cable-stayed bridge. Detailed dis-
cussion in Chapter 11 for a cable-stayed bridge can be applied to an arch bridge.

9.4.1 Arches

The cross section of an arch varies from solid-reinforced concrete to steel
box, from steel truss to concrete-filled steel tubes. Compression is predomi-
nated in the arch under dead loads; however, live loads will also cause
bending moment. 2D/3D frame elements are used to model an arch. The
curvature of arch geometry can be simulated by straight elements, and the
curve element is not quite necessary. Like girders in a cable-stayed bridge,
initial stress effect may be considered in arch elements.

9.4.2 Deck

The deck of an arch bridge usually contains floor beams and stringers as in
most half-through thrust arch bridges or tied cables/girders and floor beams
as in most tied-arch bridges. 3D model is always encouraged so as to better
simulate the stiffness of each deck component. Taking an example shown in
Figure 14.15, floor beams and tied girders are modeled as 3D frame elements.
When tied cables are separated, truss elements are used to model tied cables.

9.4.3 Hangers

Like cables in a cable-stayed bridge, hangers are usually modeled as truss
elements. No sag effect exists in a hanger, and one hanger can be modeled
as one truss element. Initial stress effect should be considered in analyses
for lateral load cases and stability analysis.

9.4.4 Stability

Due to high compression in the arch under dead loads and the height of
the crown from the deck, global stability, either in the arch plane or in the
horizontal plane, is more important in an arch bridge than other types
of bridges. Stability analysis is inevitable when designing an arch bridge.
For a tied-arch bridge without lateral bracings on arches or a long-span
arch bridge, lateral stability usually has a lower critical load than in-plane
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Figure 9.17 Lateral stability of arches in (a) deck-through and (b) deck arch bridges.

stability. As illustrated in Figure 9.17, the initial stress of hangers has differ-
ent effects on the lateral stability of the arch from half-through arch bridges
to deck arch bridges, assuming that the deck is relatively rigid in the lateral
direction. In addition to initial stresses accumulated along the arch, stresses
in hangers due to dead loads and tuning prestress should always be included
in stability analyses. Principles of bridge stability discussed in Chapter 14 in
general are applicable to arch bridge stability analysis.

9.5 3D ILLUSTRATED EXAMPLE OF CONSTRUCTION
ANALYSES—YAJISHA BRIDGE, GUANGZHOU,
PEOPLE’S REPUBLIC OF CHINA

As introduced in Section 9.2.2, the construction of the Yajisha Bridge com-
bines vertical rotation and horizontal rotation. During vertical rotation, the
geometry of the main arch gradually changes from a lower position to the
designed position. As geometry of structural components is different from
that when the bridge is complete, additional analyses are required to ensure
that each component is under control. The analysis and modeling of the
Yajisha Bridge are similar to a segmental erected bridge. However, the rota-
tion of the structure requires the analysis tool to be able to process the
geometry change of a component from stage to stage. In situations where
such a multistage bridge analysis tool is not available, a regular FEA package
can be used instead. Additional manual postprocessing of the FEA results is
required to plot stress envelopes during the entire vertical rotation process.

As shown in Figure 9.13, the half arch is assembled on falsework at lower
position and then is lifted to design position by jacking construction cables.
Visual Bridge Design System (VBDS) Wang and Fu 2003, is used to model
and analyze the vertical rotation of a half arch of the Yajisha Bridge. The
truss members of the steel tubular arch, the side arch, and the construction
and bracing towers are simulated by 3D frame elements, the construction
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cables are simulated by truss elements, and the horizontal rotation platform
is simulated by rigid elements. Four stages are modeled to simulate the verti-
cal rotation as shown in Figure 9.18. In stage 1 the arch is ready to lift, in
stage 2 the arch is lifted to half way, in stage 3 the arch is rotated to the
design position, and in stage 4 simulates the release of the construction cables
at the design position. Figure 9.19 shows axial forces of these four stages.

(d) Stage 4—when construction cables are released

Figure 9.18 (a—d) Stages simulating vertical rotation of Yajisha Bridge.
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9.6 3D ILLUSTRATED EXAMPLE OF A PROPOSED
TIED-ARCH BRIDGE ANALYSES—LINYI,
PEOPLE’S REPUBLIC OF CHINA

As an arch bridge stability analysis example, later in Section 14.6 stability
analyses of a proposed concrete-filled steel tube tied-arch bridge will
be demonstrated. In that example, three stages are modeled as shown in
Figures 14.16 and 14.17. Stage 1 is the casting of tied girder concrete on
falsework; stage 2 is the installation of arches and lateral bracings, filling
concrete into steel tube, and first-time jacking of hangers; and stage 3 is the
installation of the deck and final jacking of hangers.

In addition to construction analyses of these stages and the stability anal-
ysis, live load analysis is also performed by using influence surface loading
method. Figure 14.16 shows the axial force distribution of the live loads
that cause the compression on top of one arch maximal. 3D modeling and
influence surface loading clearly illustrate the lateral distribution of live
loads. As shown in Figure 14.16, the maximum compression on top of one
arch is 822 kN, whereas the corresponding compression on the other side
is only 149 kN. Figure 14.17 similarly shows the uneven displacements on
both tied girders due to live loads.

9.7 3D ILLUSTRATED EXAMPLE OF AN ARCH
BRIDGE—LIUJIANG YELLOW RIVER BRIDGE,
ZHENGZHOU, PEOPLE’S REPUBLIC OF CHINA

Liujiang Yellow River Bridge, crossing over Yellow River at Zhengzhou,
China, was built in 2006. The bridge has a length of 9848 m in total and
eight lanes carrying two bounds traffic. Most spans are simply supported
prestressed concrete T girder and void slab spans. The main bridge con-
tains four spans of concrete-filled steel tubular tied-arch spans, as shown
in Figure 9.20. Traffic lanes of two bounds are separated. Each of the arch
spans carries four traffic lanes with a net width of 19 m. The total width is
24.377 m, and the span length is 100 m.

In this example, the dead load and live load analyses of one arch span are
introduced. The theoretical span length is 95.5 m, and a catenary arch with
a factor of 1.347 is used. The ratio of arch rise to span is 1:4.5. The arch
contains two vertically placed steel tubes connected by steel plates. After clo-
sure, the tubes and connecting rib are filled with concrete. The tied girders
and end-floor beams are prestressed concrete box girders; the interior floor
beams are prestressed concrete T girders. The deck comprises precast con-
crete IT modular slabs, placed on top of floor beams and connected to each
other by cast-in-site segments. The hangers are high-strength steel wires.
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Figure 9.20 Liujiang Yellow River Bridge, Zhengzhou, China. (Courtesy of mudedi.59706.com.)

As shown in Figure 9.21, the arch bridge is modeled three-dimensionally
by using frame and truss elements. The arch, lateral bracings, tied gird-
ers, floor beams, and deck slabs are modeled by frame elements; hangers
are modeled by truss elements. As there is no lateral load included in the
analyses, the stringers simulating deck slabs are located at the centroids of
floor beams. There are 1018 elements in total. The analyses include dead
load analysis with an automated hanger tuning for a preferable moment
distribution on tied girders and live load analysis.

Figure 9.22 shows moment and axial force distributions without
tuning of hangers. It can be seen that the moment distribution on tied
girder is similar to a simply supported girder, and tensions in hangers
are low when hangers are not prestressed. Figure 9.23 shows a preferred
distribution achieved by automated hanger tuning analysis, in which
tied girder works like a multiple-supported continuous girders. Tensions
in hangers are higher. Figure 9.24 shows the moment and axial force
envelopes due to live loads. Figure 9.25 shows the moment and axial
force distributions under live loads that cause extreme compression at
the crown on one arch. The uneven distribution of live loads is clearly
displayed.
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Figure 9.21 3D analysis model of Liujiang Yellow River Bridge.
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Figure 9.25 (a, b) Moment and axial force distribution due to live loads that cause
extreme compression at crown on one arch.



Chapter 10

Steel truss bridges

10.1 INTRODUCTION

Trusses, in principle, behave as large beams to carry loads but are com-
prised of discrete members that are subjected primarily to axial loads.
Joints, or nodal points, are the locations where truss members intersect
and are referred to as panel points. A truss bridge is a bridge constructed
using triangular units connected at joints, suspending loads through ten-
sion and compression. Traffic loads are applied to the bridge deck, which
is supported by longitudinal stringers, generally placed parallel to traffic,
that carry deck loads to the floor beams. Floor beams are usually set nor-
mal to the direction of traffic and are designed to transfer loads from the
bridge deck to the trusses, the main load-carrying members to supports.
Figure 10.1 depicts a truss bridge and terminology used.

In early years, truss bridges were built with wood. Then, metal gradually
replaced wood as the primary truss bridge-building material, leading to
extensive building of wrought iron bridges after 1870. The Bollman Truss,
patented in 1852, used cast iron for the compression members and wrought
iron for the tension, for which the 100’ bridge in Savage, Maryland, is the
only surviving example (Figure 10.2). The truss bridge is one of the oldest
types of modern bridges, and it became popular because of its economical
design and relatively affordable construction. There are a large variety of
truss bridge types, with most having been built between the 1870s and
the 1930s. Truss bridges have been widely used to carry automobile and
railroad traffic.

Many steel truss bridges built in early years are now either renovated
or replaced. One example is the George P. Coleman Bridge that carries
Route 17 over the York River in Yorktown, Virginia. In 1993, the state
of Virginia widened the existing 1143-m (3750’) two-lane bridge to four
lanes using the existing substructure. The original bridge was 9.5 m (31)
wide with no shoulders, and the new structure would be 23.6 m (77')
with full shoulders (Bergeron 2004). Figure 10.3 shows barges floating
a truss segment into place. Some of the truss bridges in Europe are built
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Figure 10.] Truss bridge and terminology.

Figure 10.2 Bollman truss bridge.

of concrete or composite, such as Mangfallbriicke in Austria by the cast-
in-place segmental techniques, Viaduc de Sylans of precast segmental
concrete combined with external and internal tendons, and bridge over
the Roize in France of composite truss with concrete for the top and bot-
tom chords and steel sections for the open webs. Concrete or composite



Steel truss bridges 299

Figure 10.3 Construction of George P. Coleman Bridge in segment. (Courtesy of VDOT,
Virginia.)

segmental trusses are unique for long spans and offer very efficient use of
materials. Due to relatively few live examples, they are not discussed in
this chapter.

Lateral cross bracing in the plane of both the top and bottom chords
of the trusses is essential. Its main purpose is to provide shear stiffness
on these planes so that sufficient torsional stiffness of the truss bridge as
a whole will be ensured. Also, it will enhance lateral stability and help to
distribute lateral loads applied on truss members. Sway bracing is pro-
vided between the trusses in the plane of either verticals or diagonals,
and its primary purpose is minimizing the relative vertical deflections
between the trusses. Portal bracing is a sway bracing placed in the plane
of the end posts.

Based on the deck location, there are three basic truss types: (1) deck,
(2) through, and (3) half-through trusses (Figure 10.4). For deck trusses,
the entire truss is below the bridge deck. Deck trusses are generally desir-
able in cases where vertical clearance below the bridge is not restricted.
Through trusses are detailed so that the bridge deck is located as close
to the bottom chord as possible and are generally used when there is
a restricted vertical clearance under the bridge. Half-through trusses
carry the deck high enough that sway bracing cannot be used above the
deck. It is very difficult to design a half-through truss if the chosen truss
type does not have verticals. Many of the recent trusses designed in the
United States have been designed without verticals to achieve a cleaner
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Figure 10.4 (a—e) Various truss bridge types.

and more contemporary appearance, thus minimizing the use of half-
through trusses.

There are several geometric guidelines for determining truss configura-
tions. AASHTO requires minimum truss depths of one-tenth (1/10) of
the span length for simple spans. For continuous trusses, the distance
between inflection points can be used as the equivalent simple-span length
to determine the minimum truss depth. It is generally desirable to propor-
tion the truss panel lengths so that the diagonals are oriented between
40° and 60° from horizontal. This keeps the members steep enough to be
efficient in carrying shear between the chords. This angular range also
allows the designer to maintain a joint geometry that is relatively compact
and efficient.

Floor systems can use a series of simple-span stringers framing into the
floor beam webs (Figure 10.5a) or continuous stringers sitting on the top of
the floor beams (Figure 10.5b). Whenever there is depth restriction require-
ment, framed systems serve to reduce the overall depth of the floor system
by the depth of the stringers.

Traditionally, when modeling and analyzing, truss can be idealized
assuming that the members are pinned at the joints (free to rotate inde-
pendent of other members at the joint) so that secondary stresses ordi-
narily need not be considered in the design, except certain cases like the
half-through bridges built in China (as illustrated and discussed more in
Section 10.7), which look like a truss type, but more like a frame-type
bridge where joints are taking bending moments. To exclude the bending
effect, joints are typically detailed so that the working lines for the diago-
nals, verticals, and chords intersect at a single point. However, bending
stresses resulting from the self-weight of the members should be considered
in the design. This idealization of a truss bridge simplifies the modeling and
lowers the analyzing effort.
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Figure 10.5 Truss bridge stringer-floor system. (a) Framed stringers (Courtesy of
Department of Public Works, Hunterdon County, New Jersey.); (b) Nonframed
stringer (Courtesy of Geiger Brothers.).

As computer technologies advanced, it is no longer difficult or costly to
model and analyze a truss bridge truly reflecting its actual assembling and
behavior. No modern truss bridges are true trusses. As members of a truss
bridge will bend, no matter how small, at connecting nodes, truss bridge
members can be more truly modeled as two- (2D) or three-dimensional
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(3D) frame elements. Compared with axial force, moments at connecting
nodes and along truss members are negligible for a perfect truss bridge,
in which all connecting members are so assembled that all centroid lines
intersect at a working point (WP) with deck loads transferred through
nodal points only. When any member is assembled off its theoretical
position by purpose or due to construction error, its secondary bend-
ing effect can be obtained from this modeling. Another reason that the
frame model should be encouraged whenever possible is the inaccuracy
in counting for the secondary bending effect in an idealized truss model.
When an offset exists for a member and if the idealized model is adopted,
the bending moment for calculating its extra bending stress in the design
phase can only be obtained by multiplying its axial force with the offset.
In reality, this bending moment may be redistributed because all other
connecting members do have bending stiffness. With a frame model, all
will be considered internally and automatically.

Steel truss bridges are generally considered to be fracture-critical
structures. The simplified approach during design has been to des-
ignate all truss members in tension and members subjected to stress
reversals as fracture-critical members (FCMs). Fracture-critical stud-
ies can be performed based on analyses that model the entire fram-
ing system, including the bracing systems and member end fixities, to
determine whether certain lightly loaded tension or reversal members
are truly fracture critical. In many cases the number of FCMs can be
reduced through this process, which reduces fabrication costs. More
details of FCM and structural redundancy are covered in Chapter 15—
Redundancy Analysis.

10.2 BEHAVIOR OF STEEL TRUSS BRIDGES

10.2.1 Simple and continuous truss bridges

Simple-span truss bridge, like simply supported beam bridge, is made
up of trusses spanning between only two supports. A continuous truss
bridge is a truss bridge that extends without hinges or joints across three
or more supports. A continuous truss bridge, which behaves the same
as a continuous girder bridge as a whole, may use less material than a
series of simple trusses. It is possible to convert a series of simple truss
spans into a continuous truss. For example, the northern approach to
the Golden Gate Bridge was originally constructed as a series of five sim-
ple truss spans. In 2001, a seismic retrofit project connected the Marin
(north) approach viaduct five spans into a single continuous truss bridge
(Figure 10.6).
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Figure 10.6 The Golden Gate Marin (north) approach viaduct under construction.

10.2.2 Cantilevered truss bridges

A cantilever truss bridge is a structure in which at least one portion
acts as an anchorage for sustaining another portion that extends beyond
the supporting pier. The use of cantilevers allows for the construction
of much longer bridge spans. A cantilevered bridge uses two horizon-
tally projected beams that are supported on piers. Counterbalancing
spans called anchor arms provide tension and suspension through the
truss. Cantilevered truss bridges remained popular through most of
the twentieth century until cable-stayed bridges became more com-
mon. The most famous early cantilever bridge is the Forth Rail Bridge
(Figure 10.7). This bridge held the record for the longest span in the
world for 27 years only to be surpassed by the Quebec Bridge in 1917,
which is still the current record holder. The Tydings Bridge of Maryland
is an illustrated example of this type of cantilever bridge and will be
shown later.

Steel truss cantilevers, as shown in Figure 10.8, support loads by
the tension of the upper members and compression of the lower ones.
Commonly, the structure distributes the tension via the anchor arms
to the outermost supports, whereas the compression is carried to the
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Figure 10.7 Forth Rail Bridge, Queensferry, Scotland.
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Figure 10.8 Cantilever truss bridge and its terminology.

foundations beneath the central towers. Many truss cantilever bridges
use pinned joints and are therefore statically determinate with no mem-
bers carrying bending moment.

Although some continuous truss bridges resemble cantilever bridges
and may be constructed using cantilever techniques, there are impor-
tant differences between the two forms. Cantilever bridges need not con-
nect rigidly midspan, as the cantilever arms are self-supporting. Even
though some cantilever bridges appear continuous due to decorative
trusswork at the joints, these bridges will remain standing if the con-
nections between the cantilevers are broken or if the suspended span
(if any) is removed. Conversely, continuous truss bridges rely on rigid
truss connections throughout the structure for stability. Removal or
deterioration of any truss member in midspan of a continuous truss will
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endanger the whole structure. However, continuous truss bridges do not
experience the tipping forces that a cantilever bridge must resist, because
the main span of a continuous truss bridge is supported at both ends
(Kulicke 2000).

10.2.3 Truss arch bridges

A truss arch bridge, such as Francis Scott Key Bridge (I-695) in Baltimore,
Maryland, as shown in Figure 10.9, combines the elements of the truss
bridge and the arch bridge. The actual resolution of forces will depend
on the design. As long as the horizontal movement of the top chord is
restrained, like a regular arch bridge, horizontal thrusting force will
be generated and therefore the top chord of a truss arch bridge will be
under compression. When the top chords are free to move horizontally,
no horizontal thrusting forces will be generated and this arch-shaped
truss bridge works essentially as a bent beam. If horizontal thrust is gen-
erated but the apex of the arch is a pin joint, it is termed a three-hinged
arch. If no hinge exists at the apex, it will normally be a two-hinged
arch. A tied-arch bridge is an arch bridge in which the outward-directed
horizontal forces of the arch, or the top chord, are borne as tension by
the bottom chord (either tie rods or the deck itself) rather than by the
ground or the bridge foundations. Deck loads including live loads are
transferred, as tension, by vertical ties of the deck to the curved top
chord, tending to flatten it and thereby to push its tips outward into the
abutments, like other arch bridges. However in a tied-arch or bowstring
bridge, these movements are restrained not by the abutments but by the

Figure 10.9 Francis Scott Key Bridge (I-695) in Baltimore, Maryland.
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bottom chord, which ties these tips together, taking the thrusts as ten-
sion, rather like the string of a bow. Therefore, a tied-arch bridge is often
called a bowstring-arch bridge. The structure as a whole was described
as nonredundant; failure of either of the two tie girders would result in
the failure of the entire structure.

10.3 PRINCIPLE AND MODELING OF
STEEL TRUSS BRIDGES

For truss bridges, a 2D truss model with planar truss only or a 3D finite
element model of the whole superstructure can be defined. For the 2D truss
model, truss on only one side is modeled and the vertical load coming from
the deck is considered linearly distributed between two parallel trusses and
loaded at the connection points between truss and floor beams. For the 3D
truss model, two trusses plus floor beams and stringers are modeled as their
actual position in space.

When modeling a truss member, as introduced in Section 10.2,
1D-truss/2D-frame or 1D-truss/3D-frame elements can be used in 2D and
3D truss models, respectively. The deck is represented by a combination of
transverse beam elements and plate elements. The beam elements provide
the load transfer characteristics of the concrete deck, whereas quadrilat-
eral plate or steel elements are used only to receive the wheel loads and
distribute the wheel loads to the beams. To provide the ability to repre-
sent the actual boundary conditions, hinges, rollers, or linear displacement
springs, depending on the bearing situation, can be placed at the truss sup-
port locations.

It is regarded that pin-connected analysis model is applicable and accurate
as long as the truss bridge is properly cambered (Kulicke 2000). Further,
most long truss bridges are already on a vertical curve. Thus, in many
practical truss bridges, a parabolic curve exists over at least part of the
length of the bridge. When a truss is analyzed as a three-dimensional (3D)
assemblage with moment-resisting joints, the inclusion of camber, usually
to a no-load position, becomes even more important. If the truss is inde-
terminate in a plane, just like any other type of indeterminate structure, it
will be necessary to use realistically close cross section areas for the truss
members and may be important to include the camber of the members to
get realistic results in some cases. A sample calculation of the cross section
is shown in Figure 10.10.

An influence line is a graphical presentation of the force in a truss
member as the load moves along the structure. If the truss is statically
indeterminate, then the influence lines will be a series of chords to a
curve, not a straight line like the statically determinate case. It is often
found efficient to calculate the influence lines for truss members using the
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Truss section property calculation

Input data:
Overall height, y, = [ 25.3750 | (measured up from global x-axis)
-
Overall width, x,= | 22.5000 | (measured to right from global y-axis)
No. of known shapes =
Data: | Shape #1  Shape #2 Shape #3 Shape #4
A= 5.3100 5.3100 5.3100 5.3100
L= 19.30 19.30 19.30 19.30
1y= 6.91 6.91 6.91 6.91
x, = 1.5100 1.5100 20.9900 20.9900
Y. = 2.5100 22.9900 22.9900 2.5100
No. of rectangles =
“

Data:  Rect. #1 Rect. #2 Rect. #3 Rect. #4 Rect. #5
Length, [, = 0.5000 20.0000 0.5000 20.0000 12.0000
Length, ly =1 24.0000 0.3750 24.0000 0.5000 0.5000
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Figure 10.10 Calculation of a sampling truss member cross section.
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Figure 10.11 Influence lines of a truss bridge. (a) Main span with two cantilever arms.
(b)Influencelinesampleofatopchord.(c) Influencelinesampleofadiagonal
member.

Mueller—Bresslau principle as adopted in many customized bridge software.
Two influence line samples of a top chord and a diagonal member are
shown in Figure 10.11b and c, respectively.

10.4 3D ILLUSTRATED EXAMPLE—PEDESTRIAN
PONY TRUSS BRIDGE

The pony truss bridge as shown in Figures 10.12 and 10.13 has been
considered for the case study. It is a pedestrian steel truss bridge with
57.6 m (189’) length, 4.0 m (13’) height, and 28 panels, located in New
York suburban area. The sections used in this truss bridge are shown in
Table 10.1.

A 3D model is developed using STAAD.Pro as shown in Figure 10.14
where truss elements are used for truss and bracing members, beam ele-
ments are used for floor beams and stringers, and plate elements are used
for the deck. The bridge is considered fixed in all three directions at one end
supports and x (longitudinal) direction released at another end supports.
Shadow area shows a 127-mm (5”) thick concrete deck (Figure 10.13).
Loads based on AASHTO LRFD (U.S.) code are used in this study. The
self-weight of every active element is calculated and applied as a uniformly
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Figure 10.12 Elevation view of the case study pedestrian truss bridge.
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Figure 10.13 Typical cross section of the pedestrian pony truss bridge.
Table 10.1 Truss sections of pony truss bridge
Member Size
Top chord WI2 x 96
Bottom chord 2MCI2 x 50
Vertical WI0 x 33
Diagonals L5” x 5" % 3/8” (127 x 127 X 10 mm)
Floor beam W2 x 30

distributed member load using the information from the section properties
in the structural modeling phase. In this case study, all steel members and
concrete deck are considered. Bridges that are designed only for pedestrian/
bicycle use should design the live load as 4.1 kN/m? (85 psf) and typical
panel width is 2 m (6'-9").
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Figure 10.14 The case study pedestrian bridge model.

As for horizontal wind, STAAD.Pro provides the wind-load generation
utility for analyzing wind loadings. The utility takes wind pressure at vari-
ous heights as the input and converts it to joint loads in specific load cases.
Meanwhile, an upward vertical linear load of 9.6 x 10-* MPa (0.020 ksf)
times the width of the deck should be applied to windward quarter-point of
the deck.

Various methods can be used for performing earthquake analysis.
Response spectrum analysis is used in this example. STAAD.Pro provides a
utility to specify and apply the response spectrum loads for dynamic analy-
sis. The graph of frequency-acceleration pairs are calculated based on the
input requirements of the command and as defined in the code. As mass
is processed in a form of directional load in STAAD.Pro, self-weight that
represents the structure mass has to be applied to all x, y, and z directions
so that accelerations in all these directions will be considered in the 3D
dynamic analysis.

Alternatively, time history analysis can be adopted for earthquake
analysis. This case study uses the explicit definition with the time
versus acceleration data of “IMPERIAL VALLEY 10/16/79 0658,
WESTMORELAND FIRE” from USGS database to generate the time
history analysis table.

STAAD.Pro covered the information of total applied load and struc-
tural reaction for each load case and the response spectrum analysis results
including modal base actions, participation factors, and the eigenvalue
solution for each mode. The first six eigenvalue solutions are 1.759, 1.957,
2.951, 4.146, 4.733, and 6.156 cycles per second. Figure 10.15 shows the
first two mode shapes where the first mode is mainly in lateral (z) direction
and the second mode is in vertical (y) direction.

Maximum reactions for all degrees of freedom are presented in
Figure 10.16. Reactions output from the analysis are checked first
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Figure 10.15 First two mode shapes of the case study pedestrian bridge. (a) First mode
shape (lateral). (b) Second mode shape (vertical).
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Figure 10.16 Nodal reaction report of the case study pedestrian bridge.

against applied loads so as to essentially eliminate simple errors in
modeling.

A similar pony truss bridge of a 43.5-m (142'-8 1/2”) span with the full
strength developed at joints used to demonstrate the structure redundancy
is shown in Chapter 15.
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10.5 2D ILLUSTRATED EXAMPLE—TYDINGS
BRIDGE, MARYLAND

The Millard E. Tydings Memorial Bridge (Figure 10.17) is a steel deck
truss structure that spans the Susquehanna River on I-95 about 40 miles
(64.4 km) north of Baltimore, Maryland, since 1961. The design of this
bridge was for HS-20 truck loading. The design temperature range is from

L]
L]
(]
(]

Figure 10.17 Perspective view of Tydings Bridge, Maryland.
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Figure 10.18 Configuration of Tydings Bridge, Maryland.

—10°F (=23.3°C) to 120°F (48.9°C), and also it employs a combination of
riveted as well as bolted connections.

The 13-span, 1540-m (5051’) structure possesses a deck width of
26.6 m (87'-4"), with 11.9 m (39'-0") of roadway width in each direction.
The bridge uses two parallel truss structures, spaced at 13.7 m (45'-0"),
center to center and each consisting of three unique truss panel arrange-
ments as shown in Figure 10.18 with the combination of a suspended span
and an anchor span with two cantilever arms. Each of the six suspended
spans consist of eight truss panels spaced at 9.3 m (30'-7 1/2”), providing
a total length of 74.7 m (245’). Five anchored spans of seven panels for
a total length of 65.3 m (214'—4 1/2") for the center span and 10 canti-
levered arms with four panels make up the 37.3-m (122'-6") span. The
entire bridge consists of these two types in a repetitive fashion, essentially
permitting one to analyze the entire structure with a simplified approach.
The bridge also uses 13 piers, with piers 2 and 13 supporting the end of
the truss suspension spans and thus carrying identical loads, whereas
piers 3 through 12 support equal load. All members are built-up plate
sections constructed with one of two possible materials: high-strength
low alloy structural steel or the typical structural carbon steel. For anal-
ysis purposes, specific section properties, such as member area, yield
stress, and radius of gyration, are of vital importance to ensure accuracy
throughout the analysis and were obtained from the original construc-
tion documents.

Supported by the trusses, the bridge is comprised of just over 300
floor beams of three unique types. The beams are designated as F1, F2,
and F3. Beams F1 and F3 are plate girders with (1) 1524 mm x 8 mm
(60” x 5/16") web, (2) 356 mm X 19 mm x 17 m (14” x 3/4” x 56’) cover
plates, and (3) 200 mm x 150 mm X 17 mm (8” X 6” X 3/4”) angles.
F2 beams are composed of (1) 1524 mm x 8 mm (60" x 5/16”) web,
(2) 325 mm x 13 mm x 17.3 m (13” x 1/2” x 56'=10%") cover plates, and
(3) 150 mm x 150 mm X 14 mm (6” X 6” x 9/16") angles. F3 beams can
be seen at all floorbreaks, whereas F2 beams are located at each expan-
sion joint, and F1 beams are at all the remaining panel point locations.
Carried by the floor beams, seven different stringers were used. Designated
A through G, each stringer spans between the floor beams, stiffening the
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Table 10.2 Stringer sections for Tydings Bridge

Stringer End spans Intermediate spans
A B,C,D,F W24 x 76 W24 x 76
E,G W24 x 84 W24 x 76

Table 10.3 Stringer spacing for Tydings Bridge

Spacing Distance
A-B,B-C,C-D,F-G 2.06 m (6'-9")
D-E 1.89 m (6'-3/16")
E-F .32 m (4—4")

entire structure. The sections used in the design are shown in Table 10.2,
while the spacing is shown in Table 10.3.

10.5.1 Thermal analysis

This study finds the main cause of the premature cracks of the expan-
sion plates as shown in the insertion of Figure 10.17 (Fu and Zhang
2010). A 2D truss model is built by TRAP to study the bridge behavior
under thermal loads. In long-span truss bridges, spandrel-braced arch
bridge, or called cantilever truss bridge, is a very popular type. Rigid
arms extend from both sides of two piers. Diagonal steel trusses, pro-
jecting from the top and bottom of each pier, hold the arms in place.
The arms that project toward the middle are supported only on one side,
like strong cantilever arms, and support a third, central span. Changes
of temperature cause material to contract or expand due to the effect of
thermal contraction or expansion.

Originally, the bridge sliding plate system was designed assuming that
plates would slide on horizontal surfaces when the bridge contracts or
expands. However, a closer scrutiny of the behavior indicates that the
sliding plate action was affected by the complex movement between
anchor spans and suspension spans as well as the force-release systems.
A thermal model as shown in Figure 10.19 was generated for the thermal
analysis.

The temperature change is assumed to the extreme of 130°F (54.4°C),
the difference between the highest and the lowest temperature for the
sliding plate design. x- and y-movements are plotted along the panel
point. Figure 10.20 shows the expansion of the x-movement of the
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Figure 10.19 Five-span thermal analysis model.
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Figure 10.20 Top-panel horizontal movement due to temperature rise.

x deflection

Panel point

top-panel points where the left-panel points move toward the nega-
tive direction, whereas the right-panel points move toward the positive
direction. Figure 10.21 shows the y-movement (i.e., vertical movement)
of the top-panel points where the panel points near supports move
upward, whereas the panel points away from supports move downward.
Noticeably, discontinuity is formed at the expansion joints, which means
there is an angular movement at sliding plate locations. For compari-
son, x- and y-movements of the bottom-panel points are also plotted on
Figures 10.22 and 10.23, respectively. It is clearly seen that the x-move-
ment is much less at the bottom-panel points on the anchor span. This
displacement pattern reveals that the archlike anchor span will bend
up when temperature arises. Because the vertical movements at expan-
sion joints are not even, it is numerically proved that sliding plates as
noticed in the field do not fully bear the stiffened plates on the bottom
as a designed sliding plate system. Gaps are formed between plates, and
sizes of the gaps depend on the temperature. The formation of the gap is
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Figure 10.2] Top-panel vertical movement due to temperature rise.
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Figure 10.22 Bottom-panel horizontal movement due to temperature rise.
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Figure 10.23 Bottom-panel vertical movement due to temperature rise.
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evident gaps between sliding top plate and fixed bottom plate and is the
main cause of plate crack due to bending.

10.6 3D ILLUSTRATED EXAMPLE—FRANCIS
SCOTT KEY BRIDGE, MARYLAND

There are 22 bridges in various types that account for 4.1 miles (6.6 km)
of the 10.5-mile (16.8-km) facility, which includes the Francis Scott
Key Bridge over Patapsco River and its [-695 approaches in the state of
Maryland. This bridge structure combines the behaviors of an arch, truss,
as well as cantilever. The main section of the Key Bridge (Figure 10.9) is
a three-span, 219-366-219 m (720'-1200'-720’) for a total of 805 m
(2640 ft) through truss bridge. The as-is bridge is first modeled and ana-
lyzed in 2D by using Win-TRAP program. In this simple 2D model, only
one main truss is considered and each truss member is modeled as the
truss element—one-dimensional axial element. One main truss is modeled
by 416 truss elements. Figure 10.24 shows the elements of the 2D truss
model.

As introduced in the beginning of this chapter, a truss bridge can be
modeled as frame elements in 3D if analysis tools permit. To illustrate
this more sophisticated 3D approach and make a comparison to the sim-
ple 2D truss model, the Francis Scott Key Bridge is also modeled with
frame and truss elements in 3D and illustrated in this section. As shown
in Figure 10.25, all components of a truss bridge including main trusses,
bracings, sway frames, floor beams/trusses, stringers, and its diaphragms
and hangers are modeled.

In this model, the connections between floor beams/trusses and main
trusses are framed together at their centroid positions. The stringers are
placed at their centroid positions, and rigid bodies are used to connect them
to floor beams/trusses. As bottom chord bracings are aligned on the bottom
chord plane, rigid bodies are also adopted to connect them to the floor beams/
trusses in the middle. Stringers are modeled as four- or eight-span continu-
ous beams with joints inserted at as-is locations. Figure 10.26 shows the end
portal portion, and Figure 10.27 shows its corresponding photo. Figure 10.28
shows the detailed modeling of floor systems. There are 11,618 elements in
total with 62 truss elements for hangers and 11,556 3D frame elements for
all other components. The total 3D finite element analysis nodes and degrees
of freedom are 9,124 and 54,744, respectively. One hundred thirty different
cross sections are used in the model. The modeling and analyses are con-
ducted by using VBDS (Visual Bridge Design System, Wang and Fu 2005).

The axial force and moment distributions due to structural weight
are shown in Figures 10.29 and 10.30, respectively. Figure 10.31 shows
moment distributions in part of stringers.
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Figure 10.24 Francis Scott Key Bridge in 2D truss model.
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Figure 10.25 Francis Scott Key Bridge in 3D frame model.
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Figure 10.26 3D Francis Scott Key Bridge model in detail—end portal.

Figure 10.27 End portal of Francis Scott Key Bridge.
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Figure 10.28 3D Francis Scott Key Bridge model in detail—floor system.

Live load analysis for four-lane HS-20-44 is conducted in this example.
Figures 10.32 and 10.33 show the combined dead and live load results on half
of a main truss.

10.7 3D ILLUSTRATED EXAMPLES—SHANG XIN
BRIDGE, ZHEJIANG, PEOPLE’S REPUBLIC
OF CHINA

This recently constructed (2010) Shang Xin Bridge in Zhejiang, China
(shown in Figure 10.34), is considered as a half-through three-span contin-
uous steel semitruss bridge with minimum top bracing. The span lengths
are 62-100-62 m, and the total width is 30 m. The unique design of this
bridge is that the hinge connections are replaced by semirigid connec-
tions on both truss panels. So, it behaves more like a frame than a truss
even though its members maintain the triangular shape in geometry as a
truss bridge does. However, to meet safety requirement, nodal and middle
segments of members are designed as a hinge-connected structure with
only axial forces, whereas end segments of truss members are designed
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Figure 10.31 Vertical bending moment distributions in part of stringers due to structural weight (kip-ft).
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Figure 10.34 Shang Xin Bridge, China. (a) Elevation (mm); (b) cross section (mm).(Continued)

as a frame structure with combined action of axial force and bending
moments.

As shown in Figures 10.34b and 10.35, the deck system comprises of
steel deck plates and floor beams. Steel plates are stiffened longitudinally
by U-shape stiffeners. The top of floor beams are cut out to allow stiffen-
ers to pass through. Thus, the deck clearance is minimized. There is no
stringer used in the deck system. The bottom lateral bracings are crossed
and placed in the lower part of the floor beam (Figure 10.35). The top
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Figure 10.34 (Continued) Shang Xin Bridge, China. (c) Perspective view of the com-
pleted trusses.

Figure 10.35 Floor beams and bottom lateral bracings of Shang Xin Bridge.

lateral sway bracings for wind (as shown in Figure 10.34a and ¢) are pro-
vided only at the two highest posts at pier locations. Panel members are
all made of tube sections, and they are semirigidly connected as shown
in Figure 10.36. The trusses are supported by temporary supports under-
neath and launched forward as shown in Figure 10.36. There are 25 trian-
gular panels with each of them as one erection unit.

Finite element models were generated with MIDAS Civil (Figure 10.37a)
and ANSYS (Figure 10.37b) for cross-checking the simulation of all
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(b)
Figure 10.37 Finite element models of Shang Xin Bridge. (a) MIDAS model; (b) ANSYS model.
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construction stages. Both MIDAS and ANAYS models are using a com-
bination of beam and shell elements, with 2798 nodes and 6763 ele-
ments in total (1694 shell elements for deck and U-shape gusset plates
and 5069 beam elements for the rest of the members) for 52 construction
stages.
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Cable-stayed bridges

11.1 BASICS OF CABLE-STAYED BRIDGES

In the case of a continuous girder, as shown in Figure 11.1, the zone close
to the middle support area is in compression at the bottom and in tension at
the top. The major tensile principal stress in the middle support area is about
45° downward from the supports. For longer-span bridges, girder height
in the middle support areas can be designed taller than that in the middle
span areas. In comparison, a cable-stayed bridge has a similar load distribu-
tion path to a prestressed concrete (PC)/reinforced concrete (RC) continuous
bridge by replacing bent-up prestress tendons/rebars with external cables.

A typical cable-stayed bridge, as shown in Figure 11.2, consists of a con-
tinuous girder, stay cables, two pylons, and two end piers. The span between
two pylons is called the main span. The main span length is a key design
parameter of cable-stayed bridges. From the perspective of engineering effi-
ciency and cost-effectiveness, a cable-stayed bridge is very competitive with
other bridge types that have a main span range of 200-500 m (656’ to
1640’). For an overall satisfaction in both structural performance and econ-
omy, cable-stayed bridges can be built in a span of up to 1000 m (3280’)
(Chen and Duan 1999). Several cable-stayed bridges with a main span over
1000 m have been built since 2005 (i.e., Russian Russky Bridge, 1104 m
[3622'] in 2012, and China’s Sutong Bridge, 1088 m [3570'] in 2008].

Classified by bridge elevation, variations of cable-stayed bridge include
(1) typical cable-stayed bridge with one main span and two side spans
(Figure 11.2), (2) typical cable-stayed bridge with one main span and two
side spans with auxiliary side-span piers (Figure 11.3), (3) single-pylon
cable-stayed bridge (Figure 11.4), and (4) multiple main span cable-stayed
bridge (Figure 11.5). The cable-stay layout can be a fan, modified fan, or
parallel (harp) (Figure 11.6). In cable-stayed bridges with a very long main
span, main stay cables are crosstied by groups of transverse secondary cables
(crossties) to counter cable oscillations due to wind and rain (Figure 11.7).
In the transverse direction, the cable stays can be in two planes or in only
one plane (Figure 11.8).

329
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Zone in tension Zone in tension
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Load = Load = Load
Zone in compression Zone in compression
Cables in tension Cables in tension Cables in tension Cables in tension
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Girder in compression Girder in compression

Figure I1.] From reinforced to cable-stayed bridge.
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Figure 11.2 A typical cable-stayed bridge.

Figure 11.3 A cable-stayed bridge with auxiliary piers.
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Figure 11.4 A single-pylon cable-stayed bridge.

Figure 11.5 A three-pylon cable-stayed bridge.
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Figure 11.6 (a—c) Layouts of cable stays.
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Figure 11.7 Crosstie of cables.

Figure 11.8 A cable-stayed bridge with only one stay plane.

Connections of stay cables to a pylon can be anchored to the pylon or
cradled through the pylon. When a stay cable is cradled through the pylon,
the cable is continuous from the deck on one side of the pylon to the deck
on another (Figure 11.9).

In a cable-stayed bridge, the cross section of the main girder can be a
multiple-cell box, two I-section girders, or trusses. Concrete box girders
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Figure 11.9 Cradle stay system.
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Figure 11.10 Cross section of a typical steel box girder.

are widely used in short-span ranges, whereas steel box girders dominate
the long-span range (Figure 11.10).

Based on NCHRP Report (National Cooperative Highway Research
Program; Tabatabai 2005), several types of cables are available for use
as stays” in cable-stayed bridges. The form or configuration of the cable
depends on its make-up; it can be composed of parallel wires (no longer
commercially available in the United States), parallel strands, parallel solid
bars (larger diameter and lower allowable stress and fatigue resistance
than comparable parallel strand stays), and single or multiple arrange-
ments of structural strands or locked-coil strands (no longer used in the
United States). Nowadays, high-strength steel strands, same as those used
in PC bridges, are commonly used for stay cables. Each strand usually con-
tains seven high-strength steel wires. Each stay cable contains a number of
strands inside and a polyethylene (PE) jacket on the outside. The number of
strands in one cable varies from as few as 10 to more than 100. The corro-
sion protection of cables is a common concern in the design of cable-stayed
bridges. Usually the strand itself can be epoxy-coated, galvanized, or greased.
The stay cable is sheathed by PE jacket, which can effectively protect the

“ Stay is defined as a large strong rope usually made of wires used to support a mast.
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cable from ultraviolet radiation, atmospheric moisture, precipitations, and
temperature fluctuations. In most situations, the PE jacket will be filled with
cement grout.

Because cables can also provide the initial support by transferring the
loads to the pylons, girders can be erected segment by segment. For steel
girders, girder segments can be fabricated in the factory and installed on-
site (Figure 11.11). For concrete girders, a traveling carriage can be built
to support the casting of concrete on-site (Figure 11.12). Once a segment
is in place, a pair of cables will be jacked to support the erected segment.

Figure I1.11 Lifting and erecting of one segment.

Erected cables Erected cables Construction cables

< Erected girder segment Erected girder segment Erecting segment

Traveler carriage

Figure 11.12 Traveling carriages for casting in-site segment.
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Table 11.] Top 10 longest cable-stayed bridges in the world

No. Name Main span (m) Year of built Location
| Russky Bridge 1104 2012 Vladivostok, Russia
2 Sutong Bridge 1088 2008 Jiangsu, China
3 Stonecutters Bridge 1018 2009 Hong Kong, China
4 Edong Bridge 926 2010 Huangshi, China
5 Tatara Bridge 890 1999 Seto Island, Japan
6 Pont de Normandie 856 1995 Le Havre, France
7 Jingyue Bridge 816 2010 Jingzhou, China
8 Incheon Bridge 800 2009 Incheon, Korea
9 Zolotoy Rog Bridge 737 2012 Vladivostok, Russia
10 Shanghai Yangtze River 730 2009 Shanghai, China
Bridge

The erection of girders on both sides of the pylon usually proceeds simul-
taneously. This method is referred to as the balancing erection method.
This cantilever erection method is a valuable and practical advantage that
is unique to cable-stayed bridges. This benefit has resulted in designers
commonly selecting cable-stayed bridges over other bridge types. For a
given bridge site, this construction method could make the cable-stayed
bridge the only option.

Long-span cable-stayed bridges have rapidly developed since the turn of
the century, with some having main spans that exceed 1000 m (3280’).
This was previously considered the extreme limit of cable-stayed bridges.
Achieving longer spans, cable-stayed bridges have demonstrated that they
are structurally competitive to suspension bridges. Table 11.1 lists the
recent top 10 longest cable-stayed bridges in the world.

11.2 BEHAVIOR OF CABLE-STAYED BRIDGES

The idea of a cable-stayed bridge is simple: to provide intermediate support
for the girder by using cables that are anchored to the pylon at the other
end. This extends the length to which the girder can span. The mechanical
behavior of such structural components like the continuous girder, cables,
and a pylon is clearly shown in Figure 11.13. Loads are mainly vertical
loads on the girder due to its structural weight and live loads, cables are
under tension so as to pass loads on the girder to the pylon, the pylon is
under compression due to the downward forces from cables and its own
structural weight, and the girder encounters axial compression due to the
horizontal load components from cables and bending moments due to ver-
tical loads.
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Figure 11.13 Mechanical behavior of a cable-stayed bridge.

11.2.1 Weakness of cable supports

However, the distribution of vertical loads from the girder to the cables
is far less than a continuous girder with intermediate rigid supports; in
another words, the spring supports’ stiffness of cables are far less than
that of real supports. To illustrate the weakness of cable supports, a
five-span continuous girder and a girder stayed by four cables, as shown
in Figure 11.14, are taken as an example. Comparison between figures
demonstrates that a girder stayed by long vertical cables has less sup-
port stiffness than that supported by bearings. This is due to the fact
that cables are more flexible than regular bearings, and further, a girder
stayed by slanted cables has less support stiffness than that stayed by ver-
tical cables. In a fan cable system, the smaller the cable angle to the girder,
the less vertical support stiffness can cable provide. The stiffness that
anchor cables in side spans and end cables in the middle span can provide
is much less than that cables close to pylons can provide, which is one
factor that limits the main span capacity when the height of the pylons is
limited. Compared with the continuous girder, distributions of moment
and axial forces, as well as bridge displacements (under a uniform load
on the girder such as the girder’s structural weight), reflect the weakness
of the cable’s support capacity. Figure 11.15 shows this phenomenon. This
holds true in response to the live loads as well.

From these distributions shown in Figure 11.15, it is clear that the axial
forces in cables are low, bending moments along the girder are high, and the
vertical displacements of the girder are large. If the structural weight of the
girder and superimposed deck loads are not redistributed, as behaved in an
RC bridge that is built by casting concrete directly in its setting location all at
once, the span capacity of a cable-stayed bridge would be similar to a continu-
ous girder bridge. By using high-strength steel wires or strands as cables and
prestressing them at a much higher level than what it would be distributed due
to structural deformation under dead loads, as shown in Figure 11.15, the dead
loads will be transferred to the pylon so bending moments on the girder will be
reduced. Therefore, the weakness effect under dead loads is improved and the
span capacity is increased. The structural advantages of a cable-stayed bridge,
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(a) When supports are rigid, bending moments at supports are negative

(b) When supports are vertical cables, bending moments at supports become less or even positive

N4

(©) When support cables are slanted, bending moments become positive

Figure 11.14 (a) Continuous girder; (b) vertical cable supports; (c) slanted cable supports.

as well as demonstrating the general engineering concept and the practical/
economic benefits of building such a bridge, are covered in this section.

11.2.2 ldeal state

What would be the best jacking stress of each cable in terms of increasing
the girder span capacity? This is a unique question to cable-stayed bridges
during structural analyses and design. From the girder capacities’ perspec-
tive, the answer is found when the maximum bending moments due to
dead loads on the girder are the same as those of a continuous girder as
shown in Figure 11.16. Although the live load distribution does not depend
on the cable stress level and does not change once a cable-stayed bridge
is structurally determined, dead loads dominate in cable-stayed bridges.
Therefore, as long as the dead load distribution reaches a desired state, the
span capacity can be increased. This simple idea is based on the fact that
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More significant bending moments
(a) Moment distributions than a continuous girder

Low cable stresses

(b)  Axial force distributions

(c) Displacements More significant deflections than a continuous girder

Figure 11.15 (a—c) Weak supports from cables.

both the girder and the pylons are more efficient under axial compression
than under tension and compression due to large bending moments.

For any particular cable-stayed bridge, such an ideal state of dead load
distribution will also depend on the pylons. Sometimes, when girder spans
are not symmetrical around a pylon and most of girder dead loads are
transferred to the pylon as well, certain moment will be created at the
bottom of the pylon as shown in Figure 11.16. The girder moments, the
horizontal displacements at the top of the pylons, and the longitudinal
bending moments at the bottom of the pylons are usually the primary con-
trol points to determine an ideal state. It should be noted that the so-called
ideal state, as shown in Figure 11.16, is only to demonstrate that dead loads
on the girder should be redistributed to pylons by adjusting the jacking
forces of cables. In more real situations, such an ideal state is unsuitable,



Cable-stayed bridges 339

TV - : = Sy g - |

Moment distributions close to a continuous girder

(a) Moment distributions

o 0 0 If“
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1 310 Compression in girder is significantly increased
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[ e ST ]

(C) Displacements Deflections are reduced significantly

Figure 11.16 (a—c) ldeal state of a cable-stayed bridge.

unattainable, or simply not economical. What bridge engineers define is
only one preferred state.

During the schematic design of a cable-stayed bridge, the concept of con-
tinuous girder behavior can be used to estimate cable quantities by hand.
Figure 11.17, for example, shows one erection segment of the girder. If
100% of the dead loads on one girder segment are redistributed to the pylon
by a pair of cables, the cable forces F would be

. (11.1)

where:
W is the dead loads on a girder segment
o is the cable angle
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| Girder erection segment
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Figure 11.17 Determine cable quantities during scheme design.

Having cable forces due to the dead loads, plus an estimated percentage
of the live loads, the strength of cable strands, and a guided safety factor
of cables, quantities of each can be determined quickly. In most cases, it is
preferred that all cables, except anchor cables and end cables, be the same
size. The quantities determined earlier can be used in initial analyses.

11.2.3 Desired state

As the dead loads on the girder can be redistributed to pylons by jacking
cables, tuning cables will reach a desired moment distribution on the girder
(Wang and Fu 2005). However, determining the jacking stress of each cable
so as to reach a desired state is a unique question in the design of a cable-
stayed bridge. If only the girder is considered, it is easy to conclude that the
ideal state of a cable-stayed bridge is the state in which the total bending
energy accumulated along the girder is minimal. In practice, it is equivalent
to adjusting the girder moment at anchor to zero (or even negative) or verti-
cal displacements to zero. If the pylons have to be considered together with
the girder, having no longitudinal displacement or no bending moment
would be perfect. Because most bridges are not symmetrical about pylons,
bearing a minor moment is unavoidable.

Moment and displacement distribution along the girder and towers can
reach the ideal state by adjusting cable stresses. The moment or the dis-
placement of an ideal state Z can be written as (Wang and Fu 2012)

Z:{Z] ré) Zn}T (11'2)

where:
n is the total number of targets that need to be satisfied
T stands for the transformation of a matrix or a vector
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The approach to anideal state is achieved when the variables in Equation 11.2
are as close to the desired values as possible. The minimum square error
method is one of the most effective ways to obtain the optimal Z, in which
the resulting cable stresses S can be written as

S={si & o sal (11.3)

where 7 is total number of cables to be tuned.

By analyzing the response of a unit stress applied at each pair of tuning
cables, the influence values of all targets can be obtained, and the influence
matrix A can be written as

ai ai Am
a) ar e ay

A= " (11.4)
A1 (2% Apm

where 4aj is the response at target i due to a unit stress at cable j. Thus, their
relationship can be written as

AxS=2Z (11.5)

If the number of tuning cables is the same as the number of targets, cable
stresses can be obtained by solving the linear equation (11.5). In this case,
engineering experience is required in selecting cables and the targets. A bad
or contradictory tuning of cables and targets may cause matrix A not to
be a diagonal dominant matrix or Equation 11.5 in ill condition. If, as in
most cases, 1 is less than #, cable stresses can be optimized by minimizing
the error between the desired state and the state that can be reached. D,
which has the same form as Z, is the desired target value. The error E can
be written as

E=D-Z (11.6)

The optimization goal is to minimize Q, which is the square of E, and can
be written as

Q=(D-2) (11.7)

From the variation principle, it is known that the condition to have Q mini-
mized is

0 _

as, 0,:=1,2,3,...m (11.8)
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By using the matrix differential and considering Equations 11.7 and 11.5,
the following equation can be obtained:

ATAxS=ATD (11.9)

After solving S from the linear equation group in Equation 11.9, the optimized
target values will be obtained from Equation 11.5 (Wang and Fu 2005).

The following procedures are commonly used in approaching the ideal
state in the complete stage” after the deck is superimposed:

1. Select all the cables to be tuned.

2. Perform static analysis under structural weight and superimposed
dead loads.

3. Select negative girder displacements at each anchor in step (2) as D.

This step varies in different situations.

. Evaluate S as above.

5. Similar to jacking loads, reapply S on the structure and perform a
round of full analysis.

6. The sum of steps (2) and (5) is the ideal state at the complete stage.

N

11.2.4 Anchor of pylons

Due to the weakness of cable supports as stated in Section 11.2.1, the
bending moments and vertical displacements under live loads can be sig-
nificant on the girder. This may become a control factor for the maximum
length a cable-stayed bridge can span. Figure 11.18 shows how the hori-
zontal stiffness of pylons influences the vertical stiffness of the girder. In
very long-span cable-stayed bridges, the anchor cables in the end spans
and end cables in the main span have smaller angles to the girder; the
vertical stiffness they provide to the girder becomes smaller. The upper
part of a middle pylon in multiple-span cable-stayed bridges lacks enough
horizontal anchor stiffness; hence, the vertical stiffness of the girder is
not sufficient.

Such behavior will lead to excessive displacement under live loads. Anchor-
age of pylons is a common issue in two-pylon bridges with a very long main
span or multiple-span cable-stayed bridges. As shown in Figure 11.18, it is
obvious that (1) adding secondary or auxiliary piers at side spans in very
long-span cable-stayed bridges, such as Pont de Normandie Bridge (shown
in Figure 11.3) and Sutong (illustrated example in Section 11.5) Bridge, and
(2) using cross cables to anchor a middle pylon to the deck where it has a
strong vertical stiffness (adjacent pylon area) are both effective geometry

“ The complete stage of a cable-stayed bridge is defined as the stage when the erecting girder
is closed and the deck is superimposed.
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Figure 11.18 Anchor of pylons.

configurations in improving the live load stiffness. In long-span cable-
stayed bridges, it is common that the anchor cables contain more strands
than other nonanchor cables or they are simply composed of two or three
cable stays. Increasing the working area of a cable will increase its axial
stiffness so that the horizontal stiffness in the upper part of the pylon will
be improved.

In cases that the secondary piers in side spans are used to improve the
main span vertical stiffness, sand boxes may be used as counterweight mea-
sures on the top of secondary pier areas. As the main span length increases,
the extreme live load reactions of secondary piers may exceed their reac-
tions due to structural weight and superimposed dead loads. Uplift may
happen without counterweight.

11.2.5 Backward and forward analyses

The ideal state is defined in the complete stage when a bridge is ready for
traffic. Although rejacking some particular cables after closure is possible,
retuning all cable stresses so as to reach a desired state is impractical. To
simplify the construction procedure and reduce each erection cycle, it is
best to jack a cable to the correct level at that stage when it is erected,
which guarantees its final stress level in the ideal state after the deck is
superimposed. How much is the correct jacking stress of each pair of cables
to reach the expected final ideal state? The answer to this question leads to
a unique analysis method or technique in cable-stayed bridge analyses—
backward and forward analyses.

Backward analysis simulates the reverse process of erection, and
forward analysis simulates the normal construction process of erec-
tion. Given the state after being superimposed, backward analysis will
show the state before each girder segment and cables are erected. Given
the erection parameters such as girder segment properties, structural
and other construction weighs, and jacking stresses, forward analysis
will show the state after the erection cables are jacked. Theoretically,
a full forward analysis using jacking stresses obtained from backward
analysis should meet the ideal state predefined at the stage after being
superimposed.
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By removing superimposed dead loads and disassembling girder segments
and cables stage by stage, the bridge state” of each erection can be obtained,
which will be used to control girder displacements and cables stressing dur-
ing forward erection. It should be noted that it is impossible for an actual
forward stage to reach precisely the state obtained by backward analysis.
This can be understood from the fact that the closure segment stress will
not reach zero after the superimposed dead loads are removed in backward
analysis, whereas in reality it is zero after closure.

Unlike backward analysis, forward analysis based on the actual state
of any construction stage can predict the state when the bridge closes in
the middle span. This prediction is very important for cable tunings at
any stage. Because retuning every pair of cables will increase on-site labor
dramatically and hence slow the construction pace, usually only the newly
installed pairs of cables are jacked according to the analysis results back-
ward to that stage. If, however, tuning one pair of cables cannot keep the
state of the bridge in control, retuning of multiple cables will be required.
The retuning is required at least in the complete stage.

To exactly simulate removal and installation of some components, a
dedicated analysis program is required. The backward analysis can be per-
formed as follows:

1. Apply negative nodal forces of the removed components in the previ-
ous stage

2. The sum of step (1) and the state before removal equals the state after
removal

The forward analysis can be performed as follows:

1. Analyze the new stage with the application of the installed compo-
nents’ weight.

2. Analyze jacking loads, if applicable.

3. The sum of steps (1) and (2) and the state before the installation equals
the state after erection.

11.2.6 Geometric nonlinearity—P-Delta effect

The girder of a cable-stayed bridge works as a continuous girder with a
spring support at each anchorage of the cable. However, as the girder is
under compression, its bending stiffness will be reduced due to the P-Delta
effect. Similar to the girder, the pylons are under compression. Its bending
behavior would also be affected by the P-Delta effect.

“ A bridge state is defined as the bridge’s geometry configuration, internal forces, and struc-
tural displacements.
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The P-Delta effect can be categorized as the initial stress problem in
mechanics, which is that the existing stress condition of a component will
affect its behavior when new loads are acting on it. Hence, the superpo-
sition principle will be no longer valid. The change of component stress
under new loads will further affect its behavior. The iteration process is
inevitable. The P-Delta phenomenon is common in bridge structures. It can
be ignored in many situations during preliminary analyses. However, in
cable-stayed bridges, it has to be considered as the initial stresses accumu-
lated in the girders and pylons are significant.

By using nonlinear iteration process, the P-Delta effect is fairly easy to
be accounted for in dead load analysis. As the positions and magnitudes
of dead loads are known and do not vary, loads can be scheduled into
several different steps. For each step, the analysis can be linear and the
stresses obtained will be considered when evaluating the stiffness of the
next step.

However, it could be extremely complicated to reach the theoretical solu-
tion for live load analyses as the positions, magnitudes, and/or load pat-
terns vary. For most live load standards, seeking theoretical solutions is
impractical. In general, the following steps are used as a practical way to
consider P-Delta effects in live load analyses:

1. Include the effects of axial forces in the girder and pylons after sec-
ondary dead loads are imposed when evaluating influence values.

2. Use regular methods to obtain extreme live load positions and
magnitudes.

3. Apply the earlier extreme live loads as a dead load case on the
bridge and conduct a nonlinear analysis so as to adjust the extreme
results.

Some researchers even suggest moving all axle positions obtained in step (2)
equally from left to right and step by step to further search for the true
extreme positions. This method assumes the linear results are very close
to reality. However, as a general rule to bridge modeling and structural
analyses, this method lacks theoretical support and should be studied case
by case.

As there will be many points of interest in a cable-stayed bridge that need
to perform the earlier tedious live load analyses, a finite element analysis
(FEA) and live load analysis package specifically developed for cable-stayed
bridges is essential.

11.2.7 Geometric nonlinearity—Cable sag effect

Due to its own weight, a cable between two anchors will sag downward
and will not remain straight. Taking a horizontal cable as an example,
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Figure 11.19 Sag of a horizontal cable (to show axial deformation under force P).

Figure 11.19 illustrates the cable geometry in reality compared to what it is
modeled mathematically.

The axial stiffness of a cable is simply defined as the axial force required
for causing a unit axial deformation or the elongation along the axis of
two anchors. When a cable is straight, the total elongation is the deforma-
tion of the cable so that the axial force that causes such an elongation is
higher. For example, AL as shown in Figure 11.19 is the deformation of
cable AB if sag does not exist. When cable sags away from its axis, not
all of the elongation is due to deformation, yet it is due to the geometry
change, so the axial force required to cause the same amount of elongation
is lower. As shown in Figure 11.19, AL, the elongation of the sagged cable
AB is the sum of the cable deformation and shortage of cable geometry.
That is how a sagged cable behaves as if the material has a lower Young’s
modulus.

One fact about the cable sag is that the higher the existing axial force is,
the smaller the sag and thus the stiffness of the cable is closer to a straight
cable.

In preliminary analyses, one cable is usually meshed into one element by
its two anchors. In a regular FEA package, the stiffness of such a cable is
calculated based on a straight line between two anchor points. Its stiffness
is, therefore, overcalculated. The Ernst formula (Ernst 1965), as shown in
Equation 11.10, is usually adopted to calculate the cable’s equivalent stiff-
ness or Young’s modulus based on a given cable stress.

E
B = 1+[(@H)* AE/(12P%)] (11.10)

where:
E is the Young’s modulus of a cable, in kN/m*
® is the unit weight of the cable, in kN/m
H is the cable span in horizontal direction, in m
A is the cable area, in m*
P is the cable force, in kN

Cable forces will be redistributed in the next phases after they are initially
jacked, or, in another words, cable forces are never constant from stage to
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Figure 11.20 Submeshed cables with crossties.

stage. Again, a specialized FEA package considering the effective cable stiff-
ness calculation under multiple construction stages is preferred.

For long-span cable-stayed bridges, the geometric nonlinear effects,
including the P-Delta effect, cable sags, and large displacements, become
significant. Full geometric nonlinear analysis is required in certain detailed
design and study situations. It should be noted that the effective stiffness
approach for sag effects is suitable only for cases where each long cable
is modeled as only one element by its two anchor points. When a cable is
submeshed into small segments to investigate the large displacements in
detail or when cable crossties are considered (Figure 11.20), effective stiff-
ness calculation is no longer needed during the iteration processes. During
iteration in large displacement analysis, the stiffness of an element will be
evaluated at current geometric locations. The axial stiffness of such a cable
segment is very close to the actual stiffness as the sag between two end
points of a cable segment becomes negligible.

11.2.8 Geometric nonlinearity—Large
displacements

As the main span of the bridge increases, the global stiffness decreases
and the displacements (not the deformation) become significant. There
are two features that can be used to help understand what will impact a
regular linear analysis when displacement becomes large. The first one is
that the difference of stiffness at current geometry configurations and at
its original positions is no longer negligible. It will cause major errors to
evaluate the responses of an incremental load at the current configuration
when using the stiffness obtained from the original geometry configura-
tion. The second aspect is the coupling between displacements and forces,
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or the stiffness of one degree of freedom (DOF), depends on the existing
stress of another degree. For example, the so-called P-Delta effect, or ini-
tial stress problem, is one such phenomenon. As introduced in Chapter 3,
all nonlinear effects of initial stresses, large displacements, and cable sag
are due to geometric nonlinearities. When a large displacement problem
is considered in cable-stayed bridge analysis, a full geometric nonlinear
analysis should be employed.

Large displacement behavior in long-span cable-stayed bridges should be
investigated case by case. In general, when large displacements are consid-
ered, the lateral stiffness of a bridge will be enhanced due to the cables’ geo-
metric stiffness under significant tensions, that is, the tendency to maintain
its lateral positions. When the girder is cambered as a shallow arch, as most
long-span bridges are, the girder will behave as with stronger stiffness than
the girder not considering large displacement. This characteristic comes
from the geometric stiffness along the shallow-arch girder, similar to the
behavior of a shell under pressure.

11.2.9 Stability

Stability is one of the factors governing long-span bridge design and analy-
sis. It will be discussed in more detail in Chapter 14. Stability includes
static stability and aerodynamic stability. Static stability can be further
categorized as elastic stability and ultimate plastic stability. Elastic sta-
bility deals with scenarios where material is assumed linear but geomet-
ric deformations and stresses are coupled. The P-Delta effect in columns
and beams is one of these types of problems. Plastic stability focuses on
scenarios where material enters a plastic stage so that local components
yield. In general, the geometric nonlinearity in long-span bridges is more
significant than material nonlinearity and the elastic stability should be
investigated first. On the other hand, the material nonlinearity in middle-
and short-span bridges is more significant than geometric nonlinearity,
and the plastic stability becomes more important. Elastic stability can
further be grouped as bifurcated stability (Class I), which considers the
coupling at only the current geometric configurations, and full geometric
stability, which traces the changes of geometric configurations under each
increment of load. Both elastic stabilities in cable-stayed bridges should be
analyzed. When plastic stability is considered, geometric nonlinearity will
be considered at the same time, or the so-called dual-nonlinear analysis
will be performed.

Aerodynamic stability, which includes structural and cable oscillations
under wind and rain, is a critical issue for long-span cable-stayed bridges.
The design of a cable-stayed bridge should follow special guidance for
aerodynamic issues. Wind tunnel testing may be unavoidable for the design
of long-span cable-stayed bridges. The aerodynamic stability issue is not
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covered in this chapter. However, a simple formula to estimate the critical
wind speed will be introduced in the dynamic analysis section.

As the span increases, the compression in the girder increases; addition-
ally, the stability of the girder becomes critical to the design and building
of a long-span cable-stayed bridge. Stability analysis in both lateral and
vertical directions is required, especially before the closure.

For the initial stresses, the axial forces in the girder under dead loads can
be used. The critical load can then be obtained from solving the eigenvalue
problem. Although the Class I stability result gives only the upper limit of
the critical loads due to the fact that a perfect stability problem rarely hap-
pens in actual engineering situations, it can serve as an initial guidance for
the stability analysis.

The process of static stability analysis with consideration of large dis-
placements can be the same as a regular static nonlinear analysis, except
that the loads should be selected to reflect the nature of the structure. Also,
the FEA system should allow for the increase of some of the loads step by
step in search of the ultimate loads. For instance, if the issue of temporary
construction loads is a concern for lateral stability before closure, minor
lateral wind loads, structural loads, and cable prestressing loads should be
applied as constant loads. The construction loads, as the main loads, should
be increased step by step. The level of the major loads at which the structure
fails is the critical load of the stability analysis.

A long-span cable-stayed bridge rarely fails in static geometric non-
linear analyses. Even for lateral stability, it is easy to understand that
the transverse components of the high-stressed cable tensile in a changed
geometry configuration will help to prevent large lateral displacements.
In terms of static stability, a full analysis by counting both geometric
and material nonlinearities is inevitable. More details will be discussed
in Chapter 14.

11.2.10 Dynamic behavior

Compared with other girder-type bridges, cable-stayed bridges are rela-
tively slender and more flexible. In seismic design, a cable-stayed bridge
is preferable because of its low natural frequency. On the contrary, when
aerodynamic stability is of concern, a stiffer bridge is preferred. Certain
special measurements will have to be taken into account for a long-span
cable-stayed bridge for both seismic and aerodynamic requirements, for
example, installing damping devices in girders so as to improve responses
to dynamic loads from vehicles, adopting a wind-resisting girder
cross-sectional shape so as to improve aerodynamic response, and cross-
tying long cables to reduce wind and rain oscillations of cables. In both
aspects, the natural modes of a cable-stayed bridge should be investigated
carefully.
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The connections between girders and pylons influence the dynamic
behaviors. If girders and pylons are rigidly connected, as they do in single
cable-stayed plane bridges, the girder is stiffer and the first mode will
be the bending mode with higher frequency. If the girder is designed to
move free longitudinally and independently from the pylons, as com-
monly adopted in long-span cable-stayed bridges, the girder will behave
like a suspending pedal and the first mode will be the horizontal swing-
ing mode. Many cable-stayed bridges use special connection mechanisms
such as thin concrete blocks to limit the girder horizontal movements.
These are carefully designed so that when there are severe movements,
such as earthquakes, they will break and lose their function, and the
girder therefore behaves more effectively to absorb dynamic energy. For
long-span cable-stayed bridges, as the longitudinal displacements due to
temperature and wind loads are both significant, more sophisticated con-
nection systems are needed to resolve these contradictory requirements.
Figure 11.21 shows the horizontal damping systems used in the Sutong
Bridge, in which gradual displacements due to temperature are released,
dynamic displacements due to wind loads are reduced by the viscous
damper systems, and excessive displacements are blocked by their move-
ment-stopping mechanism.

In regard to the aerodynamic behavior of a slender structure, the shape of
the girder cross section plays an important role. Because the height is much
less than its other two dimensions, the girder can be treated as a flat slab
in most cases. The side of the cross section is usually cosmetically modified
sharply toward the outside, as shown in Figure 11.10, or wind fairings are
installed, which can be the first technique used to improve the aerodynamic

T L

Figure 11.2] Horizontal damping systems between girder and pylon in Sutong Bridge.
(Data from You, Q. et al., “Sutong Bridge—A Cable-Stayed Bridge with
Main Span of 1088 Meters, ABSE Congress Report, |7th Congress of
IABSE, Chicago, 2008, pp. 142-149.)
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behavior. Damping devices in the main span are also helpful to improve
the aerodynamic response. From a structural design point of view, separat-
ing the girder’s torsional mode away from its first bending mode as far as
possible can be considered the next method in terms of increasing the criti-
cal flutter wind speed. When wind attacks from the sides of a bridge, the
coupling of bending and torsional forces of the girder is a key factor that
leads to the collapse of the bridge. During the preliminary design, several
different formulas can be used to estimate the critical flutter wind speed for
girders that have slablike cross sections as suggested by the Wind-Resistant
Design Specification for Highway Bridges Ministry of Transport of China,
2004, which became mandatory to comply with in China since 2005. For
example, the Van der Put formula (Equation 11.11) considers the ratio of
the first torsion frequency to the first bending frequency.

Vv, =[1+(s—0.5)- 0.72-(;}“1-@;,-19 (11.11)

where:
V., is the critical flutter wind speed, in m/s
e=1,;/f, is the ratio of the first torsion frequency to the first bending
frequency
f, is the first torsional frequency, in Hz
f, is the first bending frequency, in Hz
7 is the \/(I,,/m), the mass radius of gyration
I,, is the mass inertia per unit length of the girder, in kg « m*/m
m is the mass per unit length of the girder, in kg/m
b is the half width of the deck, in m
W is (m/mpb?*), the ratio of mass to air density
p is the air density, in kg/m’
®, is 2 ntfy, the angular frequency of the first bending

Equation 11.11 is further simplified by Tongji University as

V,=2.5 /“‘% 2b-f, (11.12)

For very long-span cable-stayed bridges, girders and pylons are usually
tied down by anchor cables. This is to increase the wind stability during
construction.

Oscillation of cable stays due to wind and rain in long-span cable-
stayed bridges could be significant and should be considered. Crossties
of cable stays as shown in Figure 11.7 and a stay damping system as
shown in Figure 11.22 are commonly used measures to counter cable
oscillations.
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Figure 11.22 Cable-stay damping systems in Arthur Ravenel Jr. Bridge.

11.3 CONSTRUCTION CONTROL

The unique construction method of cable-stayed bridges brings up a dis-
tinctive topic to cable-stayed bridges—construction control. The girder is
erected segment by segment, and the cables are jacked pair by pair during
erection. Engineering errors commonly exist in any step of this long pro-
cess, and as a result, what engineers expect may not be achieved at the end.
Among many structural measurements of a bridge state, girder geometry
and cable forces are the two most critical ones. Too many errors in girder
geometry may cause the closure segment hard to fit and adjust, and too
many errors in cable forces may cause cable forces to exceed their allow-
able range. The importance of reducing these errors is obvious. Engineering
error does exist in any bridge construction. The control of engineering
errors is important especially in cable-stayed bridges.

11.3.1 Observation errors

There are two types of errors: (1) observation errors and (2) construction
errors. The observation errors are due to the measurement systems, which
occur in measuring the following characteristics:

1. Girder elevations

2. Cable stresses or forces

3. Horizontal displacement at the top of pylons

4. Stresses on the bottom of pylons

5. Stresses on the top and bottom of the girder at any point of interest
6. Environmental temperature, and so on

www. TechnicalBooksPdf.com
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Minimizing errors in the measurement systems should be taken in the first
place whenever and wherever a structural behavior is measured. Reliable
field measurement methods or technologies are critical in control analyses.
In cases where a strain gage is used to measure stresses, nonglobal stress-
related strain such as temperature changes and creep and shrinkage strains
should be carefully investigated. Multiple strain gages usually are needed
to measure stress at one point, and its configuration should be studied
based on location. In the control of Yamen Bridge (a PC box girder cable-
stayed bridge with a main span of 338 m [1109'] and a single stay plane
in Guangdong, People’s Republic of China), the girder stress at the neutral
axis can be simply derived from cable forces to calibrate the stress mea-
surements and to identify the strains due to creep and shrinkage.

11.3.2 Measurement of cable forces

Among the structural responses that determine the state after erection,
cable forces are the most important measurement, and obtaining them
is a relatively simple and reliable process. The fundamental frequency
method, which is fast and accurate, is widely used to measure the tension
force of cables. By collecting random vibration signals of cables under ambi-
ent excitation, the fundamental frequency f can be obtained by time- and
frequency-domain analyzers. The string vibration equation 11.13 can be
used to calculate the cable force:

T = 4mLf? (11.13)

where:
f is the fundamental frequency of cable, in Hz
L is the length of cable, in m
m is the mass of cable, in kg
T is the tension force, in N

11.3.3 Construction errors

Construction errors, which may cause incorrect assumptions in structural
analyses, are due to the quality control of construction and may include the
following features:

1. Material properties such as errors in Young’s modulus, temperature
expansion factor, and material densities
2. Sectional properties such as errors in girder dimensions due to instal-
lation or formwork deformations
. Temporary construction loads
4. Creep and shrinkage properties for a concrete cable-stayed bridge,
and so on

o8]
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In the control of Sutong Bridge (a steel box girder with the main span
of 1088 m in Jiangsu, China), which was once the world record holder
for main span length, sensitive analyses revealed that deviations of creep
and shrinkage of pylons, girder segment weight, length of the girder seg-
ments and length and Young’s modulus of cable stays were the primary
control parameters that would significantly influence the girder elevation.
The deviations of the height of the steel anchor boxes, cable weights, and
girder stiffness were the secondary control parameters that had moderate
influences. Effects of other factors such as Young’s modulus of pylons, the
height of anchors at the deck end, the verticality of steel anchor boxes, and
the shrinkage of welding between girder sections were considered negli-
gible. Wind and temperature effects are also sensitive to girder elevation.

It is clear that all errors can be minimized only by improving measure-
ment systems and quality control processes, and it is impossible to eliminate
these errors completely. However, knowing the errors and incorporating
them into engineering assumptions so as to better predict a countermea-
sure, that is, cable jacking stresses in the next erection to control the girder
geometry or the primary target to meet design requirements, is achievable.
That is the whole purpose of the construction control.

11.3.4 General procedures of construction control

The procedures of construction control and sensitive analysis are two impor-
tant issues in the construction of a cable-stayed bridge. The steps, which
include considering property errors and modifying FEA models, may be
complicated and tedious. In general, these steps can be simplified as follows:

1. Use the theoretical model in initial stage and jack the first pair of
cables at theoretical stress level.

2. Compare the observations with forward analysis results and analyze
the errors.

3. Adjust the model when the errors in step (2) exceed a preset tolerance.

4. Forward-analyze the next erection based on the modified model to
obtain the jacking stress of the next erection cables.

During these procedures, sensitive analyses may be required to rank these
numerous construction errors. Once the differences between observa-
tions and expectations are known and a few variables that are ranked as
the most sensitive are identified, certain error analysis methods or algo-
rithms can be used to determine the variations, which will be the basis of
the model adjustment. Lin (1983) first applied the Kalman filter method
to the construction control of Maogang Bridge, a PC cable-stayed bridge
located in Shanghai that is marked as a milestone of cable-stayed bridge
construction in China. Nowadays, this method is widely used to analyze
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the construction errors in certain key parameters, such as girder segment
weights, concrete creep, and shrinkage properties. Other prediction models
based on grey prediction theory are also practiced to identify errors (Chen
et al. 2011). The back propagation neural network method is also used in
the construction control of cable-stayed bridges (Li et al. 2007).

Incremental jacking of erection cables and cable jacking stress adjust-
ment are common during erection and for the purpose of construction con-
trol, for example, jacking the erection cables to a certain level initially when
the traveler carriage is positioned and jacking the erection cables again
when the girder segment is positioned. When needed, forces of a group of
cables can be adjusted by rejacking to meet certain control goals. A special-
purpose analysis tool is preferred to guide the adjustment of multiple cables.
The expected cable stresses to meet these goals are usually not the same as
the jacking stresses because the jacking process is usually conducted one by
one. When one pair of the cable is rejacked, stresses of all the other cables
will be redistributed. The jacking sequences should be carefully scheduled,
and the analysis should truly reflect the sequences.

11.4 PRINCIPLE AND MODELING
OF CABLE-STAYED BRIDGES

There are many considerations in modeling cable-stayed bridges. The first is
to identify an analysis tool. Different FEA packages have different features
regarding the special requirements for analyzing a cable-stayed bridge. The
following lists a few items that need to be identified for any particular FEA
package:

1. How a desired state is determined?

2. How backward and forward analyses are processed?

3. How jacking a cable is simulated?

4. How sag effects, initial stresses, and large displacement are considered?
5. How the live load envelops are obtained?

The second question is whether to build the model in 2D or 3D. This was an
important question several years ago when 3D analyses, including 3D pre-
processing and postprocessing, were more expensive than it is now. Because
the lateral dimension is much less than the longitudinal and vertical dimen-
sions, it is adequate to use 2D modeling to conduct analyses for prelimi-
nary design purposes. Nowadays considering that advanced 3D processing
tools are widely available and the computing capacity and performance
are significantly advanced, the 3D modeling should be used whenever fea-
sible. By using 3D modeling, not only can the analysis be more realistic
and accurate, but the stiffness and weight of pylons and their connection
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to the girder become easy to simulate. For some particular analyses, such
as bridge instability in wind and spatial flutter analyses, 3D modeling must
be used and the torsional stiffness of the girder from the cables has to be
counted for.

Using an appropriate mesh density or element length also needs to be
considered in modeling a bridge. In general, due to the advancement of
computer technologies, the total number of DOFs is no longer a restric-
tion. A model of 100,000 DOFs, or 20,000 3D nodes, is very common
nowadays. Similarly, when meshing a component, computer capacity is no
longer an issue. However, an appropriate density should be overviewed and
controlled. Considering the common bridge dimensional scales in reality,
1 m (about 3’), in longitudinal and vertical directions, could be taken as the
minimum distance of elements. It is not necessary to mesh the girder or the
pylons smaller than 1 m. In the lateral direction, 1/2 m (about 1 1/2’) could
be used, respectively. Wherever there is a specific point of interest, it should
be meshed regardless. In most cases, cables can be simply simulated by
one element described by its two anchor points. When large displacements,
crosstie cables, or local natural modes of cables are of interest, cables will
be submeshed into smaller segments.

11.4.1 Main girders

Box girders (steel or concrete) and composite steel I-girders are two types
of girders commonly used in cable-stayed bridges. A box girder, as shown
in Figure 11.23, can be modeled as a beam at the centroid of its cross sec-
tion in the longitudinal direction. In the transverse direction, the rigid
connection from anchor point A to the beam centroid B is adequate and
should be used by default. From the perspective view, the girder looks like
a fish bone, as shown in Figure 11.24. The widely used Hambly formula
(1991) to simulate the vertical bending stiffness of transverse equivalent
beams is not necessary as the lateral distribution is no longer a concern in
the global analysis of a cable-stayed bridge. If stiffened transverse beams,
instead of rigid bodies, are used to simulate the connection of cables and
the centroid of the girder, its bending and shearing stiffness along the
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Figure 11.23 Model of a typical steel box girder.
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Figure 11.24 Fish bone model of box girder.

length of the bridge should be carefully calculated. As the cables are not
perpendicular to the girder, the longitudinal stiffness of the connections
between the anchor and the girder centroid will influence the live load
distributions.

For a cable-stayed bridge, such as Alex Fraser Bridge (also known as
Annacis Bridge, Greater Vancouver, BC) or Nanpu Bridge (Shanghai,
China), that uses composite I-girders as shown in Figure 11.25, the girder
can be modeled as a grid. In addition to the transverse direction, string-
ers can be modeled as beam elements. When using an advanced graphical
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Figure 11.25 (a) Composite I-girder cross section and its (b) grid model.
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preprocessing tool, modeling a girder in such detail will be simple and fairly
easy. Load distributions, on the other hand, will be more accurate and struc-
tural weight calculations will be simplified. When influence surfaces® are
used in live load analyses, such a grid model will also help to improve the
interpolation of influence values as the interpolation triangles are getting
smaller and more regular.

11.4.2 Pylons

In the transverse direction, shape of a pylon can be in a single solid/hol-
low column H, invert Y, diamond, or other shapes. Figure 11.26 shows
two alternative pylon plans of Sutong Bridge (China). 3D beam elements
are usually used to model pylons. When 2D modeling is used for prelimi-
nary analyses, cross-sectional properties should be calculated carefully
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Figure 11.26 (a, b) Two alternative pylon plans of Sutong Bridge.

“ Influence surfaces of all deck nodes are built from the results of analyses for a series of unit
vertical loads applied to the deck and stored for later usage for finding the extreme load
effects.
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to truly reflect the pylon stiffness in the elevation plane. The geometric
complexity of pylons is one of the considerations when deciding to use a
3D model.

11.4.3 Connections between girder and pylon

Connections between girders and pylons could be in full separation, rigid
connection, or vertical support only, which must be modeled correctly.
Figure 11.27 shows a perspective view of elements of a fully separated sys-
tem (solid lines). A rigid connection can be simulated simply by connecting
elements of the girder and pylon. When the pylon provides only verti-
cal supports to the girder, a transverse rigid body simulating the trans-
verse beam or diaphragm and vertical truss elements connecting the rigid
body and transverse beam of pylon can be used (dash lines as shown in
Figure 11.27).

When a 2D model is used, a vertical support-only connection should
be carefully modeled. Usually two FEA nodes are inserted in the same
position. One node is used to represent pylon elements and the other one
for the girder elements. A master—slave relationship technique, which can
link two separated DOFs by a linear relation, will be applied to these
two nodes so that both have the same vertical displacements. In that case,
the two nodes in the 2D model have only five DOFs in total, rather than
six. The disadvantage of using the master—slave relationship is that the

>

Figure 11.27 Full separation and vertical support of the connection between the girder
and the pylon.
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Figure 11.28 Vertical supports in 2D model.

reaction between these two nodes cannot be obtained directly. If the bearing
reactions are of interest, a similar connection truss element has to be built
in a 2D model. As shown in Figure 11.28, a separated node gj is added.
Girder elements el and e2 connect nodes gi and gj and gj and gk, respec-
tively. Pylon elements e3 and e4 connect nodes pi and pj and pj and pk,
respectively. Truss rigid element e5, which simulates the bearings, con-
nects nodes pi and gj. The bearing reactions can be obtained from the
internal force of element eS.

For cable-stayed bridges in which longitudinal semifloating systems
or damping systems are used as shown in Figure 11.21, connections
between girder and pylons should be simulated carefully when the dis-
placement is beyond its allowed movements. In general, a horizontal
truss element can be added between the girder and pylon. Its stiffness
has to be modified to a very small value when the displacement is within
its limit and to the correct stiffness of the links when the displacement
is beyond its limit.

11.4.4 Cables

In most analysis scenarios, each cable can be simply modeled as one truss
element by its two anchor points. When sag effects have to be considered,
the equivalent Young’s modulus has to be calculated according to Equation
11.10 either manually or automatically by the analysis package. As men-
tioned in Section 11.2.7, the equivalent Young’s modulus changes when
the erection phase changes; a special FEA package with the capability to
handle this issue is always preferable.
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When any of the followings is of interest, each cable needs to be
modeled as many truss elements with a density of 5-10 m, as shown in
Figure 11.20.

1. Sag itself or a more accurate effect of it
2. Crossties have to be simulated
3. Local natural modes of cables

If this detailed model is elected, the initial stress in cable and/or large dis-
placements have to be considered. Otherwise, the analysis will fail due to
no stiffness attached to each internal nodes of a cable in its perpendicular
direction. When large displacements are considered, loads will be loaded
incrementally and the element’s full stiffness will be automatically com-
puted at each iteration step.

Figure 11.20 is an example that shows local natural modes are required
for wind-raining oscillation study. In such a detailed dynamic mode analy-
sis, initial stresses of all cables are obtained separately from an ideal state
analysis and are entered as known parameters to the dynamic mode analy-
sis model.

When cable stays are cradled through pylons, which are rarely used
nowadays, the cradling point can be treated as an anchor point, thus elimi-
nating the need to simulate the possible relative movements between the
stays and the saddles. The fraction between them is large enough to bal-
ance the difference of cable forces between the two sides of the pylon.
However, extreme cable forces due to live loads should be investigated
case by case.

11.5 ILLUSTRATED EXAMPLE OF SUTONG BRIDGE,
JIANGSU, PEOPLE’S REPUBLIC OF CHINA

Sutong Bridge crosses Yangtze River about 100 km upstream from
Shanghai. It connects Suzhou and Nantong, two major cities in Yangtze
River Delta area. The bridge name, Sutong, comes from the combination
of these two cites’ names and was built in 2008. Its once-world-record-
breaking main span length, 1088 m, made it one of the most famous
long-span cable-stayed bridges. Technically, the motivation of building
such a long-span cable-stayed bridge comes from a feasibility study of
building a cable-stayed bridge with a main span over 1200 m (3937’),
which was conducted in the early 1990s. This example is based on the
feasibility study of Sutong Bridge started in the late 1990s. All analyses in
this example were conducted by Visual Bridge Design System (Wang and
Fu 2003, 20053).
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Figures 11.26 and 11.29 show pylon dimensions and the elevation of an
alternative plan of Sutong Bridge, respectively. The main girder is a steel box
girder as shown in Figure 11.10, with a total width of 37 m (121’) or eight
traffic lanes. The design live load is super Qi-20, which allows one heavy vehi-
cle and many normal vehicles in each traffic lane. The total axle weight of the
heavy vehicle is 55 tons whereas the normal vehicle is 20 tons. The minimum
distance between normal and heavy vehicles is 10 m (33’) and 15 m (49’)
between normal vehicles. The analyses focus on dead loads and live loads and
ideal state and static wind stability. Three typical stages (1) before reaching
the first auxiliary pier in the side span, (2) before closure, and (3) in-service
are selected to investigate the nonlinear effects such as sag, initial stress, and
large displacements.

The bridge in the service stage is modeled as 1032 elements and 1035
nodes in total. Figure 11.30 shows the perspective view of half of the bridge.
Figure 11.31 shows one of the preferred ideal states obtained by automatic
cable tuning. Figure 11.32 shows the live load stress envelope. Table 11.2
compares the extreme live load displacements with and without geometric

478 m 1088 m 478 m

Figure 11.29 The elevation of an alternative plan of Sutong Bridge.

Figure 11.30 Perspective view of the 3D FEA model of Sutong Bridge.
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Figure 11.31 Moment distribution (kN-m) of one preferred ideal state after superimposed.
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Figure 11.32 Live load stress envelope (on the top of the girder and side-span side of
tower, MPa).

Table 11.2 Live load extreme displacements (mm)

Position Linear® Nonlinear®
Girder (in the middle of main span) 1081 935
Top of pylon 263 242

2 Computed by direct influence line loading, which is obtained by the application of
unit forces while initial stress and sag is considered.

5 Obtained by reanalyzing extreme live loads of load case a with consideration of
initial stress, cable sag, and large displacements.

nonlinear effects. The nonlinear analysis of live loads shows that initial
stresses accumulated along the flat arch-like girder will increase the girder
stiffness if large displacement is considered.

The wind pressure is designated by the bridge site and varies at different
altitudes along the towers. With regard to longitudinal connections
between the girder and towers, three alternatives are studied. The first, the
recommended one, is that the girder is restrained with one tower only. The
second is not to restrain at all; the third is to restrain with two towers.
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The girder is restrained in both vertical and lateral directions with towers
in all three cases. Under longitudinal wind loads, displacement at the top
of the tower is 1052 mm (41.4"), and girder displacement is 988 mm
(38.9”) if there is no longitudinal restraint at all. In the lateral direction,
the maximum tower displacement is 276 mm (10.9” in the maximum
dual-cantilever stage).

Six load patterns are studied to search for load safety factors in the sta-
bility analyses:

1. In the complete stage, maintain dead loads and cable jacking loads and
increase vehicle loads. At 40 times, displacements abruptly reached 42
(138’) and 13 m (42.7’) in the middle of the main span and the top of
the pylons, respectively.

2. In the complete stage, maintain cable jacking loads and increase dead
loads. At three times, displacements abruptly increased.

3. In the maximum dual-cantilever stage, maintain dead loads and cable
jacking loads and increase construction loads. At 240 times, displace-
ments abruptly increased.

4. In the maximum dual-cantilever stage, maintain dead loads and
cable jacking loads and increase lateral wind loads. The bridge still
remains stable when the lateral loads are increased by 50 times and
the lateral displacement at the end of the girder reaches to 7 m (23’)
accordingly.

5. In the maximum single-cantilever stage, maintain dead loads, cable
jacking loads, and lateral wind loads and increase construction loads.
At 46 times, vertical displacement at the end of the girder increased
to over 100 m (328’), accompanied with 42 m (138’) of lateral
displacement.

6. In the maximum single-cantilever stage, maintain dead loads and
cable jacking loads and increase lateral wind loads. At 48 times, the
lateral displacement at the end of the girder increased over 100 m

(328").

In all six patterns, only the construction load, which includes a 1000 kN
(225 kip) crane at the end of the girder and a uniform load of 10 kN/m
(0.685 kip/ft) in the maximum single-cantilever stage (5), shows the cou-
pling of bending in vertical and lateral directions. Figure 11.33 shows the
displacements in load pattern 5. The stability analysis also shows that the
bridge is more vulnerable before closure in the main span than before reach-
ing the second auxiliary pier in the side span. Although results of these six
loading patterns show that the bridge has sufficient stability against live,
wind, construction, and dead loads, full nonlinear ultimate analysis, in
which material nonlinearity is also considered, and aerodynamic stability
analysis are required.
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Figure 11.33 Girder displacements (m) in vertical (top) and lateral (bottom)
directions when construction loads increase to 46 times at the maximum
single-cantilever stage.

11.6 ILLUSTRATED EXAMPLEWITH DYNAMIC
MODE ANALYSIS OF PANYU BRIDGE,
GUANGDONG, PEOPLE’S REPUBLIC OF CHINA

In this example, a concrete cable-stayed bridge with a main span of 380 m
(1247’) is briefly introduced for the purpose of dynamic mode analysis.
This bridge is located in Panyu, China, and is a typical concrete cable-
stayed bridge. It is modeled as 714 elements and 475 nodes in total by using
Visual Bridge Design System (Wang and Fu 200S5). Figure 11.34 shows its
elevation.

A full floating system is used in this bridge; the first natural mode is in
a horizontal pendulum movement. Figure 11.35 shows the first bending
mode with a radian frequency of 3.78 rad/sec (f = 1.06 Hz). Figure 11.36
shows the first torsional mode with a radian frequency of 4.23 rad/sec
(f=1.18 Hz).

71 90 | 380 90 | 71

Figure 11.34 The elevation of Panyu Bridge, Guangdong, China.
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Figure 11.35 The first bending mode of Panyu Bridge (radian frequency = 3.78 rad/sec).

Figure 11.36 The first torsional mode of Panyu Bridge (radian frequency = 4.23 rad/sec).



Cable-stayed bridges 367

1.7 ILLUSTRATED EXAMPLE WITH DYNAMIC MODE
ANALYSIS OF LONG CABLES WITH CROSSTIES

In this example, cable stays in the main span side of a cable-stayed bridge
are modeled separately, as shown in Figure 11.20. It is modeled as 992 truss
elements and 963 nodes in total. The analysis was conducted by VBDS
(Wang and Fu 2005) and verified by ANSYS. The initial tensile forces of
crossties have the same value of 50 kN, which only serves the purpose of
tying down the main stays. The initial tensile forces of main cable stays are
obtained from a separated ideal state analysis, which range from 1532 to
4807 kN (344.4 to 1080.7 kip).

Figure 11.37 shows the first mode with a radian frequency of 5.39 rad/
sec (f = 1.51 Hz). Figure 11.38 shows the second mode with a radian

Figure 1 1.38 The second mode of long cables with crossties (radian frequency = 7.38 rad/sec).
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Figure 11.39 The eighth mode of long cables with crossties (radian frequency = 9.31 rad/sec).

frequency of 7.38 rad/sec (f = 2.07 Hz). These two low-frequency
modes show the global movements of the cable net. At a higher mode,
the eighth mode has a radian frequency of 9.31 rad/sec (f = 2.61 Hz); for
example, as shown in Figure 11.39, local movements of single cables will
appear.



Chapter 12

Suspension bridges

12.1 BASICS OF SUSPENSION BRIDGES

A typical three-span suspension bridge, as shown in Figure 12.1, consists
of main cables, two pylons, stiffened girder, and hangers. The weight and
vehicular loads from the deck are transferred to the main cables by ver-
tical hangers or suspenders. Unlike cables in a cable-stayed bridge that
are anchored on the deck on both sides of a pylon at an angle, hangers
of a suspension bridge are perpendicular to the deck and will not create
any horizontal force on the deck. Except in the self-anchored suspension
bridges, the main cables carry and transfer loads to anchorages that are
separated from the bridge. For this respect, cable-stayed bridges are self-
anchored systems, whereas most of the suspension bridges are externally
anchored systems. As horizontal forces in cables are transferred to ground
rather than to the girder, the stiffened girder will not have the P-Delta
effects as in cable-stayed bridges and therefore the spanning capacity is
much increased.

In terms of span layout, as shown in Figures 12.2 and 12.3, variations of
suspension bridges include single-span and multispan suspension bridges.
The stiffened girders can be two hinged or continuous at the locations of
pylons. The two-hinged stiffened girder, which is commonly used, is dis-
continued from the side span to the main span and simply supported by the
pylons. When deck continuity is required, the continuous stiffened girder
can be used (Chen and Duan 1999).

Vertical hangers are commonly used. Diagonal hangers, as shown in
Figure 12.4, are also used to enhance structural damping so as to improve
aerodynamic behaviors.

Most suspension bridges are externally anchored, in which the main
cables are anchored into anchor blocks that are built on ground. This type
of anchorage relies on the gravity of the massive anchor blocks. Where
such massive anchor blocks are not feasible, main cables can be anchored

369



370 Computational analysis and design of bridge structures

Cable saddle
Pylon
Main cable Hangers
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Figure 12.1 A typical suspension bridge.

ide span | Main span | Side span

Figure 12.2 A single-span suspension bridge.

into the stiffened girders at the end of side spans. This is the so-called self-
anchored suspension bridge. As the stiffened girders will resist axial com-
pression from main cables, the span capacity of self-anchored suspension
bridges is limited.

Pylons in most long-span suspension bridges are usually designed not to
resist longitudinal bending moment due to the structural weight of stiff-
ened girders. This type of pylons is flexible in the longitudinal direction.
For short- or multispan suspension bridges, pylons may be designed as rigid
to resist longitudinal bending due to dead or live loads. The high-strength
parallel wires are widely used for the main cables in modern suspension
bridges.

The suspension bridge has a long history (Kawada 2010). Its original
forms that two suspending ropes carrying walking boards directly were con-
structed in ancient China. The development of modern suspension bridges
started in the early nineteenth century. Jacob’s Creek Bridge, which had a
center span of 21.3 m, was built in the United States in 1801. Its main cables
were made of iron chains. Niagara Falls Bridge, in which parallel wire cables
were used for the main cables, was built in 1855. It had a main span of 251 m
and was the world’s first working railway suspension bridge. Due to the great
increase of railway loads, it was later replaced by Whirlpool Rapids Bridge
in 1897. The Golden Gate Bridge, with a main span of 1280 m, was built in
the San Francisco Bay area in 1937. It had the longest main span till 1964.
The Severn Bridge, with a main span of 988 m, was built in England in 1966.
Box girder and diagonal hangers were used in the Severn Bridge. In 1981, the
Humber Bridge, with a main span of 1410 m, was built in England. It had
the longest main span till 1997. The Akashi Kaikyo Bridge, with the world’s
longest main span of 1991 m, was built in 1998. Table 12.1 lists the top 10
world’s longest suspension bridges so far.
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Table 12.1 Top 10 longest suspension bridges in the world

Main Year
No. Name span (m) of built Location
| Akashi Kaikyo Bridge 1991 1998 Kobe-Awaiji, Japan
2 Xihoumen Bridge 1650 2009 Zhoushan, People’s Republic
of China
3 Great Belt Bridge 1624 1998 Halsskov—Sprogo, Denmark
Yi Sun-Sin Bridge 1535 2012 Gwangyang—Yeosu,
South Korea
5 Runyang Bridge 1490 2005 Jiangsu Province, People’s
Republic of China
6 Humber Bridge 1410 1981 Hessle—Kingston, England
7 Jiangyin Bridge 1385 1999 Jiangsu Province, People’s
Republic of China
8 Tsing Ma Bridge 1377 1997 Hong Kong
9 Verrazano—Narrows 1298 1964 New York City
Bridge
10 Golden Gate Bridge 1280 1937 San Francisco, CA

12.2 CONSTRUCTION OF SUSPENSION BRIDGES

The construction method and procedures are critical and play a very impor-
tant role in the design and analyses of a suspension bridge. The design,
analyses, and construction procedures of a suspension bridge are completely
corelated to each other. Figure 12.5 shows a typical construction process of
a suspension bridge.

12.2.1 Construction of pylons and anchorages
and install catwalk system

Pylons and anchorages are critical components of a suspension bridge. In the
longitudinal direction, pylons of a suspension bridge can be designed as rigid
or flexible in terms of resisting horizontal forces from cables on the top of
pylons. Most pylons of long-span suspension bridges are designed as flexible.
This type of pylons is mainly under compression due to dead loads and minor
bending deflection due to live loads. Both steel and concrete are commonly used
on pylons. Concrete pylons may have advantages over steel pylons in terms
of the cost of construction and maintenance. Examples of steel pylons include
the Golden Gate Bridge and Akashi Kaikyo Bridge, whereas most suspension
bridges, such as Xihoumen Bridge and Jiangyin Bridge built in People’s Republic
of China, have concrete pylons.

During the erection of stiffened girders and after applying superimposed
dead loads on the deck, the cable forces in the main span and side spans are
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Step 1—Build pylons and anchorage blocks
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Step 2—Build catwalks and erect main cables

Step 3—Erect stiffened girders

s

Figure 12.5 Construction process of a suspension bridge (showing from tower to installing
stiffened girder).

Step 5—Rigidly connect girder segments

not balanced, and the pylons will be deflected toward the main span. For
these flexible pylons, saddles on the top of pylons have to be adjusted so as
to release most deflection of pylons due to dead loads.

Anchors are the components that distribute the cable forces to ground
so that the main cables are sustained. The main cables in most suspension
bridges are anchored externally. The anchors of these bridges can be clas-
sified as gravity anchor and rock tunnel anchor. The gravity anchor is built
by massive concrete to balance the cable forces. Where the geology is per-
mitting, an inclined tunnel can be excavated down to the bedrocks and the
anchor beams or bars can be built into ground with backfilled concrete.

Steel wires of the main cable will have to be sprayed out by going through
a splay saddle in front of the anchorage so as to be anchored wire by wire or
to group several wires together. One main function of the splay saddle is to
change the cable tangent more downward so as to make the anchorage easy.
The change of the cable tangent at the end will also reduce the anchor forces
directly to the anchorage as part of the cable forces will be distributed to
splay saddle. In terms of the bending in the main cable plane, the splay saddle
can be rigid or flexible. Figure 12.6 shows a typical rigid splay saddle that is
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Figure 12.6 Gravity anchor and rigid splay saddle.

Figure 12.7 (a, b) Flexible splay saddle (Kanazaki Bridge, Japan).

built together into the entire anchor block. Figure 12.7 shows a flexible splay
saddle that is supported by a steel column, which provides less bending stiff-
ness in the longitudinal than in the transverse direction. Figure 12.8 shows a
flexible splay saddle built as a rigid body. The type of splay saddle has to be
considered into the design and analysis of a suspension bridge.
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Figure 12.8 Flexible splay saddle as a rigid body (Hardanger Bridge, Norway).

A catwalk system, which will be the main platform of cable works, will
be constructed after the pylons and anchors are built. The catwalk system is
more like an ordinary suspension bridge supported by few lightweight cables,
in which the deck or the platform is built directly on the suspended cables.
The catwalk system will have the same geometry as the main cables and goes
close to the main cables. It serves only as a temporary structure and will be
removed after the bridge is completed.

12.2.2 Erection of main cables

The making of main cables from steel wires is an important step in the
construction of a suspension bridge. There are two methods to erect main
cables from individual steel wires: aerial spinning (AS) method and prefab-
ricated parallel wire strands (PWS or PPWS) method.

The AS method was first developed by John A. Roebling in the mid-
nineteenth century. In the AS method, a looped moving cable will be built
first over the main cable and along the main cable from one anchor to
another. The looped moving cable carries a spinning wheel that runs like
modern suspended cable cars. The individual steel wires are stored in and fed
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from wire reelers located close to one anchor. Initially, the spinning wheel is
docked at the end where the wire reelers are located. The live end of the wire
unreeled from the reeler is passed through the spinning wheel in a way of
top-in and bottom-out. The live end is then tied to anchor shoes. When the
spinning wheel moves away from the wire reeler side (the approach route),
it brings two wires to the other side. The wire laid from the bottom of the
wheel is called dead wire, which will be placed into the cable former while
the wheel is moving. The wire laid from the top of the wheel is called live
wire, which will be stored on top of the cable former while the wheel is mov-
ing toward the other end. The feeding speed of the wire reeler is double com-
pared to the wheel moving speed. When the wheel reaches the other anchor,
the looped end of the two wires will be prepared to connect to an anchor
shoe. Then, the wheel will return back to the wire reeler side (the return
route). The top wire (the live end) will be laid into the cable former while the
wheel moves back. The wire reeler will stop feeding while the wheel returns.
Once it reaches the anchor at the wire reeler side, the wire will be taken off
the wheel to form a looped end so as to connect to an anchor shoe and then
is taken on the wheel again to start another round.

After each wire is laid out, it has to be adjusted. When all wires of a strand
are erected, they will be banded into the strand shape. Apparently, the AS
method is simple and needs less equipment on site. However, erecting cable
wire by wire is time consuming and the process relies on weather conditions.

Instead of erecting wire by wire, in the PPWS method, all wires of a
strand are shop-fabricated and socketed into the final shape and packaged
on reels. When erecting, a complete strand will be pulling from one end
to another by hauling cables. As the strand is prefabricated earlier, when
it is ready to anchor, anchor shoes will be adjusted according to the dif-
ference in temperature so as to make the tension of each strand as even as
possible. Compared with the AS method, PPWS method will save time on
site significantly. Individual wire adjustment is eliminated too. As the strand
is formed in shop, quality can be well controlled and cost will be lowered.

After all strands are erected, the cable will be squeezed by squeezing
machine and lashed at a certain pitch to form a round shape. Cable clamps
or bands will be installed at each design locations for suspender connec-
tions. As the cable will be deformed much while the stiffened girder is
erected, offsets to the suspender locations should be already considered in
the design locations. The final step for cable erection is to lash the cable
with wrapping wires and to protect the cable with coating treatment.

12.2.3 Erection of stiffened girder

The erection of stiffened girders, as shown in Figure 12.5, can start from
either center of the main span or end of the side span or pylons. Considering
the change of the suspender angle to the cable clamps, the sequence of
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starting from center of the main span is better as these changes are smaller.
Especially when the last segments close to the pylons are installed, most
deformation of the cable is completed if the erection is from center of the
main span to the pylons. However, to erect girders starting from the pylons
1s easier.

No matter what sequence is adopted, one common goal should be
achieved during the erection of the stiffened girder, which is to minimize
the bending moment in the girder at the hanger locations. The ideal situ-
ation is that all the girder weight is evenly distributed onto the cables. To
reach this ideal situation, girder segments are usually connected only at the
top part of the girder and the bottom part is left unconnected during erec-
tion. These joint connections will be changed to rigid connections after all
girder segments are installed and the suspenders are adjusted. The change
from joints to rigid connections is done before the deck is superimposed.

As more and more segments of the stiffened girders are erected, bend-
ing moments at the bottom of pylons and deflections on the top of pylons
will be accumulated. Such a distribution of girder weights to pylons that
are designed to be flexible should be released by adjusting the horizon-
tal position of saddles on the top of pylons. Ideally, the pylons should be

under pure compression after all girder segments are erected. Figure 12.9
shows the adjustment of the saddle position so as to release the deflections
of pylons by jacking the saddles. This adjustment may be required several

times during the erection of girders.
Initial offset saddle

Displaced and final position

Jacking block

! Central of pylon after displaced
/ and before adjustment

| / ! Central of pylon before displaced
| ' / and after adjustment
.f L/ .f

Figure 12.9 Offset of saddle and release of the deflection of pylon by the jacking of
saddle.
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12.3 BEHAVIOR OF SUSPENSION BRIDGES

As the flexible cables are the main structural component carrying dead
loads and live loads and the span length is longer than most other types of
bridge, the global vertical stiffness of a suspension bridge is very low. The
principles and characteristics of suspension bridges are distinguished from
others. Due to the flexible cables and its huge deflections from the very
beginning of construction to the stage of operations, the geometry con-
figuration of a suspension bridge can no longer be treated as constant. The
changes of geometry configuration, hence the construction procedures, are
deeply involved and crucial in the design and analyses. Obviously, geomet-
ric nonlinear analysis is the basis of the structural analysis of suspension
bridges.

12.3.1 Basis of cable structures—Initial
stress and large displacements

Taking a simple symmetric truss structure as shown in Figure 12.10 as
an example, tension in truss elements under external load can simply be
obtained from the force balance equation at node B as

_PL (12.1)
2H

The strain of the truss element is obtained as

c—_tL (12.2)
2EAH

where E and A are the Young’s modulus and cross area of the truss element,
respectively.

Figure 12.10 A simple symmetric truss structure.
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The vertical displacement d at node B under external load P can be
derived from geometric consistency.

L;

d= WP (12.3)

The solution of displacement by geometric consistency can be improved
by the principle of minimum total potential energy, which can be simply
described as that the change of total strain energy equals the work done by
external loads or the total energy does not change. For the case shown in
Figure 12.10, it can be described as

SI=3U+V)=0 (12.4)

where:
I is the total energy
U =2AL+(1/2)o¢ is the total strain energy (internal energy)
V = —dP is the total potential energy (external work)
o and € are stress and strain, respectively, and linear elastic is assumed

Figure 12.11 shows the stress and strain relationship and the density of
strain energy.

o =Ee (12.5)

From geometric consistency at node B as shown in Figure 12.10, the strain
of truss elements is

0 €

Figure 12.11 Density of strain energy.
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H
£ = Fd (12.6)
Equation 12.4 can then be rewritten as

EAH?

L3

ar[:a( dZ-de=0 (12.7)

From Equation 12.7, the same result of the displacement as Equation 12.3
can be obtained.

However, in the earlier approach to the displacement under external load,
it is assumed that the two truss elements have no stress at all when the
external load is applied. What it would be if there was an initial stress and
strain when the external load is applied? The principle of minimum poten-
tial energy is still valid. However, the stress in Equation 12.5 will become

c=Fe+0 (12.8)

where 6, = Ty/A is the initial stress in the truss elements. By substituting
Equation 12.8 into the equation of total strain energy, Equation 12.4 can
then be rewritten as

EAH?
L3

SH:S( d2+IzTod—Pd]:O (12.9)

From Equation 12.9, the displacement at node B can be derived as

3
d:LZ(P—HTOJ (12.10)
2EAH L

where Ty is the initial tension force when the external load is applied.

Equation 12.10 reveals that the displacement under external loads will be
reduced due to initial stress, and the higher the initial stress, the more it is
reduced. In general, the vertical stiffness is enhanced by initial stresses in cables.

Note that the strain and displacement relationship in Equation 12.6 is
obtained with the assumption that d is very small compared with L or H.
As illustrated in Chapter 3, large displacement can also be considered in
this simple truss structure as follows:

L, =+d*+2Hd + I? (12.11)

where L, is the truss element length after deformed. Using Maclaurin series
to expand Equation 12.11 and taking only the second order, Equation
12.11 becomes
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2
L1:L+fgd+;(i_gjdz (1212

and Equation 12.6 becomes

H, 1(1 H?
8:L2d+2[LZ_L4Jd2 (1219

Follow the same procedure to derive Equation 12.10 from Equations
12.8 and 12.9; a polynomial equation with unknown variable of d can be
obtained:

ﬂ3d3 "r(lzdz +ﬂ1d+(10 =0 (1214)
where:
L _EA(1_HY (12.15)
T Ll p :
3EA . (1 H?
az :LH[B_EJ (12.16)
2EA(HY (1 H?
o = [j J L H g (12.17)
L L L L
and
a =%TO P (12.18)

By resolving Equation 12.14, the displacement under external load P with
consideration of initial stress and large displacement can be obtained.

By comparing Equation 12.14 with Equation 12.10, which only illustrates
how an existing stress in cables influences their behavior, it is clear that it is
easier to consider only initial stress. If the initial stress is the predominant
issue, for certain purposes of analyses, only initial stress issue may be con-
sidered to save analysis time and cost. During the preliminary design, for
example, initial stress due to dead loads can be estimated first and further be
considered in live load analysis so as to quickly estimate extreme deflections.

12.3.2 Basics of suspension bridge analysis

Like suspension bridges, the analytical theories of them have a long history
of development. They can be classified as elastic theory starting from the
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Figure 12.12 A single-span suspension bridge.

early nineteenth century, deflection theory in the late nineteenth century,
and finite deformation (large displacement) theory nowadays.

Considering one span of the simple support girder as shown in the upper
part of Figure 12.12, its moment distribution is

M(x) = My(x) (12.19)

If the girder is multiple supported by hangers from the cable as shown in
the lower part of Figure 12.12, when loads that cause moment distribu-
tions as shown in Equation 12.19 are applied on the girder, the cable will
be tensioned and the moment distribution on the girder will be reduced as

M(x) = Mo(x) — Hy(x)y(x) (12.20)

where H,(x) is the horizontal component of cable tension due to loads
distribution of g(x). Equation 12.20 represents the elastic theory. Its dif-
ferential equation form is
d* d?

glx) = Eld—;}—Hq(x)d—; (12.21)
One example of using Equation 12.20 is to calculate the cable tension in
the middle of the span. Assuming the loads distribution g(x) is constant as
qo and is completely distributed to the cable. Thus, the moment distribution
in the girder in Equation 12.20 will be zero. The cable tension in the hori-
zontal component at the middle of the span can be derived by considering
the moment in the middle span of a simple support beam.

1) _ao”
H, (2)‘ 8f (12.22)

Assume the structure is balanced before g(x) applies and the horizontal com-
ponent of its initial cable tension is Hy(x). After g(x) applies, the increase of
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cable tension in the horizontal component is H,(x) and the structure is bal-
anced at a deflection of n(x). Equation 12.20 can be rewritten as Equation
12.23 if the deflection and the initial cable tension are considered.

M(x) = My (x) — Hy(x)[y(x) + n(x)] = Ho(xn(x) (12.23)

In cases where dead loads that cause Hy(x) are predominated in comparing
with q(x), H,(x)n(x) is negligible. Therefore Equation 12.23 can also be
simplified as

M(x) = Mo(x) = Hy(x) y(x) — Ho(x)n(x) (12.24)

Equations 12.23 and 12.24 reflect the stiffness enhancement due to initial
cable tension over deflection. These equations represent the deflection the-
ory. Similar to Equation 12.21, the differential form of Equation 12.23 is

Z 2

)= E1 LTy 2 () + ] 4 (12.25)
Since 1960s, the computer application and the finite element method (FEM)
have been advanced greatly. Especially because of the extreme development
of both computer hardware and software in the twenty-first century, the
geometry nonlinearities of suspension bridges are commonly considered by
using modern FEM analyses. As introduced in Chapter 3, a full geomet-
ric nonlinear analysis, in which the initial stress and large displacement
are considered, will not only cover the second-order problem showing as
Hy(x)n(x) or H,(xn(x) in Equations 12.23 and 12.24 but also establishes
the balance on the deformed configuration. This full-scale geometric non-
linear analysis is often referred as finite deformation method.

12.3.3 Live load analyses of a suspension bridge

As illustrated in Equations 12.10, 12.14, 12.23, and 12.24, the initial stress
due to dead loads in cables affects the succeeding live loads response. The
live load analyses of a suspension bridge have to consider the initial stress
due to dead loads, specifically the initial stress in main cables. The priority
nonlinear issues to be considered in live load analyses are the following:

1. The initial stress in main cables due to dead loads
2. The initial stress in pylons due to dead loads
3. The large displacements under live loads

In preliminary design, for example, live load analysis can be performed
with the consideration of the initial stress in the main cables. For simpli-
fication, the geometries of bridge defined by the design plan can be used.
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The analysis can be simply considered linear. The cable stress under dead
loads can be estimated by the elastic theory. Further, the vehicular loads
and their locations obtained by the regular live loading process can be reap-
plied to the structure and reanalyzed with full scale of geometric nonlinear
analysis. The extreme internal forces and displacements can be so adjusted
to reflect all the nonlinear effects. This approach is the same as the live load
analysis of a cable-stayed bridge in Chapter 11.

For detailed design analyses, the state to be used for influence value
analysis including the geometries of the bridge and initial stresses should
be the final state obtained in construction control analyses.

12.3.4 Determination of the initial
configuration of a suspension bridge

Due to the flexibility of main cables and thus the large displacements under
dead loads and live loads, the difference of geometric configuration from
one state to another is no longer negligible as in most other types of bridge.
The design plan of a suspension bridge including the main cable geometry
and the stiffened girder elevations refers to the final deformed state after the
deck is superimposed. Unlike other moderate and short-span bridges, such
as concrete girder bridges, the design state of a suspension bridge is far dif-
ferent from its initial state in which there is no load acting on the structure.
Only certain types of load analyses, such as live load analyses, can be based
on this design state in terms of geometric models. The initial state of a sus-
pension bridge is also referred as zero-stress state, which is the basis of any
kind analysis or construction control. It is the foundation of the design and
analyses of long-span bridges.

How to determine the zero-stress state based on the design plan is a
well-known issue in suspension bridge design and analyses. Backward and
forward iteration analyses are commonly adopted. Based on the fact that
unloading a load and/or removing a component will restore the structure
back to its previous state, if the current state is assumed to be accurate,
backward analyses will be able to restore the structure to its initial state.
Once an initial state is obtained, forward analyses can be performed as the
sequence of the bridge is constructed to reach a final state. By comparing
the final state with the design state, adjustments to the initial state can be
estimated. Iterating this process, the initial state can then be determined.
As mentioned in Section 12.3.2, both initial stress and large displacements
have to be considered in both backward and forward analyses. The follow-
ing description illustrates the steps to determine the initial state in general.

1. Estimate cable forces in the design state. The initial stress in cables due
to dead loads plays an important role in backward analysis. To better
calibrate the starting state of backward analysis, the cable forces have
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to be obtained or estimated first. In this step, all dead loads including
the structural weight of cables and stiffened girders plus all superim-
posed dead loads are assumed to be acting on the main cable. The
cable geometry can be assumed the same as the design geometry. The
elastic method mentioned in Section 12.3.2 can be used.

. Establish the starting state of backward analysis by building a model

using the design geometry and including the estimated cables in step
(1) as the initial stress.

. Remove superimposed dead loads at all hanger locations. This

removal may be split into several stages according to the sequence of
the imposed dead loads on deck. In addition to a full scale of geo-
metric nonlinearity, including initial stress and large displacements,
a special displacement restraint at cable ends should be applied to
consider the tangent change over saddles during the load increments
and iterations in nonlinear analysis, which will be described in
Section 12.3.5.

. Reverse the jacking of saddles on the top of pylons if saddles are

adjusted after all girder segments are erected.

. Remove dead loads due to stiffened girder weights at all hanger loca-

tions. This removal should truly reflect the girder erection process. If
saddles are jacked during the erection of stiffened girders, correspon-
dent reversal actions should be inserted. The analysis method is the
same as in step (3).

. Remove cable loads due to cable weights and other additional loads

such as wrapping wires and sheathing. The analysis method is the
same as in step (3).

. Take the current geometric state as the initial state.
. Conduct forward analyses simulating the loading of cables, erecting

of stiffened girder segments, adjustment of saddles, and application of
superimposed loads after joints between girder segments are changed
to rigid connections. Difference will be found from the final state
obtained in this step and the design state. The bending of the stiffened
girder due to the superimposed dead loads should be considered in
backward analysis after the first round of forward analysis. Rebuild
the starting state including hangers and stiffened girder; repeat steps
(3) to (7). Superimposed dead loads should be removed directly from
the stiffened girder.

. The initial state obtained in step (7) may be manually adjusted so as

to match the final state obtained in forward analyses and the design
state. This adjustment could be simply change of the chord height
of the cable in zero-stress state. The adjusted initial state will be the
basis of all other succeeding analyses. The total length of cable in
zero-stress state can also be calculated from the initial state.
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12.3.5 Consideration of cable tangent changes

Unlike a free node of any component or element whose movement com-
pletely depends on stiffness and forces, nodes of cable ends that connect
to saddles are restrained by the shape of the saddle. When cable deforms,
the displacements at cable ends fall in the cable slots on top of the saddles
(Figure 12.13). In the iteration of large displacement analysis, any incre-
mental displacements at the ends of main cables should be adjusted to
reflect that the trace of the displacement is on the arc of the saddle.

Considering that the load step is small enough and the incremental dis-
placement in each of many iterations for one load step is sufficiently small,
the adjustment to the incremental displacement of the cable end at saddle
can be simplified as follows:

1. Assume the deformed saddle center is S., which will be derived from
the new position of the rigid body that is used to simulate the saddle;
the saddle radius is R; the deformed cable end at saddle is N,, the
other end is N; and the adjusted cable end at saddle is Nj.

2. Construct a tangent line from N to an arc of radius R, centered at S,
with a tangent angle as the same as line Ny N;. The tangent point is
the adjusted cable end N,. The offset from N, to N, is the adjustment
to the incremental displacements of the cable end at saddle.

This process shows that a general-purpose FEA package with nonlin-
ear analysis feature may not be sufficient in suspension bridge analyses.
Additional displacement constraints to the cable ends due to the saddle slot
have to be built into the analysis package.

However, it should be noted that the consideration of saddle slot con-
straint to the cable ends does not affect the analysis of internal forces and

Trace of cable end Trace of cable end

Cable center Cable center

Displaced cable Displaced cable

Top of pylon

/1/

Figure 12.13 Displacements at cable ends fall in slot on top of saddles.
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displacements much. In most analyses of the suspension bridge, this can be
ignored. But in the backward analysis to obtain the initial state, the accu-
rate tangent point of the cable and the saddle influences the accuracy of the
zero-stress state, and the total cable length under no stress is derived from
the zero-stress state.

12.3.6 Offset of saddles and release
of the deflection of pylons

When unbalanced horizontal forces in the main cables on the top of a pylon
exist during the erection of the stiffened girders in the main span and side
spans, the saddle would not be able to move freely due to frictions between
the saddle bottom and the top of the pylon, and such a move is forbidden
during the erection of girders. Thus the pylon will deflect toward the main
span as the dash lines shown in Figure 12.9.

For pylons that are designed as flexible, the deflection due to the erection
of stiffened girders and superimposed dead loads has to be released. The
release is accomplished by adjusting the horizontal position of the saddle.
Depending on the design of the pylons, usually the deflection has to be
released several times, during the erection and after the deck loads are
superimposed.

Because the final position of the saddle has to be centered, when a saddle
is installed, its initial position has to be offset from the center of the pylon
toward the side span. The offset value is the total horizontal displacements
of the saddle starting from the erection of cables to finishing of superim-
posed dead loads. When adjusting the position of the saddle, jacking force
is applied between the saddle and the jacking block on the side span side of
the pylon, as shown in Figure 12.9. Due to cables, the horizontal stiffness
of the saddle is much higher than the horizontal stiffness of the pylon at
the top. When jacking, the saddle will remain still and the pylon will move
toward the side span so the deflection is released.

12.3.7 Low initial stress stiffness
of the main cable close to pylon

As illustrated in Section 12.3.2, the initial stress of the main cable due to
dead loads plays an important role in the enhancement of live load stiffness.
The initial stress stiffness is perpendicular to the cable, and therefore the
vertical stiffness enhancement to the stiffened girder reaches maximum in
the middle of the main span. As the angle of the cable to the stiffened girder
increases in the area close to the pylon, the initial stress stiffness in vertical
projection decreases. One phenomenon relating to this behavior is that the
vertical displacements on the stiffened girder under live loads are larger in
the area close to the pylon than others.
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For extreme long-span suspension bridge proposals, such as the Gibraltar
Strait Bridge or cable-stayed-and-suspended hybrid bridge as shown in
Figure 12.14, the girder is stiffened by stay cables anchored from pylons or
hangers from rigid components in areas close to the pylon.

12.4 PRINCIPLE AND MODELING
OF SUSPENSION BRIDGES

Similar to modeling a cable-stayed bridge, the modeling of a suspension
bridge needs to identify the analysis tool. The following specific issues for
suspension bridge analyses make general-purposed FEA packages not a
suitable tool for many types of analysis in general.

1. Analyses to determine the initial state from the design state

2. Geometric nonlinear construction and control analyses

3. Simulation of saddle adjustment

4. Tracking the changes of cable ends in saddles

5. Live load analyses with the consideration of initial stresses and large
displacements

Whether or not to use a 3D model depends on the purpose of the analyses.
A 3D model is always preferable for all types of analyses, not only because
the lateral distribution can be included but also because the modeling of
pylons and stiffened girders can be simplified in 3D modeling. For example,
the discrete truss members can accurately and easily reflect the properties of
the stiffening girder than beam elements. Having a modern graphical tool
aided, modeling a suspension bridge in 3D is no longer a challenge as it was
many years before. Also the computer capacity and performance nowadays
guarantees that a full-scale nonlinear analysis simulating multiple-stage
construction in 3D is doable.

12.4.1 Main cables

How to model the main cables is an important question in modeling a sus-
pension bridge, and it should be answered first. Due to its special character-
istics such as flexibility, large displacements, and catenary behaviors, some
analysis tools may have a catenary element type included. When a catenary
cable element type is adopted for modeling cables, some special consider-
ations should be taken as properties to describe that such a cable element
may vary among different tools. For example, one may use stressed state
to describe the cable geometry and the other may use its zero-stress state.
In general practice, the simple truss element type can be used to model the
main cables.
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When using the simple truss element, the main cables have at least to be
meshed at the hanger locations. For longer spacing of hangers, cable has
to be meshed in between hangers. Generally speaking, a meshed cable seg-
ment length of 10 m is adequate considering the long span of a suspension
bridge. Along with the way the cable is modeled, how the initial stress and
large displacement iteration are considered should be clearly understood.
When a cable segment between two adjacent hangers is submeshed, for
example, the analysis may fail as there may be no stiffness perpendicular to
the cable initially if the initial stress is not addressed correctly.

As discussed in Sections 12.3.4 and 12.3.5, features regarding how the
zero-stress state is obtained by iterations and how saddle curves are consid-
ered in the analysis tool should be studied too.

12.4.2 Hangers

The hangers are simple components and can be simply modeled as single
truss elements. For rigid connections between main cables and the stiffened
girder in the middle of the main span as shown in Figure 12.15, truss or
beam elements can be used.

12.4.3 Stiffened girder

The modeling of stiffened girders is similar to the main girder of a cable-stayed
bridge. For a box girder, as shown in Figure 11.23 of Chapter 11, the fish bone
model as shown in Figure 11.24 of Chapter 11 can be used. The transverse

Figure 12.15 Rigid connections between main cables and stiffened girder (Runyang Bridge,
China). (Data from Ji, L. and Feng, Z., Construction of Suspension Bridges across
the Yangtze River in Jiangsu, China, IABSE Workshop—Recent Major Bridges,
May 11-20, 2009, Shanghai, People’s Republic of China.)
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rigid bodies or beams should locate in all hanger locations. For truss stiffened
girder, it is preferable to use the 3D model. Each truss member can be mod-
eled as a beam or truss element so the girder’s properties can be accurately
modeled. For cases where the deck is comprised of floor beams and string-
ers, stringers too can be included as beam elements. The superimposed dead
loads will be applied only on main beams, main trusses, and/or stringers.

12.4.4 Pylons

The modeling of pylons is similar to cable-stayed bridges. 3D beam ele-
ments are usually used to model pylons. The longitudinal bending stiffness
of pylons is an important factor to influence the analysis of saddle offsets.
When 2D model is used for preliminary analyses, cross-sectional properties
should accurately reflect the pylon stiffness.

12.4.5 Saddles

The modeling of saddles and their connections to pylons and cables are
critical in the entire bridge model, especially for construction control analy-
ses in which large displacement iterations will be involved. The moving
between saddle and pylon usually is locked during the erection of the stiff-
ened girder and is unlocked when horizontal adjustment is needed between
erections. After the deck is superimposed, as in most suspension bridges,
the connection between the saddle and the top of the pylon will be changed
to rigid so the pylon will work to resist unbalanced cable forces due to live
loads. This change should be incorporated into modeling according to the
type of analyses.

Figure 12.16a shows a general model of the saddle and its connection to
cables and the pylon. A temporary horizontal rigid truss element is needed to
simulate the locking between saddle and pylon during erection and adjust-
ment. By applying an initial displacement of A, as shown in Figure 12.9,
on the temporary right truss element, a load case of jacking saddle can be
simulated. Changing its stiffness to significantly small or simply removing
it, free moving between the saddle and pylon can be simulated during live
load analyses. However, when conducting certain types of analysis, the
saddle and its connections can be simplified as shown in Figure 12.16b.
For example, when only extreme live load responses are of concern in sche-
matic analysis, a single rigid truss or rigid body can be used. If the saddle is
designed not to rigidly connect to pylon when bridge is in services, a simple
truss from the top of the pylon to the intersection of cables can be used.

Figure 12.16¢ shows a general model of splay saddle and cable anchorage.
When the splay saddle is built into anchor box or a rotational splay saddle
is used as shown in Figure 12.8, the splay saddle shown in Figure 12.16
is either the arc center of the saddle surface or the saddle hinge. When a
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Figure 12.16 Model of saddles. (a) Complicate model incorporating saddle jacking.
(b) Simple model for certain types of analysis. (c) Splay saddle model.

flexible splay saddle as shown Figure 12.7 is used, the splay saddle column
will be fixed at the bottom and the true stiffness of the column will be used.

If any analysis is targeting the establishment of the initial state (zero-
stress state) according to the design plan, the constraints of displacements
at cable ends A, B, C, and D should be applied during large displacement
iterations as discussed in Section 12.3.5.

12.5 3D ILLUSTRATED EXAMPLE OF CHESAPEAKE
BAY SUSPENSION BRIDGE, MARYLAND

The main shipping-channel bridges of Chesapeake Bay Bridge, Maryland,
1952, also known as Bay Bridge, are suspension bridges where the east-
bound bridge has a main span of 487.68 m and two 205.74-m long sus-
pended side spans. The tower is 107.7 m high, and the truss stiffened girder
passes through it at about its center (Figure 12.1) (Wang and Fu 2012).
The purpose of the analyses is the cost allocation study, which tries to
reveal the contribution to stresses on main components by each designated
live loads. The analysis type is linear with only initial stress considered, and
the geometry configuration as planned is used as the initial state for dead
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s e ™
Figure 12.17 3D FEA model of Bay Bridge by VBDS.

load analysis and the final state for live load analysis. The model is built
in 3D using VBDS program (Wang and Fu 2005) and cross-checked using
SAP2000 (2007). The main cable and hangers are modeled as truss ele-
ments; all others are modeled as beam elements, including members of the
truss stiffened girder. For simplicity, deck stringers are not modeled, but its
weight plus all other superimposed dead loads are included. All members
of each truss floor beam are also modeled as beam elements (Figure 12.17).
The entire model contains 5264 elements and 2798 nodes.

The saddle is not indicated as rigidly connected to the pylon when the
bridge is in services. So the modeling of the saddle and its connections are
simplified as shown in Figure 12.16(b).

In addition to dead loads, live loads in the main span and far side span
for extreme bending moment at the bottom of tower leg and loads due to
temperature change are analyzed. As shown in Figures 12.18 and 12.19,
the extreme bending moment due to live loads is —8456 kN-m, and its
corresponding deflection in the middle of the center span is 1372 mm.
Table 12.2 lists other results of the static analyses.

Figure 12.18 Extreme live load bending moment (kN-m) in one pylon leg of Bay Bridge.
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1372

Figure 12.19 Extreme live load displacements (mm) of Bay Bridge.

Table 12.2 Static analyses results of Bay Bridge

Tower leg reaction

Loads Cable reaction (kN) Axial (kN) Moment (kN-m)
Dead loads 29,304 =31,169 0
Live loads? 7,192 —-5,026 —8,464
26°C temperature drop 555 —147 1,901
11°C temperature rise -369 98 —1,268

2 Three lanes with each of 0.87 kN/m + 80 kN concentrated load and lanes discount of 0.9 are used.

The dead load analysis is performed at first. Several rounds of iterations
are needed to consider the initial stresses in cables due to dead loads. These
initial stresses will be automatically considered in succeeded analyses of
live loads and temperature loads. For the purpose of cost allocation study,
a truck load moving from one end to another is simulated by using different

dead load cases.
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Strut-and-tie modeling

13.1 PRINCIPLE OF STRUT-AND-TIE MODEL

Structural concrete members used in bridges can be subdivided into
two regions, B- and D-regions (Figure 13.1). In the B-region, Bernoulli’s
hypothesis holds valid, where it is assumed that a normal cross-sectional
plane remains plane and normal to the reference lines when the beam
deforms. Bernoulli’s hypothesis facilitates the flexural design of reinforced
concrete structures by allowing a linear strain distribution for all loading
stages, including an ultimate flexural capacity. Design of the B- (Bernoulli
or beam) region is well understood, and the entire flexural behavior can be
predicted by simple calculations. For torsion, the sectional shape and size
in its own sectional plane are assumed to be preserved during torsion, and
the cross section can warp freely out of its plane.

In the D-region (disturbed or discontinued portion), Bernoulli’s hypothesis
does not apply. Some examples of D-regions are corbels, dapped beams, deep
beams, regions near the support or concentrated load, sudden changes of the
cross section, holes, joints, and so on. All these are considered two-dimen-
sional (2D) applications of the strut-and-tie model (STM). Three-dimensional
(3D) STM are required when the structure and loading are considerably spread
over all three dimensions, such as pile caps with two or more rows of piles.

According to St. Venant’s principle, the localized effects caused by any
load acting on the body will dissipate or smooth out within regions that
are sufficiently far enough from the load location (Figure 13.2b). This is
applied in the analysis of D-regions.

Design of the B-region has long been established and can be easily calcu-
lated. However, even for the most common cases of D-regions, the ability
to predict capacity by traditional methods is either empirical or requires
finite element analysis to reach an estimation of capacity. An STM closes
this gap and offers engineers the ability to develop a conservative capacity
without sophisticated modeling. D-regions can be idealized as consisting of
concrete struts in compression, steel ties in tension, and nodes where more
than one member are joined together.

399
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Figure 13.] B- and D-regions in a common bridge structure. (Data from Kuchma, D.,
“Strut-and-Tie Website,” 2005, http://dankuchma.com/stm/index.htm.)
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Figure 13.2 Stress diagram. (a) Linear stress distribution. (b) Load dissipation. (Data
from MacGregor, J.G. et al.,, Reinforced Concrete: Mechanics and Design, 5th
Edition, Prentice Hall, Englewood Cliffs, NJ, 2008.)

13.1.1 Development of STM
The steps of the STM and design are the following:

Step 1: Lay out STM. Laying out the model requires an understanding
of basic member behavior and good engineering judgment. Because
there could be more than one truss configuration, the design is more
art than science.

Step 2: Determine the member forces.

Step 3: Decide the shapes of the struts and the nodal zone.

Step 4: Calculate the strength of the struts, ties, and the nodal zones based
on the applicable code.

Step 5: Verify the anchorage of the ties.

Step 6: Apply detailing requirements.

The STM follows the lower-bound theorem of plasticity, which states that the
capacity of such a system of forces is a lower bound on the strength of the
structure, provided that no element is loaded beyond its capacity. A stress
field that satisfies equilibrium and does not violate the yield criteria at any
point provides a lower-bound estimate of capacity of elastic-perfect plastic
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materials. For this to be true, crushing of concrete (struts and nodes) does
not occur prior to yielding of reinforcement (ties or stirrups).

Nevertheless, there are limitations to the truss analogy. The lower-bound
theorem of plasticity assumes that concrete can sustain plastic deformation
and is an elastic-perfect plastic material, which is not absolutely correct.
To address this deviation from the theoretical concept, codes and speci-
fications adopted the compression theory to limit the compressive stress
for struts with consideration of the condition of the compressed concrete
at ultimate load resistance. The prerequisites of such assumptions are the
following:

e STM is a strength design method, and the serviceability should also
be checked

Equilibrium must be maintained

Tension in concrete is neglected

Forces in struts and ties are uniaxial

External forces are applied at nodes

Prestressing is treated as a load

Detailing for adequate anchorage shall be provided

In strut-and-tie truss models, only equilibrium and yield criteria need to be
fulfilled as the first two requirements. But the third requirement, the strain
compatibility, is not considered. As a result of this relaxation, more than
one admissible STM may be developed for each load case as long as the
selected truss is in equilibrium with the boundary forces and the stresses in
the struts, ties, and nodes are within acceptable limits.

With such a convenient structural analysis tool, questions in STM appli-
cations remain

e How does one construct an STM?

e If a truss can be formulated, is it adequate or is there a better one?

o If there are two or more trusses for the same structure, which one is
better?

Several empirical rules that aid in generating STM are given as follows:

e Elastic stress contours generated by finite element analysis provide
the general direction of the stress trajectories and are useful in laying
out an STM.

e Minimum steel content is a goal to achieve. Loads are transmitted by
the principle of minimum strain energy. Because the tensile ties are
more deformable than the compression struts, the least and shortest
ties are the best. A nonlinear finite element comparison of three pos-
sible models of a short cantilever is shown in Figure 13.3.
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Figure 13.3 Nonlinear finite element comparison of three possible models of a short
cantilever. (Data from MacGregor, J.G. et al., Reinforced Concrete: Mechanics
and Design, 5th Edition, Prentice Hall, Englewood Cliffs, NJ, 2008.)

o The crack pattern may also assist in selecting the best STM. It is suggested
by tests (MacGregor et al. 2008) that an STM developed with struts paral-
lel to the orientation of initial cracking will behave very well (Figure 13.4a).

¢ The minimum angle between a strut and a tie (Figure 13.4b) that are
joined at a node shall be 25° according to ACI (2002). There are sev-
eral other recommendations by other codes and researchers, but they
are all within close variation.

® Other than the empirical rules, the common constraints are the code
requirements. ACI and AASHTO code recommendations will also be
discussed.

Cracks Concrete

/ / / compression
N/

Ao
(Reinforcement

(@) (b)

Figure 13.4 Strut. (a) Orientation of strut. (b) Angle at support. (Data from MacGregor,
J.G. et al.,, Reinforced Concrete: Mechanics and Design, 5th Edition, Prentice
Hall, Englewood Cliffs, NJ, 2008.)
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13.1.2 Design methodology

The design of struts, ties, and nodal regions shall be based on
OF, > E, (13.1) (ACI [eq. A-1])
¢=0.75 for struts, ties, and nodes (ACI [sect. 9.3.2.6])

13.1.2.1 Struts

Compression members or struts fulfill two functions. Like the compression
chord of a truss member, they resist compression due to moment. The diagonal
struts transfer forces to the nodes or transfer shear to the supports. In actual
function, the diagonal struts will be oriented parallel to the cracks. There are
three different types of struts (Figure 13.5). The simplest one is the “Prism,”
with a constant cross section. The second type is the “Bottle,” in which the
strut expands or contracts along its length. The third type is the “Fan,” where
an array of struts with varying inclinations meet at or radiate from a node.

According to Appendix A of ACI-318-2002, the strength of a longitudi-
nally reinforced strut is

Ey = ful + ALf! (13.2) (ACI [eq. A-S])
The strength of an unreinforced strut is

E. =1.A. (13.3) (ACI [eq. A-2])
where the effective compression strength of the concrete in a strut is

for = 0.85B.f! (13.4) (ACI [eq. A-3])

S RN Ry

%

IRARRRE] N\l 111t

(a) Prism (b) Fan (c) Bottle

Figure 13.5 (a—c) Three types of struts. (Data from Schlaich et al. 1987.)
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where [, is the effectiveness factor. The factors affecting the effective con-
crete strength of struts are (1) load-duration effects, (2) cracking of the
struts, and (3) confinement from the surrounding concrete. For (1) and
(2), there is reduction of strength, but for (3) the strength is increased. For
example, in pile caps, the compressive strength may be increased by the
confinement resulting from the large volume of concrete all around the
struts.

B.=1.0 for a strut of uniform cross-sectional area over its length
B,=0.75 for a bottle-shaped strut with reinforcement satisfying
A.3.3; (ACI 318-2002)

B.=0.6 for a bottle-shaped strut with reinforcement not satisfying
A.3.3; (ACI 318-2002)

B.=0.4 for a strut in the tension member or the tension flange of
members

B.=0.6 for all other cases

Note: Crack control reinforcement requirement is

Z%sinyi >0.003 (13.5) (ACI [eq. A-4])

sSi

where:
A, is the area of surface reinforcement in the i-th layer crossing the
strut under review
s; is the spacing of reinforcement in the i-th layer adjacent to the surface
of the member
b, is the width of the strut
v; is the angle between the axis of the strut and the bars

According to AASHTO Load Resistance Factor Design (LRFD) Bridge
Design Specifications (2013) stress limit for struts is

£ oo
w=—""——<0.85f! 13.6) (AASHTO [eq. 5.6.3.3.3-1

f 0.8+ 1708, f (13.6) ( [eq )
where

g =&, + (e, +0.002)cot0, (13.7) (AASHTO [eq. 5.6.3.3.3-2])
where:

0, is the smallest angle between the strut under review and the adjoin-

ing ties

€, is the average tensile strain in the tie direction
f. is the specified concrete compressive strength (psi or MPa)
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The stress limit assumes that a minimum distributed reinforcement ratio of
0.003 in each direction is provided.

13.1.2.2 Ties

The tension ties are stirrups, longitudinal tension chord reinforcements, and
other special-detail reinforcements. All tension reinforcements should be
adequately anchored. Inadequate development of tension reinforcement will
lead to brittle failure at a lower load than at anticipated ultimate capacity.

According to Appendix A of ACI-318-2012, the nominal strength of a
tie shall be taken as

Ey = fyAu + Ay (Fic + AF,) (13.8) (ACI [eq. A-6])

where (f,. + Af,) shall not exceed f,, and A, = 0 for nonprestressed member.

13.1.2.3 Nodes

Nodes are the locations where struts and ties converge. In other words, nodes
are the locations where forces are redirected within an STM. Nodal zones
are classified as CCC if all the compressive forces meet and CCT if one
of the forces is in tension (Figure 13.6). Similarly, CTT and TTT are also
possible (Figure 13.6). One way of laying out a nodal zone is to create
equal pressure on each face of the node. By doing so, on a CCC node, the
length of the sides of the nodes a1:42:a3 becomes the same proportion as
C1:C2:C3. If one of the forces is in tension, the length of that side of the
node is calculated from a hypothetical bearing plate on the end of the tie,
which exerts the same bearing pressure as the compression member. Because
the in-plane stresses in the nodes are equal in all directions, such a node is
referred to as bydrostatic element (Figure 13.7). For a CCC node, this can
be easily applied but for other nodes it can be tedious. This can be simplified
by considering a nodal zone formed by the extension of all the members
meeting at that node (Figure 13.8). However, this allows unequal stress at

P C
T T
CN\ / ¢
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4— — -C *
V4 T
/ I
T
c”’/ C
CCC node CCT node CTT node TTT node

(@) (b) (c) (d)

Figure 13.6 Classification of nodal zones.
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Figure 13.7 Hydrostatic element.

G,

Figure 13.8 Nodal zone formed by the extension of the members.

the different faces of the node. At these nodes the following conditions need
to be satisfied:

1. The resultants of the three forces coincide
2. The stresses are within the limits
3. The stress is constant on any face

Nodal zones fail by concrete crushing. Again, the anchorage of tension ties
must be provided. Within a node, if a tension tie is anchored, incompatibil-
ity of tensile strain in the rebars and the compression strain in the concrete
take place, which weaken the compressive strength of the concrete.

According to Appendix A of ACI-318-2012, the limiting compressive
strength on a face of a node is given by

E, =0.85B,f A, (13.9) (ACI [egs. A-7 and A-8])
where for

CCCnode B,=1.0 (ACIT [sect. A-5.2.1])

CCT node B,=10.8 (ACI [sects. A-5.2.2 and A-5.2.3])

CTT node B, =0.6
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According to AASHTO LRFD Bridge Design Specifications 3rd Edition
(sects. 5.6.3.5 and 5.5.4.2), stress limit for nodes is

f.. = 0.85 £/ when nodes are bounded by struts and/or bearing areas
f.. = 0.75 f when nodes anchor only one tie
f.. = 0.65 f/ when nodes anchor more than one tie

and resistance factors are

¢ = 0.7 for struts and nodes
¢ = 0.9 for ties

13.2 HAND-CALCULATION EXAMPLE OF STM

Two hand-calculation cases are covered in this section; the first case is a
Hammerhead Pier originally reported by Fu et al. (2005), and the second
case is a pier-supported footing covered in the final report of NCHRP
Project 20-07 Task 217 (Martin and Sanders 2007).

13.2.1 Hammerhead Pier No. 49 of Thomas
Jefferson Bridge, Maryland

A simple model is designed by hand to demonstrate the procedures for STM
(Fu et al. 2005). The same structure will be seen in Section 13.64 under
Case Study 4—Pier Cap 2. Also a finite element method analysis will be
done for the same pier cap where loading was increased to see the forma-
tion of cracks.

13.2.1.1 Data

Material strength: £’ = 24.13 MPa (3.5 ksi);  f, = 275.8 MPa (40 ksi)
Load from each girder: P = 1289.92 kN (290 kip)
Strength reduction factor for struts, ties, and nodes: ¢ = 0.75 (ACI 9.3.2.6)

Through nodes 2 and 3 reactions are transferred to the pier. At each point
2P = 580 kip (2579.84 kN) load is transferred. The 3D of the pier and the
cap is 1524 mm (60") thick (Figure 13.9).

Putting b = 1.524 m (60”) and B, = 1.0 (ACI A.3.2.1)

The length of bearing area required Ly,,, = 2P/¢(0.85B,f,)b = 110 mm
(4.332")

13.2.1.2 Determination of member forces

P1 = P/sin(59.93°) = 335.100 kip (1490.525 kN)
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Figure 13.9 Strut-and-tie model developed for the Hammerhead Pier.

P6 = P1 =335.100 kip (1490.525 kN)

P2 = P1cos(59.93°) = 145.307 kip (646.326 kN)

P7 = P2 =145.307 kip (646.326 kN)

P3 = P/sin(86.98°) = 290.403 kip (1292.713 kN)

P8 = P3 =290.403 kip (1291.713 kN)

P4 = P1 c0s(59.93°) — P3 c0s(86.98°) = 152.605 kip (678.787 kN)
P5 = P2 —P3 co0s(86.98°) = 130.007 kip (578.271 kN)

13.2.1.3 Design of the tie
Members 2, 5, 7 (Figure 13.9) (ACI A.2.6 and A.4.1)

Required area of steel for members 2 and 7: A, , = P2/¢f, = 3125 mm?

(4.844 in2)
Required area of steel for member 5: A, = P5/¢f, =2795 mm? (4.334 in?)

Minimum reinforcement (ACI 11.8.5)

From geometry of the pier cap: Depth d = 4267.2 mm (14’);  Width
b = 1524 mm (60")

A = 0.04(£/1f,)bd = 22,761 mm? (35.28 in?)

stmin
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Minimum reinforcement for crack control (ACI 11.8.4)

According to ACI 318 11.8.4, closed stirrups or ties of area A, parallel to
A, shall be provided.

To simplify, assume

N, =0,A,=0in?

A, =max (A, Age Agmins Ay) = 35.28 in? (22,761 mm?)
A,=0.5(A,- A,) =17.64 in? (11,381 mm?)

8 # 5 in 10 layers @ 305 mm (12") c/c

Determination of the required depth to satisfy the stress limits at nodes 1
or 4 and to check the anchorage:

For nodal zone anchoring one tie B,=0.8 (ACI A.5.2)
£ =0.85B, [’ o f. = 1.785 ksi (12.31 MPa)
Required depth d oa = P2/(¢f.,b) =35 mm (1.375")

req

13.2.1.4 Design of the strut

Members 1, 3, 6, 8 (ACI A.2.6 and A.3.2); B, o = 0.75

By providing four two-legged no. 5 rebars as stirrups at 305 mm (12")
c/c, which is also required for crack control and calculated earlier in accor-
dance to ACI 11.8.4,

A, =1548 mm? (2.4 in?) s, =305 mm (12”)
Y, = 86.98° (A,,/bs,)sin(y,) = 0.003

The stress in these bottle-shaped members will be limited to ¢f,, = $0.85p; o
Of., = 1673.437 psi (11.538 MPa)
Required depth for members 1 and 6: d; ., = P1/(¢f.,b) =79 mm (3.129")
Required width for members 3 and 8: d; . = P3/(¢f.,b) = 73 mm (2.892")
Member 4 (ACI A.2.6 and A.3.2)

This member is considered prism strut: B, ., = 1
The stress in prism-shaped members will be limited to

O cie_prism =00.85B; iomfc’ = 2231 psi (15.383 MPa)

Required width for member 4: D, ... = P1/(¢f.

cu_prism

b) = 64 mm (2.503")



410 Computational analysis and design of bridge structures

13.2.2 Representative pile-supported footing

This hand-calculation example is illustrated in the final report of NCHRP
Project 20-07 Task 217 (Martin and Sanders 2007). Figure 13.10a depicts
2a3.3mx33mx0.9m (11" x 11" x 3’) footing supported by nine piles
arranged in a 3 x 3 pattern. The total factored loading, including the
pile cap and the soil overburden, was 5164 kN (1161 kip) with a trans-
verse moment of 521 kN-m (384 kip-ft). The concrete used in the original
design had an £, of 20.7 MPa (3000 psi), and the steel used was grade 60

1161 kip
384 kip-ft

\/\ / Square column
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16" 23" & 9 37 16"
| |
i i A
i 1170”7 x 11" 0” x 3’ 0”-thick pil H
18 0. 8 | ick pile cap | v
each way ‘\ i L i
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= -t =~ r+n ) 2
] ! ] ] i ] ] ! ] —
! 14 x 14 | |
! precast i !
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|‘ 4/ 0[/ ‘i‘ 4! O/I k|
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l€ 23" ;1 41, 2”; < v 2”; 145 ki
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Figure 13.10 (a) Details of the existing footing. (b) Section through the centerline of
footing. (Continued)
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Figure 13.10 (Continued) (c) 3D STM truss resulting from the flow of forces and resulting
member forces. (Data from Martin Jr., B.T. and Sanders, D.H., “Analysis and Design of
Hammerhead Pier Using Strut and Tie Method,” Final Report-Project 20-07_Task 217,
National Cooperative Highway Research Program, Transportation Research Board,
Washington, DC, November, 2007.)

(f, = 413.7 MPa). The original reinforcement was determined by checking
the moment capacity at the face of the column as well as one-way and two-
way shear at the critical sections.

Assume typical load for each nine-load location is from the factored load-
ing 574 kN (= 5164 kN/9) plus load based on moment 71 kN (the moment
divided by the section modulus of the pile group, 521/7.3 = 71 kN or
384/24 = 16 kip) for a total of 645 kN (145 kip) (see Figure 13.10b and c).

13.2.2.1 Check the capacity of the ties

The required area of reinforcement (A), is

P, 190
of, 0.9x60

st T

=3.52in%*(2270.96 mm?)

The factored flexural resistance required to resist 1.2 M,

2 2
M, > 1.2x%0.36ﬁ - 1.2x%0.36\6 = 21,334 kip-in

T

=1778 kip-ft(2412.34 kN-m)

The minimum area of flexural reinforcement corresponding to 1.2M_, can
then be determined.
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A min =&=14.13 in*(9116.11 mm?)
’ 2.33x0.9%x60

With three parallel ties, the area of reinforcement required to ensure
the factored flexural resistance is at least 1.2M_, which is equal to
14.13/3 = 4.71 in?(3038.7 mm?).

The amount of reinforcement required to resist 1.33 times the factored
loads is

cr

A, =1.33%3.52 =4.68in*(3019.35 mm?)

The amount of reinforcement required to resist 1.33 times the factored loads
is less than the amount required to resist 1.2M_,; therefore, this smaller
amount will be checked against the amount provided by the original design
of the footing. There are presently 18 no. 8 bars provided in the lower mat
in each direction. This equals 18 x 0.79 = 14.22 in? (9174.18 mm?). This
results in 14.22/3 = 4.74 in? (3058.06 mm?) per tie zone. This reinforce-
ment is distributed across the full width of the footing and not the limits
of the nodes. Even though the total amount of reinforcement is greater
than the 4.68 in? (3019.35 mm?) required, it is not placed within the
region defined by the nodes and therefore does not meet the requirements
of STM.

13.2.2.2 Check the capacity of struts

Take the representative strut AJ (Figure 13.10c¢).
Using node A as representative of all the corner nodes, the area of the
vertical projection of the strut may be calculated as

25.45%x6.88 (25.45+19.8)
s T Ix2

Asrut =f+2><25.45+

=87.55+50.90+45.25=1.185x10° mm?*(183.7in?)

Because this value is a vertical section of the strut, the cross-sectional area
perpendicular to the axis of the strut can be calculated by cos(28.4°) x
183.70 = 1.0426 x 10° mm? (161.6 in?).

The limiting compressive stress f,, in the strut depends on the principal
strain, €, in the concrete surrounding the tension ties.

The tensile strain in tie AB is

P, 190
ALE,  4.74x29,000

In accordance with AASHTO LRFD C5.6.3.3.3, the strain will be approxi-
mately equal to 1.382x107/2=0.691x 10~ at the midpoint of the strut. Using

=1.382x10""

&
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the angle between the plane of the tension ties and the diagonal strut of 28.4°,
the principal strain e, can be determined using the following:
€1 = & + (&s +0.002)cot?a
=0.691x107 +(0.691x 107 +0.002)cot*28.4°
=9.9%x107°

and the limiting compressive stress f,,, the nominal resistance P,, and then
the factored resistance P,, in the strut are

“0.8+170g;, 0.84+170%x9.90x1073
=2.55ksi (17.58 MPa)

=1.21ksi <0.85%3

P, =f.As=121x161.6 =195.5kip (869.63kN)
P, =¢P, =0.7x195.5 =137 kips (609.4kN)

As this is less than the factored load in the strut of 305 kip (1356.7 kN), the
strut capacity is inadequate. To meet the strength requirement of the strut, the
depth of the footing would need to be increased by approximately 355.6 mm
(14”). This increase in depth would decrease the load in the strut and increase
the area of the strut due to the change in the geometry of the STM.

13.2.2.3 Check nodal zone stress limits

The CCC nodal zone at the column—cap interface has a stress of

_9x145

f5_42x4z

=0.74ksi(5.1Mpa)

This value is below the nodal stress limit for a CCC node of

0.85¢f, =0.85x0.70x 3 =1.78ksi(12.27 MPa)

The stress in the CTT nodal zone immediately above the piles is

145

fe=Taxia

=0.74ksi(5.1MPa)

As the CTT nodal zones immediately above the piles have tension ties in at
least two directions, the nodal zone stress limit is

0.65¢f, =0.65x0.70x 3 =1.36ksi(9.38 Mpa) > 0.74ksi(5.1MPa)
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13.2.2.4 Check the detailing for the anchorage of the ties

The no. 8 bars are required to develop a force of 190 kip (845.16 kN) at the
inner face of the piles. The original plans called for no hooks or any other
anchorage device. The stress in the no. 8 bars at the inner faces of the piles is

_ 190
6x0.79

In accordance with AASHTO LRFD paragraph 5.11.2.1.1, the basic tension
development length of a no. 8 bar, [,, is 868.68 mm (34.2"). The develop-
ment length can be reduced as a function of the amount of stress in the bar;
hence (40/60) x 34.2 = 584.2 mm (23”). Because a development length of
609.6 mm (24") is provided, the original anchorage details are acceptable.

In this section a very simple structure was analyzed to demonstrate the
STM method. But when the structure is more complicated with larger num-
bers of members or when the structure is indeterminate, STM goes beyond
the limits of hand calculation. Since the procedure is based on trial and error
to get the optimum STM model, a computer program will be necessary.
CAST (computer-aided strut-and-tie), a state-of-the-art program developed
by Kuchma (2005) sponsored by the National Science Foundation, is a very
useful tool with a user-friendly graphics interface.

The following case studies will demonstrate the usage of STMs in the
transportation-related field. All cases can be simulated by using planar STM
models. The first four cases were solved earlier by hand calculations (Fu et al.
2005) and later by CAST for verification. The fifth case is for an integral pier
bent, which was covered in the final report of NCHRP Project 20-07 Task
217 (Martin and Sanders 2007) and then solved by CAST for this chapter.

fs =40ksi(275.80 MPa)

13.3 2D ILLUSTRATED EXAMPLE |—ABUTMENT ON PILE

An abutment on piles is widely used in bridges, and one under construction
can be seen in Figure 13.11a and b (Fu et al. 20035). For the case study, the
abutment considered is 10.06 m (33’) long, 0.91 m (3’) wide, and 0.91 m (3’)
deep. Eleven prestressed concrete deck beams bearing on elastomeric pads
are supported at an interval of 0.91 m (3’) along the length of the abutment.
The concrete slabs span 15.24 m (50’) and transfer 107.61 kip (478.67 kN)
factored load on each elastomeric pad. The abutment is supported on six
piles spaced at 1.83 m (6’) on center. With this geometry, where depth is
half the distance between the supports, this abutment is a special deep
beam where Bernoulli’s region does not exist and there is a disturbed region
throughout. AASHTO states that Bernoulli’s region does not exist when
the depth-to-span ratio exceeds two-fifth. This beam exceeds that limit.
According to one of the criteria of St. Venant’s principle, D-regions are
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#6 stirrup spacing

Figure 13.11 (a) Abutment under construction. (b) Abutment reinforcing detail. (c) Case
study |—Truss model and results using CAST program.

those parts of a structure within a distance equal to the beam depth of the
member from the concentrated force (load or reaction).
13.3.1 General properties

D-region thickness = 914.4 mm (36”).
Concrete cylinder strength = 4000 psi (27.58 MPa)
Nonprestressed reinforcement yield strength = 60,000 psi (413.69 MPa)

www. TechnicalBooksPdf.com
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The truss model and the results obtained from CAST are presented in
Figure 13.11c. Based on the calculation by the CAST program, maximum
compression in the diagonal strut is 101.87 kip (453.14 kN) and in the
vertical strut is 107.61 kip (478.67 kN). Maximum tension in the top tie
is 31.76 kip (141.28 kN) and in the bottom tie is 50.87 kip (226.28 kN).
Size of the upper nodes is determined by the size of bearing, and the size
of the lower nodes is decided by the sizes of piles. Rebar sizes and arrange-
ments are finalized after a few iterations. Bearing reinforcement details
in the width direction can be determined by a simple truss model in the
horizontal direction. The abutment is 914.4 mm (3’) wide, and the strut
section 914.4 mm x 152.4 mm (36" x 6”) provides the required strength
for the struts. For ties, three no. 6 bars can provide the required strength.
However, code-specified minimum reinforcement must be provided to pre-
vent temperature-, creep-, and shrinkage-related issues.

13.4 2D ILLUSTRATED EXAMPLE 2—WALLED PIER

Another common structure found in the transportation field is a solid shaft
bridge pier on a mat foundation shown in Figure 13.12a (Fu et al. 2005).
This case study is done for a 5.49-m (18’) high by 0.91-m (3’) wide wall on a
mat foundation. Four girders are resting on the wall, and each girder reac-
tion is 215.22 kip (957.35 kN). St. Venant’s principle states: “The localized
effects caused by any load acting on the body will dissipate or smooth out
within regions that are sufficiently away from the location of the load.”
Elevation of the structure is shown in Figure 13.12b.

Based on the same principle, an STM model is developed for the walled
pier and presented in Figure 13.12c. The inclined angle g can either be
obtained from a stress trajectory plot or be assumed to vary from 65° for
Ild = 1°=55° for I/d = 2.0, where [ is the wall length and d is the height. A
reasonable path at a 2-to-1 slope is created here to flow the concentrated
loads from the top of the wall toward the mat foundation. Maximum
strut force is 128.9 kip (573.38 kN), and maximum tie force is 50.22 kip
(223.39 kN), which are in the same range of Case Study 1, and a similar
strut width and reinforcement will be sufficient. Again, for this case, mini-
mum steel per code provisions applicable to the wall have to be provided.

13.5 2D ILLUSTRATED EXAMPLE 3—CRANE BEAM

A conservative estimate of the resistance of a concrete structure may be
obtained by the application of the lower-bound theorem of plasticity. If suf-
ficient ductility is present in the system, a STM fulfills the conditions for the
application of the lower-bound theory. The lower-bound theorem requires
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identifying at least one plausible load path and ensuring that no portion of
the load path is overstressed.

This case study pertains to the gantry crane beam at the Maryland Port
Authority Harbor as shown in Figure 13.13a (Fu 1994; Fu et al. 2005).
The beam section is 1.83 m (6’) deep by 0.61 m (2’) wide and has five
spans, each 1.83 m (6’). 135# gantry rail on continuous base plate (1/2” or
12.7 mm thick by 24” or 609.6 mm wide), anchored with the beam and
the whole assembly, is encased except for the top 25.4 mm (1”) of the rail
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Figure 13.12 (a) Solid shaft bridge pier on a mat foundation under construction. (b) Walled
pier. (Continued)
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Figure 13.12 (Continued) (c) Case study 2—Truss model and results using CAST program.

for wheel movement. A schematic sketch of the structure can be seen in
Figure 13.13b.

Five-span continuous beam models are built with five different configu-
rations to simulate the stress trajectories for the moving wheel loads of
the crane. Five configurations represent the first wheel placed at 0, L/5,
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Figure 13.13 (a) Gantry crane beam at the Maryland Port Authority Harbor. (b) Schematic
sketch of a gantry crane beam. (Continued)
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Figure 13.13 (Continued) (c) Case study 3—Truss model and results using CAST program.
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2L/5, 3L/5, and 4L/5 from the end support, and other wheels follow the
location of the wheel spacing. As shown in Figure 13.13b, crane loads are
applied at the top of the deep beam, and the self-weight of the deep beam
is considered as loads to the deck. The crane load consists of eight wheels,
each 180.5 kip (802.90 kN) (factored). The envelope results for each case
are tabulated in the study report to the Maryland Port Authority (Fu
1994).

Results from the CAST for all the five configurations are shown in
Figure 13.13c. For Case No. 4B, the maximum tension force is 61.45 kip
(273.34 kN) and the maximum compression force is 201.84 kip (897.83 kN).
Beam thickness is 609.6 mm (24”). Based on wheel contact width and height
of rail, the width of the strut will be 254 mm (10”) minimum; hence the
strut section considered is 254 mm x 609.6 mm (10” x 24”). Reinforcements
of four no. 6 rebars are provided at the top and bottom for the tie members.
Truss forces and stress interaction (actual/allowable) ratios are well below
unity for all the members.

After achieving the solution for the members, a detailed nodal analysis is
performed. With 254-mm (10”) width struts, the nodes at the bottom ends
of the most heavily loaded members were overstressed. A few iterations
were necessary to optimize the strut width (ranging from 254 mm [10”]
to 304.8 mm [12"]) so that the stress triangles within the nodal zone get
reoriented and meet the strength requirement of the code-specified limit of
the nodal zone.

The stress fields in struts and ties are idealized to be uniaxial, whereas
the stress fields in nodal zones are biaxial. These conditions cause stress
discontinuity at the interface of the strut and node stress fields and at the
interface of the tie and node stress fields. The stress discontinuity also
occurs along the longitudinal boundary of the strut or tie stress fields if the
selected stress distribution across the effective width is uniformly distrib-
uted. For 2D structures, the interface between two different stress fields is
commonly referred to as the line of stress discontinuity. Although the term
line is used, the stress discontinuity actually occurs on a surface perpendic-
ular to the plane of the structures, across the D-region thickness. For this
reason, reinforcement is required at the nodal locations perpendicular to
the plane of the structures. This reinforcement can be seen in Figure 13.11b
provided for the case 1 example.

13.6 2D/3D ILLUSTRATED EXAMPLE 4—HAMMERHEAD
PIER OF THOMAS JEFFERSON BRIDGE

This structure is located in St. Mary’s and Calvert counties in Southern
Maryland (Fu et al. 2005). It was completed and put into service in 1977.
During an inspection in 1979, cracks were observed in the deepwater
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piers. These piers developed cracks from the corner of the girder base
plate and were propagated for great lengths. The scope of this case study
is to highlight the application of a newer-generation STM, which was not
in practice at the time of the original design. Thus, these piers were not
designed with adequate reinforcement and remedial post-tensioning was
required.

Depth-to-span ratios vary from 1 to 2 and girders are transferring loads
very close to the support edge, making these Hammerheads ideal candidates
for STM applications.

1. Pier cap 1 (Figure 13.14a). Length 8.53 m (28’), width 1.22 m (4’), depth
at the end 1.07 m (3’-6"), and at the pier face 2.74 m (9’), four loads at
250 kip (1112.06 kN), each placed on the top of the cap. The first load
is 0.61 m (2') from the left end, and the rest are at 2.44 m (8’) intervals.
The last load is 0.61 m (2’) from the right end.

2. Pier cap 2 (Figure 13.14b). Length 8.53 m (28’), width 1.524 m (§5’),
depth at the end 1.37 m (4’-6”), and at the pier face 4.27 m (14’), four
loads at 290 kip (1289.98 kN), each placed on the top of the cap. The
locations of loads are the same for Pier cap 1.

3. Pier cap 3 (Figure 13.14c). Length 8.53 m (28’), width 1.83 m (6’), depth
at the end 1.83 m (6), and at the pier face 8.53 m (28’), four loads at
550 kip (2446.52 kN), each placed on the top of the cap. The locations
of loads are the same for Pier cap 1.

As per this case study 7.5 in? (4838.7 mm?2) reinforcement at the top tie
level provided acceptable strength for all three Hammerheads. However,
a minimum requirement of reinforcement for crack control needs to be
provided in accordance with ACI 318. The STM results can be seen in
Figure 13.14d.

There could be numerous reasons for the cracks to develop. Shrinkage,
stress concentration, or some erection condition may be a few of them.
During STM analysis, the presence of cracks was not considered, but the
existence of the crack will redistribute the stress flow. The choice of load
path is limited by the deformation capacity of the beam, and a situation
may arise when, due to the presence of the crack, a structure is unable to
undergo the force distribution to reach the assumed load path. In connec-
tion with the crack, the common retrofit is post-tensioning. In the STM,
the external post-tensioning can be efficiently modeled as external load.
All forces acting on the anchorage zone shall be considered in the selection
of an STM, which should follow a path from the anchorages to the end of
the anchorage zone.

A finite element analysis was done for pier cap 2, using ANSYS. The SOLID65
elements (3D-reinforced concrete solid) were used. The physical model can be
seen in Figure 13.14e. In the original analysis, girder reaction was 290 kip
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Figure 13.14 (a) Pier cap I. (b) Pier cap 2. (c) Pier cap 3. (Continued)

(1289.98 kN), but then the load was increased to see the crack formation.
Cracks were observed at about 750 kip (3336.17 kN) for the girder reaction.
From the stress contour S, (lateral stress, Figure 13.14f), the tension zone can
be identified where reinforcement shall be provided as tie members or stirrups.
The S, (vertical stress) contours can be seen in Figure 13.14g. In this figure, the

formation of struts is clearly visible.
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Figure 13.14 (Continued) (d) Case study 3—Truss model and results using CAST program.
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Figure 13.14 (Continued) (g) Case study 4—ANSYS model (S,—vertical stress).

13.7 2D ILLUSTRATED EXAMPLE 5—INTEGRAL
BENT CAP

This case study is illustrated in the final report of NCHRP Project 20-07
Task 217 (Martin and Sanders 2007). A three-span rigid-frame structure
has the configuration shown in Figure 13.15a. The superstructure consists
of a four-cell cast-in-place box girder carrying a 12-m (40’) roadway. The
box girders are fully supported during casting and are integral with the
bent caps. The superstructure geometry is shown in Figure 13.15b, and
the geometry of the bent is shown in Figure 13.15c. The bent cap con-
crete has an /. of 27.6 MPa (4 ksi), and the mild reinforcing is grade 60
(f, = 413.7 MPa). The reinforcing for the integral cap in bent 3 is designed
using AASHTO LRFD strut-and-tie provisions and HL-93 live loading
applied to the spans as shown in Figure 13.15d.

In this example, there are two live loading cases on the same STM model,
except varied load magnitudes. The first case places the live load on the can-
tilever to maximize the negative moment. This is illustrated in Figure 13.135e,
and the resulting forces on the STM are shown in Figure 13.15f. The second
case loads the middle of the bent with live load to maximize the positive
moment in the cap. This is illustrated in Figure 13.15g, and the resulting
loading on the STM is shown in Figure 13.15h.
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Figure 13.15 (a) Rigid-frame geometry. (b) Cross section of the structure. (c) Bent
geometry. (Continued)

13.8 ALTERNATE COMPATIBILITY STM
AND 2D ILLUSTRATED EXAMPLE 6—
CRACKED DEEP BENT CAP

Alternate to the previously demonstrated STM examples, Scott et al. (2012)
proposed another type of model called compatibility STM (C-STM), where
shear resistance in structural concrete elements is resisted by a combination
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Figure 13.15 (Continued) (d) Application of HL-93 loading to determine maximum reactions.
(e) Live load configuration to maximize cantilever moments. (f) Factored load-
ing resulting from maximizing of cantilever moments. (Continued)

of truss and arch action. Arch action refers to the compressive stress field
that forms the main corner-to-corner diagonal concrete strut from an applied
load, whereas the truss action specifically pertains to the shear mechanism
that engages the transverse reinforcement through smeared diagonal concrete
struts resembling a truss. The contribution of each mechanism was appor-
tioned according to the longitudinal and transverse reinforcement ratios.
Numerical integration schemes were considered to model the discrete
crack patterns for reinforced concrete beams. The truss model geometry is
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Figure 13.15 (Continued) (g) Factored live load configuration to maximize positive
moments. (h) Loading resulting from maximizing of positive moments. (Data
from Martin Jr., B.T. and Sanders, D.H., “Analysis and Design of Hammerhead
Pier Using Strut and Tie Method,” Final Report-Project 20-07_Task 217,
National Cooperative Highway Research Program, Transportation Research
Board, Washington, DC, November, 2007.)

defined by first locating the node coordinates. The horizontal coordinates
of the boundary nodes is either defined (1) by an applied load or bearing
support or (2) at the intersecting lines of thrust from the beam and column
members. The transverse tension ties in the truss mechanism are then located
according to the selected numerical truss (single-point Gauss quadrature).
Each member in the C-STM is comprised of two elements that model the
individual behavior of steel and concrete in that member. The two elements
are constrained together to give the combined steel-concrete response.
After assigning axial rigidities of steel and concrete elements and defining
nonlinear constitutive material relations, the C-STM could be applied to
any nonlinear structural analysis software. The C-STM can be modeled
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Figure 13.16 (a) C-STM model of a deep bent cap by Scott et al. (2000). (Data from Scott,
R.M etal., ACI Structural Journal, 109, 635—-644, 2012.) (b) C-STM model of a deep
bent cap by SAP2000. (Data from SAP2000, “Integrated Software for Structural
Analysis & Design,” Computer and Structures, Inc., Berkeley, CA, 2007,

using separate trusses with nodes constrained together to give the com-
bined steel-concrete member response. This is most easily simulated by
duplicating the assigned nodes in the out-of-plane axis to form two sepa-
rate trusses and constraining the degree of freedom for each of the duplicate



Strut-and-tie modeling 43I

*318ue [euoSelp J2U403-03-13U40D 3Y3 ‘D ¢ |—S/7)3ul = YN wsiueydsw ssna3 ul sdooy aAnde jo Jued uagsiul N

P
P

Efq+ dv+ u +1d T, d + &v =y

JUBID1Y90d BUOZ UOIssaIdWOod d1Ised By Yy

0 _303[%1d + 41d L

Q.-Q
Aq uaAi3 ‘oned yadep—ueds sJaquiaw Sy PUE JUSWSDIOJUIB SSISASUERIY PUE [BUIPNISUO| SY3 JO UONDUN) B SB PAULSP UONIDE SSNII-pUB-YdJe JO
uonngLIuod ay3 uonaodde o1 pasn Yeeds yipeauq yode aya ‘lLis”q/ ¥y = Ld Buideds dooy suo JaA0 333.45U0D 01 [991S SSIDASUE.] JO OlFE. D1IIBWIN|OA Y3 Ld a1 uoisual
3y 01 3unnqLIuod JusWSdJoulB. [euIpMISUO| Jo BaJde 3y sI Ty adaym ‘p*q/ Ty = d ‘93a4du0d 01 |9a3s [euipniiBuo| Jo oned dLBWNjoA 3y 7d ‘sdnuauns jo 39S suo jo
BaJE 3 “Fiy QuaWadIojulad UoIssadwod Jo Bade Yl ‘i JUSWISDIOJUISI UOISU) [eulpnli3uo] Jo BaUe 3yl “y tg°0 = [ se usel aq Aew ‘sisAeue as1da4d aiow € Jo nal| ul
‘UDIYM QUIIDIYS0D WLIB J3A3| [euaaiul ay3 ¢ Burdeds dnuuns aya ‘s Juawadiopulaa uolssaadwod [eulpmiSuo) Jo ploJiuad 3yl 03 J3ql UoIssadWwod SWJIXd WO dUeIsIp

‘

‘P {[991S UOISUS) Y JO PIOJIUSD DY) 01 J3ql UOISSaIdWOD 91940U0D SWLIIXD Y WOy Weaq syl Jo yadap 2ANd3YS 3yl ‘p ‘YIpIm weaq aya “q ‘{yadus| weaq syl ‘]

(#190) (sze)  (92) (1e)  (g9) (8T9)  (9%2) (9222 (sT)
96€ v LEEE €8 g6l 8L  8£8 1S0¥ €18y  SS0 €000 0£000 TS| S0/ €401
(zu1) N (ur) (ur) (uy) (ur) (zu1) (zu1) M g 1d iIn () ww Pl () ww

i Pty ww p  wwPy wwp wwq wwly Wty

a|dwexa de> Juaq doap ay3 jo sa|qeldep ['€[ 99D



432 Computational analysis and design of bridge structures

*9|3ue [euO3eIp J9UJI0D-03-IBUI0D BY)
‘0 {(]1—5/7)3ul = “N wsiueydaw ssnay ul sdooy aAnde jo 1ued J4admaul YN (papusWILIOdal SI 90 ‘sisA[eue 3sidaud aJow B Jo N3l Ul ‘JUaDIYR0d Alljiqnedwod urens

p
P

w(1d+ )+ u +d N+N=NA d+7d)[" =y

JUSI21J90d SUOZ UOoIssaIdwod d1ISE|D By Y

‘sdn.uns Jo 33s dUO Jo B3R BY3 “Fiy JUSWSIIOUIBI UOISS3IAWIOD JO BRJR B3 i JUSWISDI0MUIBI UOISUS) [eUIPNIISUO| JO BaJE B3 “Y {3935 404 Sn|npow s3unoA“g
£91942U02 40 snjnpowl s3unoA”7 ‘4°0 = [ se uajel aq Aew ‘sisAjeue as1da.4d aJow & JO N3I| Ul ‘YDIYM JUSID1S0D WLIB J9A3] [eusaiul aya ¢ Buideds dnuuns aya ‘s {[291s uolsual
33 JO PI013URd 33 03 J3qY UOISsaIdWIOD 3320U0D SWBIIXD Y3 WO Weaq dy3 Jo Yadap sARdSYS a3 ‘P {YIPIM Weaq ay3 g ‘uoissaidwod ul 933.40U0D Jo eaJe a3 “y

v uB+//90N
wisiueydaW

ssna uans ssesuon (& €00 001IEN="pragli ) (096°0€) 06¥F =3 - - 5—¢

0 UR+ETH O
wisiueyosuw

SSNJ3 U] INUIS D324OU0D) (0te) Oee'sy 1 = b.?n? - _vm.o (096'0€) 06¥F =73 - - 1
s e (T¥TD) SYo'prI = S oY

YaJe Ul Ins 33345000 pl"qusze0 (096°0€) 06v¥ =3 - - ol
Suluayns uoisua)

3uipnpur jpa3s dooy Aoy (€'957) 0S€°591 = SN(PT + o) (096°0¢) 06by =3 (9v°7) ¥8SI = “¥'N  (00T) 000'6T =3 b€

p4oy> uoissaudwio (205D ovL191 =pPY'q  (£££°ST) 089€ ="T° (879) 1s0F =¥ (007) 000'6T =3 €|

S+

ployd uolsua| (2050 ovL191 = PY'q (096°0€) 06¥1 =3 (9%2) s18% ="y (007) 000'6T =3 ¥

susWWo) () (0d9) 19 () uw (0d9) 191 °3 Jaquiay

v ’3 v
wuvgu:ou \owum

[9POW 00TV Y3 0 sauswudisse AUpIBL [eIXy Z°€] (g0l



Strut-and-tie modeling 433

nodes. The steel and concrete elements are then drawn with pinned-end
connections between the appropriate node points.

An example of a cracked deep reinforced concrete bent cap by C-STM
is illustrated here. Figure 13.16a represents the applied C-STM, where the
suffies “C” and “B” refer to the tapered cantilever and beam ends, respec-
tively. A finite element model of the tapered cantilever was established in
SAP2000 (2007) to be analyzed, as illustrated in Figure 13.16b. Table 13.1
shows physical and material variables of the deep bent cap example. Based
on those variables, axial rigidities are calculated and listed in Table 13.2,
which are then assigned to the SAP2000 (2007) model.
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Chapter 14
Stability

14.1 BASICS OF STRUCTURAL STABILITY

Structural stability is the ability of a structure to resist loading. Loss of
such ability, so-called instability, is a state in which the structure is no lon-
ger in equilibrium with change in the geometry of a structure or structural
component under loads. One phenomenon of structural failure led by insta-
bility is excessive structural displacements or component deformations.
The underlying causes are the loss of stiffness in some particular degrees
of freedom due to geometric and/or material constitutional reasons, that is,
geometric and material nonlinearities.

According to the principle of minimum total potential energy, a structure
is in equilibrium when the total energy no longer changes or the first-order
derivative of the total energy to displacements equals to zero. As illustrated
in Section 3.2.1, Equation 3.1 (or Equation 12.4 where oI1/8d = 0), which
leads to the establishment of global equilibrium equation 3.3, reveals any
possible state that makes the total energy minimal or maximal (locally or
globally). Further, the value of the second-order derivative tells the trend of
total energy changes as shown in Figure 14.1 and Equations 14.1 through
14.3. The engineering purpose of stability analyses is to find any practical
solution for Equation 3.3, or a state, that meets Equation 14.2 or 14.3.

2
zdrz[ >0 The solution of Equation 3.3 is structurally stable (14.1)
&1 . . -

SE 0 The solution of Equation 3.3 is in a state of unknown (14.2)
&1

P <0 The solution of Equation 3.3 is structurally unstable (14.3)

From the perspective of stiffness matrix analysis in the global equilibrium
formulation (Equation 3.3 where [K,+K, +K} ]da =F), Equations 14.2

435
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(a) Stable state (b) Unknown state

(c) Unstable state

Figure 14.1 (a—c) States of structural equilibrium.

and 14.3 are equivalent to any diagonal element being zero and being less
than zero, respectively. Based on the making of the global stiffness and its
changing from positive to zero or even negative, the instability of a struc-
ture can be in the following three categories:

1. Buckling. Scenarios where the stiffness change due to the large dis-
placement is ignored (K; =0), and when evaluating elastic matrix
D in Equation 3.12, a constant Young’s modulus E is assumed, that
is, small displacements and elastic material. Only the stiffness of ini-
tial stress K, is considered. Therefore, buckling is an elastic stability
problem in which the stiffness due to geometric change is ignored.
When buckling happens, the structure suddenly changes to an unsta-
ble or unknown state. As a point clearly divides the structural states
from stable to unstable, buckling is often referred to as bifurcation
buckling and the loads to reach this point are called critical loads.
A column or beam under compression as shown in Figure 14.2a is a
typical buckling problem. By solving general eigenproblem as shown

Column in
compression

Beam in deflection

(a) Buckling

(c) Material entering plastic

(b) Large displacements

Figure 14.2 (a—c) Categories of structural instability.
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in Equation 14.4, the critical load factor (eigenvalue) and displacement
patterns of buckling (eigenvector) can be obtained.

Ky +4K,[=0 (14.4)

2. Excessive displacements. Scenarios where the stiffness changes due
to both initial stress and large displacements are considered and
when evaluating elastic matrix D in Equation 3.12, a constant E is
assumed, that is, large displacements and elastic material. The devel-
opment of excessive displacements is gradual. The bifurcation point
as in category (1) does not exist. Cable-stayed structures under certain
load combinations as shown in Figure 14.2b can develop excessive
displacements. For long-span bridges, as large displacements are more
significant than inelastic material, excessive displacements under cer-
tain load combinations should be investigated.

3. Collapse. Scenarios that are the same as category (2), but when evaluat-
ing elastic matrix D in Equation 3.12, the tangent at the current strain
position on material constitutive curves is used instead of a constant E,
that is, inelastic material. Similar to that of category (2), no bifurcation
point exists in the equilibrium changes from stable to unstable. Figure
14.2¢ shows a simple example of structural collapse due to inelastic
material. Depending on the material property, collapse could happen
before large displacements develop. As this type of instability is due
to material entering the inelastic stage, the ultimate load leading to
collapse or structural failure is often called limited state capacity or
ultimate collapse capacity. It is common to conduct limited state capac-
ity analyses for middle- and short-span bridges. For particular types
of structures, such as PC/RC girder bridges, stiffness changes due to
initial stress and large displacement can be simply ignored so as to sim-
plify the iterations. This type of instability is not covered in this book.

14.2 BUCKLING

Buckling means loss of the stability of an equilibrium configuration, with-
out fracture or separation of the material or at least prior to it (Cook et al.
2002). In general, there are two types of buckling: bifurcation buckling
and snap-through buckling. Bifurcation buckling is the type of buckling
based on the elementary column theory where a straight prebuckling con-
figuration under a critical load P,, is no longer in a stable state of equilib-
rium and may also be in a different buckled configuration. As shown in
Figure 14.3, the primary path is following the original load-displacement
curve and its extension. Also shown in the same figure, the secondary path
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Figure 14.3 Possible load versus displacement behavior of thin-walled structures. (a) Linear
prebuckling path and rise postbuckling path. (b) Nonlinear prebuckling path
and drop postbuckling path. (From Cook, R.D. et al.: Concepts and Applications
of Finite Element Analysis, 4th edition, New York, 2002. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission.)

is the alternative path that originates when the critical load is reached. The
two paths intersect at the bifurcation point. Once past the bifurcation point,
the primary path is unstable. It is possible that mathematically the structure
follows the primary path, whereas the real structure follows the secondary
path. If the secondary path has a positive derivative (rises), the structure has
postbuckling strength (Figure 14.3a). A limit point is a maximum on a load—
displacement curve, but this point is not a bifurcation point because there is
no immediate adjacent equilibrium configuration. When a limit-point load
is reached under increasing load, snap-through buckling occurs, as the struc-
ture assumes a new configuration. A collapse load is the maximum load a
structure can sustain without gross deformation. It may be greater or less
than the computed bifurcation buckling load as shown in Figure 14.3.

Linear perturbation analyses can be performed from time to time during
a fully nonlinear analysis by including the linear perturbation steps between
the general response steps. The linear perturbation response has no effect
as the general analysis is continued. If geometric nonlinearity is included
in the general analysis on which a linear perturbation study is based, stress
stiffening or softening effects and load stiffening effects are included in the
linear perturbation analysis.

The loads for which the stiffness matrix becomes singular are searched
by an eigenvalue buckling problem. Equation 14.4 has nontrivial solutions
where K is the tangent stiffness matrix when the loads are applied, and K,
is the initial stress stiffness. Eigenvalue buckling is generally used to esti-
mate the critical buckling loads of stiff structures, for example, structures
carrying their loads primarily by axial or membrane action. Even when the
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response of a structure is nonlinear prior to collapse, a general eigenvalue
or linear buckling analysis can provide useful estimates of collapse mode
shapes. Generally speaking, eigenvalue analysis is a straightforward prob-
lem. However, some structures have many buckling modes with closely
spaced eigenvalues, which can cause numerical problems. In these cases it
often helps to apply enough preload, just below the buckling load, before
performing the eigenvalue extraction. In many cases a series of closely
spaced eigenvalues indicate that the structure is imperfection sensitive.

In mathematics, an eigenvalue of Equation 14.4 indicates that at least
one diagonal element in the sum matrix becomes zero when K, is amplified
by that time. In structures, it means the critical point has been reached if
applied load has been multiplied by a factor of eigenvalue. In engineering, it
is meaningful only when its associated load is clearly defined. For example,
when K, is due to all structural weights, the first eigenvalue (A) predicts
that the structure will lose its stability if all structural weights are equally
multiplied by a factor of A. If an analysis is to know how many times a live
load will cause buckling, K, and K, in Equation 14.4 should be adjusted
accordingly. To accurately predict the buckling load, a special-purpose finite
element analysis (FEA) package, which can sum K, at one stage due to cer-
tain loads into K, and compute K, at another stage due to another load,
should be employed. Taking a cable-stayed bridge as an example, K, in
Equation 14.4 should be able to include all the initial stresses accumulated
from the first construction stage until the deck is superimposed, and K, in
Equation 14.4 counts for only one particularly extreme live load. Therefore,
the eigenvalue may predict a meaningful engineering safety factor.

14.2.1 Linear buckling of a steel plate
14.2.1.1 Formulation of plate buckling

In this section, plate buckling theory is discussed. The von Karman large
deflection equations for flat isotropic plates with in-plane loading were
modified to account for anisotropy by Rostovtsev (1940), and later the
effect of initial imperfections were included resulting in the following
simultaneous equations, which are considered the most general equa-
tions currently available for solving plate buckling problems (Murray
1984):
4 4
D, %% g 99
Ox Ox"0z

0zr  ox? ox? 8

70) d) (y+ o) +@82(y+m)
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2 2
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where:

o is the lateral deflection

¢ is the stress function

q is the load intensity on the plate
D., D, are plate stiffnesses

E., E, are moduli of elasticity

t,, t, are the thicknesses of plate
v,, v, are the Poisson’s ratios

14.2.1.2 Solving plate and box girder buckling problem

The high bending moments and shearing forces for long-span bridges may
consider the use of fabricated plate and box girders. In their simplest form,
plate and box girders can be considered as an assemblage of webs and
flanges. To reduce the self-weight of these girders, slender plate sections are
employed. Hence the local buckling and postbuckling reserve the strength
of plates, they are important design criteria. For the efficient use of thin
plates, flanges and webs in a box girder are often reinforced with stiffeners.
However, there are some difficulties that are usually encountered by the
designers of plated structures (Ryall et al. 2000):

The engineer’s simple “plane sections remain plane” theory of bend-
ing is no longer adequate, even for linear elastic analysis.

Nonlinear elastic behavior caused by the buckling of plates can be of
great importance and must be allowed for.

Because of this complex nonlinear elastic behavior as well as stress
concentration problems, some yielding may occur at loads that are
quite low in relation to ultimate collapse loads. While such yielding
may not be of great significance with regard to rigidity and strength,
it means that simple maximum stress criteria are no longer sufficient.

Because of the buckling problem in plates and stiffened panels, com-
plete plastification is far from being realized at collapse. Hence simple
plastic criteria are also not sufficient.

Complex interactions occur between flanges, webs, and diaphragms, and
the pattern of this interaction can change as the level of load increases.

To demonstrate the linear buckling problem, a rectangular plate is com-
pressed in its middle plane by forces uniformly distributed along the sides

X =

0 and x = a, as shown in Figure 14.4.
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Figure 14.4 Simply supported rectangular plate uniformly compressed in one direction.

Thus, the expression for the critical value of the compressive force N, ,
can be simplified as

Neo= "2 L) 147
S m b* ’
Equation 14.7 with m = 1 can be represented in the form

2
D
N,. =k “az (14.8)

where k is a factor depending on the ratio a/b and is shown in Figure 14.5
by the curve marked m = 1. The critical value of the compressive stress G,,
is then given by

N. . k’E  b?

_New _ L 14.
T T TR B (149)

where
b is the thickness of the plate
a is the length
b is the width
m is the number of half-waves in which the plate buckles have been
determined

14.2.2 Linear buckling of steel members

14.2.2.1 Buckling of steel structure members

Steel members in compression in a truss structure have to be analyzed for
buckling loads. Usually buckling becomes a governing criterion in struc-
tures like arched bridges, guyed towers, the top chord of a pony truss, or
any other unbraced compression member.
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Figure 14.5 Buckling stress coefficients for uniaxially compressed plate. (Data from Ryall, M.J.
et al., Manual of Bridge Engineering, Thomas Telford Publishing, London, 2000.)

In this chapter, the pony truss, a half-through bridge truss that has its
deck between the top and bottom chords and has no top lateral bracing, is
used as an example. A pony truss can be idealized as a continuous beam
with intermittent spring support (Figure 14.6). The stiffness of these spring
supports will depend on the vertical and diagonal members of the truss and
floor beams. A method for solving the buckling of a continuous beam on
elastic foundation was suggested by Timoshenko (1936).

Many classical methods were developed for solving the buckling problem,
but most of them are based on the idealization of a bridge as a continuous
beam on elastic foundation. In this chapter, the method of finding a buckling
load of a pony truss bridge as suggested by Timoshenko (1936) is illustrated.
Another effective method, which gave comparable results but is not listed here,
was established by the Structural Stability Research Council (SSRC) Guide
(Galambos 1998). A case study of a 27-m (90’) pony truss is considered, and
the results are compared with those based on an ANSYS numerical model.

S 12 1 A h

Figure 14.6 Pony truss idealized as a continuous beam on spring support.
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14.2.2.2 Buckling analysis of a pony truss
by Timoshenko’s method

Length of vertical members = [ (as shown in Figure 14.7)
Modulus of elasticity = E

Moment of inertia of vertical members = I,

Length of floor beam = d (as shown in Figure 14.7)
Moment of inertia of floor beam = I,

Length of diagonal members = a

Moment of inertia of diagonals =1,

Length of each panel = 2¢

Total length of all top chord members = L

Moment of inertia of top chord members = I,

1. Calculate the modulus of equivalent elastic foundation
a. Vertical members

P I’d 1
= B= 01 ="
3EI, 2EI, A+B

b. Diagonal members

a 1’d 2
= B= 2= 5
3EI, 2EI, A+B

c. Considering all parts

l 3
L,=1,+2I, (j

a
3 2
A / B_ I°d 0= 1
3EL, 2EI, A+B
2. Calculating the buckling load
Calculate b
b Ry P - n’El,
c ‘ L

Calculate bI*/16EI, and find out 1/m from the following table by

interpolating

bL* /16El, 0 5 10 15 228 565 100 162.8 200 300 500

1000

I/m 0.696 0.524 0.443 0.396 0.363 0.324 0.29 0.259 0.246 0.225 0.204 0.174
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Figure 14.7 Floor beam, vertical members, and diagonal members of a pony truss bridge.
Calculate the buckling load as

P, =m*P,

14.2.2.3 Case study of pony truss by Timoshenko’s method

The following bridge has been considered for the case study:

Length of vertical members = /= 120" (3048 mm)

Modulus of elasticity = E = 29,000 ksi (199,955 MPa)

Moment of inertia of vertical members =1, = 9.906 mm x 10’ mm (238 in*)

Length of floor beam = d = 6756 mm (266")

Moment of inertia of floor beam = I, = 1.361 mm x 10° mm (3270 in*)

Length of diagonal members = a = 3810 mm (150”)

Moment of inertia of diagonals = I, = 9.906 mm X 10" mm (238 in*)

Length of each panel = 2¢ = 180” (4572 mm)

Total length of all top chord members = L = 29,041 mm (1143.36")

Moment of inertia of top chord members = I, = 2.219 mm x 10% mm
(533 in%)

1. Calculate the modulus of equivalent elastic foundation
a. Vertical members

3
A= ! =0.0835 in/kip
3FI,
2
B=19 _0.025 in/kip

b
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1 -
RO] = m = 9.22 klp/ln

b. Diagonal members
a3
3EI,

A= =0.163 in/kip

P

B=
2EI,

=0.037 in/kip

2 .
Ry, = 1B 9.98 kip/in

c. Considering all parts

3
I,=1,+2I, (’) — 481.712 in*
a
13
A=t _0.041 in/kip
3EL,
2
B=19 _0.025 in/kip
2E,
Re» = =15.099 kip/in
A+B

2. Calculating the buckling load
Calculate b

R
c

b =0.08388

2
P, = T‘TEL =116.6966 kip

bI*
16El,

=579.658

Hence from the table: 1/m = 0.198

P, =m*P, = 2988.66 kip (13,293.6 kN)
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bl*/16El, = 579.658

From Timoshenko Table 2.9, I/m = 0.198

Then,m = 5.061

P/P,=m? =256l

P, = m?P, = 2988.66 kip (13,293.6 kN) > 2.12P_. = 866.2956 kip (3853.3 N)
P . = 408.63

max

The P,, calculated here, 2988.66 kip, is far above 1.5P,,, and even greatly
exceeds 2.12P,, allowed by AASHTO (2013). It can be concluded that the
response in a linear analysis step is the linear perturbation response about
the base state. The base state is the current state of the model at the end of
the last general analysis step prior to the linear perturbation step. If the first
step of an analysis is a perturbation step, the base state is determined from
the initial conditions.

14.3 FEM APPROACH OF STABILITY ANALYSIS

A technique of seeding the finite element mesh with an initial displacement
field is employed in this study to initiate out-of-plane deformations of the
flat compression panels. In this technique, the finite element mesh is sub-
jected to a linearized buckling analysis to obtain the first buckling mode.
The displacement field associated with this lowest mode is then superim-
posed on the finite element model as a seed imperfection for use in the
incremental nonlinear analysis.

As previously discussed in Chapter 3, for stiffness analysis, Ky, the total
tangential stiffness matrix is the sum of three terms: (1) K, the usual, small
displacements stiffness matrix; (2) K, initial stress matrix or geometric
matrix; and (3) K,, the initial displacement matrix or large displacement
matrix. For short-span bridges, if the large deformation is ignored, the
total tangential stiffness will have only K,, the elastic, small displacement
stiffness matrix, and K, the initial stress stiffness matrix. For a long-span
cable-stayed bridge, as the axial forces along the pylon and the girder are in
compression, K, will reduce K. If the loads that cause the initial stress, usu-
ally the structural weight and cable stressing, keep increasing, a critical point
will be reached, at which the determinant of the total stiffness matrix is zero.

Such a bifurcation stability problem can be solved as an eigenvalue prob-
lem (Tang 1976; Ermopoulos 1992). In actual situations, however, it rarely
happens due to the flaws in building the structure. K; should also be con-
sidered, and the full Newton—Raphson process is required. In some typical
situations, it is easy to understand. For example, the transverse stability
due to the live load of a vertically stayed cable bridge under transverse
wind loads will be enhanced after the deck moves laterally away from the
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centerline. Not only the tension, the positive K but also the laterally sloped
geometry K, of the cables will enhance the lateral stiffness.

Again, the stability analysis of a long-span cable-stayed bridge can be
combined with its nonlinear analysis. The analysis of a long-span cable-
stayed bridge with a main span of 1088 m, however, shows that the stati-
cally geometrical nonlinear stability analysis is not sufficient. The total
tangential stiffness, with K; included, hardly reaches zero. This suggests
that aerodynamic stability analysis and the geometric plus material non-
linear analyses are required (Ren 1999). When material nonlinearity is
considered, a uniaxial representation of the bilinear elastic and perfectly
plastic steel constitutive law is employed. The von Mises yield criterion,
which is considered most suitable for structural steels, can be selected to
extrapolate a yield surface in three-dimensional (3D) principal stress space.

A full nonlinear stability analysis provides greater accuracy by incremen-
tally increasing load application until a structure becomes unstable. This
condition of instability is achieved when a small increase in the load level
causes a very large change in displacement. Nonlinear stability analysis is a
static method that accounts for material and geometric nonlinearities, load
perturbations, geometric imperfections, and gaps. Either a small destabiliz-
ing load or an initial imperfection is necessary to initiate the solution of a
desired buckling mode.

A nonlinear analysis requires incremental load steps in an explicit or
implicit manner. At the end of each increment, the structure geometry
changes and possibly the material is nonlinear or the material has yielded.
An explicit nonlinear analysis performs the incremental procedure, and
at the end of each increment updates the stiffness matrix based on the
geometry changes and material changes (if applicable). An implicit nonlin-
ear analysis does the same thing but uses Newton—Raphson iterations to
enforce equilibrium, which is the primary difference between the two types
of analyses. Either explicit or implicit nonlinear static analysis can be used.
However, for nonlinear stability analysis, the implicit method is preferred.

14.4 3D ILLUSTRATED EXAMPLE WITH
LINEAR BUCKLING ANALYSIS OF A
PONY TRUSS, PENNSYLVANIA

This example is to verify the hand calculation of a pony truss bridge
shown in Section 14.2.2 by eigenvalue buckling analysis. Eigenvalue buck-
ling analysis done by ANSYS predicts the theoretical buckling loads of
an ideal elastic structure by performing classical Euler buckling analysis.
Eigenvalues are computed for the given structure with the given boundary
conditions and loading. The cross section and the perspective view of the
bridge are shown in Figures 14.7 and 14.8, respectively.
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Figure 14.8 Pony truss bridge.

Solving a 3D model on ANSYS shown in Figure 14.9, the following
eigenvalue results were obtained:

Set Time/Freq

I 0.31468E+07
2 0.34171E+07
3 0.34276E+07
4 0.34995E+07
5 0.37006E+07

Hence the buckling load = 3146.8 kip (13,997 kN), which is close to
2988.66 kip (13,293.6 kN) as calculated from Timoshenko’s method.
Figures 14.10 and 14.11 show the different buckling modes.

Figure 14.9 ANSYS model of the pony truss bridge.
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bridge buckling.

Figure 14.10 First mode of the pony truss

Figure 14.11 Second mode of the pony truss bridge buckling.
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14.5 3D ILLUSTRATED EXAMPLE WITH
LINEAR BUCKLING ANALYSIS OF A
STANDARD SIMPLE ARCH RIB

This example is to demonstrate the basic stability analysis—linear, or elastic,
buckling analysis. In this example, a prismatic single arch rib with a span
of 50 m is fixed at both ends. The geometry of the rib axis is a parabolic
curve with a chord height-to-span length ratio of 0.3. Moment inertia on
both in-plane and out of plane are equivalent. Both weight-equivalent cross-
sectional area and stiffness-equivalent cross-sectional area are the same too.
The material is concrete.

Figures 14.12 through 14.14 show the first three modes of linear
buckling analysis, respectively. The ratios of critical loads to the applied
loads, the structural weight, are 408.516, 1046.208, and 1259.367,
respectively. Table 14.1 shows the comparison between VBDS (Wang
and Fu 2005), a special-purpose bridge FEA package, and a theoretical
formula (Li 1996). Values in the table are converted from critical load
factors (A).

Figure 14.12 The first mode of a simple arch bridge bulking, out of plane (A = 408.516).
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Figure 14.14 The third mode of a simple arch bridge buckling, in-plane (A = 1259.367).
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Table 14.] Comparison of the buckling load of a simple arch bridge (kN/m)

Category VBDS Li’s theoretical method
First mode (lateral) 10,213 10,780
Third mode (plane) 31,484 32,200

14.6 3D ILLUSTRATED EXAMPLE WITH
LINEAR BUCKLING ANALYSIS OF A
PROPOSED TIED-ARCH BRIDGE—LINYI,
PEOPLE’S REPUBLIC OF CHINA

In this example, a tied-arch bridge with steel tube concrete ribs is used to
illustrate selections of load cases to form the initial stress stiffness matrix
s0 as to conduct meaningful linear buckling analyses.

Figure 14.15 shows the main dimensions of the bridge. The ribs are steel
tubes filled with concrete, the hangers are high-strength steel strands, the
tie girders are post-tensioned concrete girders, and the lateral wind bracing
beams are hollow steel tubes. The construction sequences include the fol-
lowing three main stages:

1. Stage 1. Cast tie girders and lateral beams with temporary supports at
each hanger location and post-tensing tie girders.

2. Stage 2. Install ribs and lateral wind bracing beams, then install hang-
ers, and fill the rib concrete and first-time jacking hangers.

3. Stage 3. Build deck and its attachments and jack the hangers and
finalize their jacking stress levels.

Figure 14.15 The 3D model of a tied-arch bridge (m).
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The load cases contain the following:

1. Structural weights of all installed components at stage 1

2. Structural weights of all newly installed components at stage 2
3. Hanger tuning in stage 2

4. Superimposed deck loads in stage 3

5. Hanger tuning in stage 3

All other FEA-related properties are not listed here.

This example includes many analyses such as stage changing, hanger
tuning, and live loading. The stability-related analyses include (1) finding
the live loads that make the compression on top of one rib maximal and
(2) comparing buckling load factors regarding different acting loads and
whether or not accumulated initial stresses are considered.

One live load that causes compression on top of one rib maximal is
analyzed. As a 3D model and influence surface loading are used, the lateral
distribution of live loads is clearly displayed by the axial force distribution
and structure displacements as shown in Figures 14.16 and 14.17, respec-
tively. Figures 14.18 through 14.20 show the first three modes of buckling
considering only the extreme live loads in the initial stress stiffness matrix
(K;) and including total accumulated initial stress stiffness (from stages
1 to 3) in K. The buckling pattern (eigenvectors) are all out of plane, indi-
cating that the ribs have a much higher stiffness in vertical plane than in

818

Figure 14.16 Axial forces (kN) under live loads that cause the compression on the top
of one rib maximal.
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Figure 14.17 The correspondent displacements (mm) under live loads that cause the
compression on the top of one rib maximal.
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Figure 14.18 The first mode of buckling (out of plane) considering only the extreme live
loads in initial stress stiffness matrix (K;) and including total accumulated
initial stress stiffness (from stages | to 3) in K.

lateral plane. The corresponding critical load factors (A) are 51.00, 62.4,
and 95.28, respectively. The critical load factor 51.00 of the first mode,
for example, means the arch bridge would enter the first bifurcated point
when the live loads are increased by 51 times. Note that it is increased by
51 times, not 50 times, as the initial stress is already accumulated in Kj.
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Figure 14.19 The second mode of buckling (out of plane) considering only the extreme
live loads in initial stress stiffness matrix (K;) and including total accumu-
lated initial stress stiffness (from stages | to 3) in K.

Figure 14.20 The third mode of buckling (out of plane) considering only the extreme live
loads in initial stress stiffness matrix (K;) and including total accumulated
initial stress stiffness (from stages | to 3) in K.
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Figure 14.21 The first mode of buckling (out of plane) considering all loads accumulated
up to the current stage in initial stress stiffness matrix (K;) and including
total accumulated initial stress stiffness (from stages | to 3) in K.

Figure 14.21 shows the first mode of buckling considering all loads
accumulated up to stage 3 in the initial stress stiffness matrix (K,) and
including total accumulated initial stress stiffness (from stages 1 to 3) in
Ko. The buckling pattern is out of plane. The corresponding critical load
factor (A) is 4.23, much lower than that when considering only live loads,
indicating that the critical load factors in bifurcated buckling analysis is
engineering meaningful only when the acting loads are clearly defined.
Also, the nature of acting loads is shown by the difference of Figure 14.21
from Figures 14.18 through 14.20.

Because most bridges are built in many stages, whenever the initial stress
stiffness is evaluated in any stage, the initial stress should be accumulated
from the first stage to the stage prior to (or upto) the current stage. Also, the
initial stress stiffness should be able to include the linear stiffness matrix (as
the so-called initial stress considered). Moreover, it has to be able to pick
a particular load case as the acting load case in buckling analysis. Further,
to be more practical, the analyzed extreme live loads should be able to be
saved as load cases. To simplify, (1) when computing K, of Equation 14.4,
stiffness due to accumulated initial stress should be able to be included,
(2) when computing K, of Equation 14.4, the acting loads should be able to
be selected among many different dead and live load cases, and (3) analyzed
extreme live loads should be able to be treated as a regular load case, which
are very important and practical features when initial stress problems such
as buckling or stability are regarded.
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14.7 3D ILLUSTRATED EXAMPLE WITH
NONLINEAR STABILITY ANALYSIS OF
A CABLE-STAYED BRIDGE, JIANGSU,
PEOPLE’S REPUBLIC OF CHINA

For the demonstration of nonlinear stability analysis, the same cable-stayed
bridge, Sutong Bridge, Jiangsu, China, in Chapter 11 is taken as an exam-
ple to illustrate issues. The typical cross section of the steel box girder, the
concrete pylon, and elevation profile are shown in Figures 12.23, 12.26,
and 12.29, respectively. As described in Chapter 11, the steel girder and
the pylon are modeled as a 3D frame, the diaphragm at the anchor posi-
tion is modeled as a rigid body, and the cable is modeled as a 3D truss.
Totally, the model is meshed with 1032 elements and 1035 nodes. VBDS is
employed in the analysis. ANSYS is also employed for checking some analy-
ses. Several different loading patterns are taken in the stability analysis of
this bridge. Table 14.2 lists the load patterns and critical load of the stability
analysis. In the six loading patterns, only the increment of the construction
load, which includes a 100-ton crane at the end of the girder and a uniform
load of 1 ton/m at the maximum single-cantilever stage, shows the cou-
pling of bending in vertical and lateral directions. Figure 14.22 shows the
vertical and lateral displacements when the construction loads increase to

Table 14.2 Loading patterns and the critical loads in stability analysis

Loading patterns Description Critical case

To search the live load
safety factor without wind
interfering at service stage

At S, increase V
step by step

When the live loads are increased by
40 times of the normal live load, the
vertical displacements at the center
of the main span abruptly reached
42 and 13 m at the top of the pylon.
The structure, however, still
maintains some degree of stiffness.
No lateral displacement significantly
increased.

At Sy, increase S
step by step

At S, plus W,
increase C step
by step

At S,,increase W
step by step

To search the whole
structural weight safety
factor without wind
interference at service stage

To search the construction
load safety factor with wind
interference at maximum
dual-cantilever stage

To search the static wind
load safety factor at
maximum dual-cantilever
stage

At about three times of S, the
displacements increase abruptly. No
lateral displacement significantly
increased.

When increased to 240 times of C,
the displacements increase abruptly.
No lateral displacement significantly
increased.

Still remains in elastic even at
50 times of W, while the lateral
displacement at the end of the
girder reaches to 7 m.

(Continued)
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Table 14.2 (Continued) Loading patterns and the critical loads in stability analysis

Loading patterns Description Critical case
At S, plus W, To search the At 46 times of C, the vertical
increase C step construction load safety displacement at the end of the
by step factor with wind girder increased to over 100 m
interfering at maximum accompanied with 42 m of lateral
single-cantilever stage displacements (Figure 14.22).
At S, increase W To search the static wind At 48 times of W, the lateral
step by step load safety factor at displacement at the end of the
maximum single- girder increased to over 100 m.

cantilever stage without
the consideration of the
construction load

S the ideal state at the service stage (the structural weight, cable tuning, and the superimposed dead
load); S,, the state at the maximum dual-cantilever stage (the structural weight and the cable tuning);
S,, the state at the maximum single-cantilever stage (the structural weight and the cable tuning); S, the
whole structure weight plus superimposed dead load; V, the live loads that cause the maximum verti-
cal displacement at the center of the main span; C,a 100-ton crane at one or two ends of the canti-
lever and | ton/meter of the other construction load; W, the lateral wind load.
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Figure 14.22 The vertical (top) and the lateral (bottom) displacements (m) of the girder
when the construction loads are increased by 46 times of the normal
construction loads at the maximum single-cantilever stage.

46 times the earlier construction load, while the lateral wind load remains
unchanged. The stability analysis also shows that the structure at the stage
when its main span is ready to close is more vulnerable than at the stage when
its side span reaches the second auxiliary pier. Although the results of these
six loading patterns show that the structure has sufficient stability against
live loads, wind load, construction load, and the structural weight, the full
nonlinear ultimate analysis (Ren 1999), in which the material nonlinearity
is also considered, and the aerodynamic stability analysis are required.
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Redundancy analysis

15.1 BASICS OF BRIDGE REDUNDANCY

Redundancy is the quality of a bridge to perform as designed in a damaged
state because of the presence of multiple load paths. Conversely, nonredun-
dancy is the lack of alternate load paths, meaning the failure of a single
primary load-carrying member would result in the failure of the entire struc-
ture. Three types of redundancy, load path, structural, and internal redun-
dancies, have been identified much earlier. Recently, the FHWA provides
a new definition for these three types of redundancy in the FHWA Bridge
Design Handbook (FHWA/NSBA/HDR 2012), and they are summarized in
Table 15.1. In general, redundancy issue should exist for all types of bridges.
However, of all bridge construction materials, only steel bridge members
may have such designation as fracture critical, and with regard to the topic
of structural redundancy, the nonredundant steel members are the fracture
critical members (FCMs). FCMs are those in axial tension or tension com-
ponents of bending members whose failure would result in the failure of the
structure. These elements are labeled as such on the contract drawings and
are subjected to more stringent design, testing, and inspection criteria than
those that are part of a redundant system (Fu and Schelling 1989, 1994;
Fu 2000). Caltrans (2004) made a list of members or components, including
but not limited to the following, identified as FCMs:

Tension ties in arch bridges

Tension members in truss bridges

Tension flanges and webs in two-girder bridges

Tension flanges and webs in single or double box girder bridges
Tension flanges and webs in floor beams or cross girders

Tension braces in the cross frame of horizontally curved girder bridges
Attachments welded to an FCM when their dimension exceeds 100 mm
(4”) in the direction parallel to the calculated tensile stress in the FCM
Tension components of bent caps

¢ Splice plates of an FCM

459
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Table 15.1 Types of redundancy

Type Description

Load path A member is considered load path redundant if an alternative and sufficient
redundancy load path is determined to exist. Load path redundancy is the type of

redundancy that designers consider when they count parallel girders or
load paths. However, merely determining that alternate load paths exist is
not enough.The alternative load paths must have sufficient capacity to
carry the load redistributed to them from an adjacent failed member. If the
additional redistributed load fails, progressive failure of the alternative load
path occurs, and the members could in fact be fracture critical. In
determining the sufficiency of alternative load paths, all elements present
(primary and secondary members) should be considered.

Structural A member is considered structurally redundant if its boundary conditions
redundancy  or supports are such that the failure of the member merely changes the
boundary or support conditions but does not result in the collapse of
the superstructure. Again, the member with modified support
conditions must be sufficient to carry loads in its new configuration. For
example, the failure of the negative-moment region of a two-span
continuous girder is not critical to the survival of the superstructure if
the positive-moment region is sufficient to carry the load as a simply
supported girder.
Internal A member is considered internally redundant if an alternative and
redundancy sufficient load path exists within the member itself such as the multiple
plies of riveted steel member.

Source: FHWA/NSBA/HDR, “Steel Bridge Design Handbook FHWA-IF-12-052—Vol. 9:Redundancy,”
Federal Highway Administration, USDOT, November 2012, http://www.fhwa.dot.gov/bridge/steel/
pubs/if| 2052/volume09.pdf."

Moreover, Caltrans made a comprehensive flowchart for identifying FCMs
of complex steel bridges in Figure 15.1.

The definition of a narrow plate girder (PG) system varies slightly from
that used in stability discussions when focusing on redundancy. Whereas
the system could contain any number of closely spaced girders in stabil-
ity discussions, twin girder systems alone constitute a narrow system in
the context of redundancy. This is due to the fact that only two primary
elements exist to transfer load. If one of these fails, the second would be
unable to support the entire weight of the structure, resulting in collapse.
Other elements of the bridge, particularly the deck, could be able to carry
additional loads encountered due to a nonredundant member failure and
prevent collapse, which has been seen in the past. This built-in redundancy
is difficult to predict, however, and is not explicitly recognized in the design.
As such, for typical PG bridges, a minimum of three girders are required to
provide alternate load paths and be considered system redundant.

To a lesser degree, studies of concrete bridge redundancy were made assum-
ing cracking concrete, yield reinforcement, or reaching ultimate moment and
shear capacity of the longitudinal or transverse beams (Imhof et al. 2004).
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Figure 15.1 Flowchart for identifying FCMs of complex steel bridges. (Data from
Caltrans, “Memo to Designers 12-2: Guidelines for Identification of Steel
Bridge Members,” August 2004.)

Another type of redundancy is the structural behavior under dynamic
loads, such as earthquake loading or blast loading. The effect of blast load-
ing is more localized than earthquake’s global effect. The ability to sustain
local damage without total collapse (structural integrity) is a key similarity
between seismic-resistant and blast-resistant designs (NIST 2001). In general,
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the term progressive collapse has constantly been used in the redundancy
analysis. As stated in ASCE 7-10 (2010), progressive collapse is defined as
the spread of an initial local failure from element to element, eventually
resulting in the collapse of an entire structure or disproportionately large
part of it. Progressive collapse due to earthquake loading will be discussed
more in Chapter 17—Dynamic/Earthquake Analysis.

To achieve targeted integrity during blast, the redundancy of the gravity
load-carrying structural system takes center stage in tackling the issue of pro-
gressive collapse. This is not explicitly addressed in any code. However, ASCE
7-10 (2010) implies a desired alternate load path in the event one or more
beams and/or columns of a building fail as a result of a blast. The structure
should be able to remain stable by redistributing the gravity loads to other
members and subsequently to the foundation through an alternate load path,
while keeping building damage somewhat proportional to the initial failure.

For performance-based designs, factors considered include life safety
issues, progressive collapse mechanisms, ductility of certain critical compo-
nents, and redundancy of the whole structure. Blast load damages structures
through propagating spherical pressure waves, which can be simulated by a
series of equivalent loads. Performance of bridge elements under equivalent
static loads can be considered as reasonably similar to that under the origi-
nal dynamic blast loads. For the evaluation of the existing bridges under
blast loading, the structural performance levels, the immediate occupancy
(IO) level, life safety (LS) level, and the collapse prevention (CP) level,
adopted by FEMA (1998) for the seismic evaluation of buildings, are used
here. More details about these three levels will be discussed in Chapter 17.

15.2 PRINCIPLE AND MODELING OF
BRIDGE REDUNDANCY ANALYSIS

The emphasis of this chapter is to illustrate how to conduct a bridge redun-
dancy analysis. NCHRP Report 403 (1998) proposed a series of tables
for system factors to be used in the design and evaluation equations for
common-type bridges. The system factor tables developed in the NCHRP
study are applicable to standard prestressed concrete and steel bridges.
Bridges with configurations that are not covered by the tables have to be
checked by performing a detailed incremental structural analysis. A steel
truss bridge was mentioned specifically in this report to illustrate how the
direct analysis can be applied in practice. This approach is allowed by Penn
DOT Design Manual Part IV, Section 3—Loads and Load Factors (Penn
DOT 2000). Commentary for extreme event IV states that

For this extreme event, a 3D analysis is required. The objective of this
analysis is survival of the bridge (i.e., the bridge may have large perma-
nent deflections, but it has not collapsed).
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Thus, a three-dimensional (3D) nonlinear model of the truss bridge is
recommended for the structural analysis. In this chapter, the safety analysis
is conducted as follows:

1. Member failure check, ultimate capacity check, and functionality
check. It is proposed that the check of member failure be performed
using a 3D elastic analysis of the structural system [ANSYS (2012)
or SAP2000 (2007)]. Member capacity is calculated using AASHTO
member strength formulas (AASHTO 2012, 2013). Penn DOT load
combination extreme event III will be applied on a linear elastic struc-
tural model.

2. Damaged condition check. It is proposed that the check be performed
using ANSYS (2012) or SAP2000 (2007) to analyze the damaged
structure on a structural model. ANSYS (2012) or SAP2000 (2007)
also may be applied using several degrading models to simulate the
incremental analyses. Penn DOT load combination extreme event IV
will be applied on a nonlinear elastic structural model.

The intention is to prove that although this bridge geometry does not sat-
isfy redundancy criteria, the conservatives of the member design ensure that
enough system safety is still available. Note that extreme events III and IV
described here can be replaced by any extreme cases described in other codes.

15.2.1 Analysis cases

When possible, alternate load paths should be included in the design.
Though this is not always an option, special consideration is warranted
during the design of nonredundant structures. Due to the criticality of
the primary load-carrying members, attention should be paid to fatigue,
and effort should be made to eliminate detrimental details when possible.
Sophisticated analyses have been performed in the past with some effec-
tiveness to determine if two-girder systems are truly nonredundant or not,
to account for the membrane action of the deck and to determine load-
shedding properties of secondary members. These analyses are rather gru-
eling and are not suggested as part of a typical design to avoid the penalties
associated with the use of nonredundant members and FCMs.

Before 1998, there was some discussion but little guidance on the assess-
ment of redundancy. The AASHTO LRFD Specifications (AASHTO 2013)
specifications for the design of highway bridges recognize the importance
of redundancy and require its consideration when designing steel bridge
members. The specifications state that a structure is nonredundant when
the failure of a single element could cause collapse.

The AASHTO LRFD specifications (AASHTO 2013) and Penn DOT
Design Manual Part IV (Penn DOT 2000) proposed a format explaining
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how redundancy can be included in the design process by using load factor
modifiers g, where this redundancy factor >1.05 for nonredundant mem-
bers, = 1.00 for conventional levels of redundancy, and >0.95 for excep-
tional levels of redundancy.

In 1998 NCHRP Report 403 was published, entitled “Redundancy in
Highway Bridge Superstructures” (NCHRP 1998). A clear guideline for a
redundancy check was given. The limit states that should be checked to
ensure adequate bridge redundancy and system safety are defined as

1. Member failure. A traditional check of individual member safety
using elastic analysis and nominal member capacity.

2. Ultimate limit state. The ultimate capacity of the intact bridge sys-
tem. It corresponds to the formation of a collapse mechanism for
bridges.

3. Functional limit state. A maximum acceptable live load displacement
in a main longitudinal member equal to the span length/100.

4. Damaged condition limit state. The ultimate capacity of the bridge
system after damage to one main load-carrying element.

Penn DOT Design Manual Part IV (Penn DOT 2000) has an even more
explicit statement on the checking of redundancy for truss bridges, which
are as follows:

1. Provision of a third line of trusses where possible

2. Use of stitched built-up components, which are designed to support
the entire component load with any one element assumed to be bro-
ken and for which joints and splices have been designed to transmit
component loads with any one element of the component assumed to
be broken (based on load combination extreme event III)

3. Demonstration through 3D analysis that failure of any tension com-
ponent, or other components designated by the department, of a two-
truss system will not cause the collapse of the entire structure (based
on load combination extreme event I'V)

A series of analysis cases were defined to match the proper analysis meth-
odology with the appropriate truss configuration.

15.2.2 Finite element modeling

For steel bridge redundancy analysis, two levels of analysis should be made.
First level is the 2D or 3D linear analysis to identify FCMs, as shown in
Figure 15.1. Second level is the 3D nonlinear analysis to check the perfor-
mance under loading. In the 3D nonlinear analysis, steel plastic behavior is
described by bilinear kinematic hardening material model.
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15.3 3D EXAMPLE WITH REDUNDANCY ANALYSIS
OF A PONY TRUSS, PENNSYLVANIA

This illustrated example is to demonstrate the redundancy capacity check
using nonlinear finite element analysis. A truss configuration was selected
to represent the 142'-8 1/2” (43.5-m) Foxstop Road Bridge, shown in
Figures 15.2 and 15.3, where all designs are fabricated using grade 50
(345-MPa) steel. The 3D model in ANSYS is shown in Figure 15.4. Following
the flowchart shown in Figure 15.1, the first step is to identify FCMs.
After the finite element model is made by the first-level linear analysis, the
FCMs are identified. Seventeen (17) FCMs are identified per truss panel (where
A as the left truss panel and B as the right truss panel): nine on truss A are bot-
tom chord members (elements 1 through 9) and eight are diagonal members
(elements 28, 31, 34, 37, 40, 43, 46, and 49). Due to symmetry and simplifi-
cation, only three bottom chord members (L1L3, L5L7, and L9L11) and two
diagonal member-cut cases (U2L3 and U4LS) and one uncut case were ana-
lyzed for each load case. Specifically, a series of code checks are required for
these bottom chord and diagonal members of the truss bridge in the uncut and
cut conditions, which are shown in Table 15.2. Figure 15.5a shows the semi-
box section for the bottom chord with two channels, and Figure 15.5b shows
the wide flange section for the diagonal members, both shown in ANSYS
plastic section designation prepared to the second-level nonlinear analysis.
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Table 15.2 Redundancy analysis

Design dlternates Structural elements Code checks
All basic uncut designs Main truss Dead load conditions
Members Live load maxima
Gusset plates Tension allowables
Connections Column compression
Fatigue (stress range)
All basic cut designs Cross beams Nonfatigue
supports Secondary stresses
Half-truss stability
Redundancy
Deflections
7 10
6 3 9 11
4
6 5
N E 1] [
3 1 14
2 1
2 16 15 3
Local coordinate |Local coordinate Local coordinate |Local coordinate
number number
1 (—dx,—d2,0) 1 (—d2,bf2,0)
2 (“bl—d2.tf) 2 (Cd2,-bf2,4)
3 (=bf1-0.00001,-42,0) 3 (-d2,0,0)
4 (=bf1-0.00001,0,tw) 4 (d2,0,tw)
5 (<bf1,0,0) 5 (d2,bf2,0)
6 (=bf1,d2,tw) 6 (d2,~bf2,tf)
7 (bf1-0.00001,42,0) (b) Diagonal wide flange section
3 (—dx,d2,tf)
9 (dx,d2,0)
10 (bfL,d2.4)
11 (bf1+0.00001,d2,0)
12 (bf1+0.00001,0,tw)
13 (bf1,0,0)
14 (bf1,—-d2,tw)
15 (bf1,-d2-0.00001,0)
16 (dx,—d2-0.00001,f)

(a) Bottom chord double-channel section

Figure 15.5 (a, b) Plastic section definition of FCMs.
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To maximize the live loading effect, live loading positions are dependent
on the locations of cutting members. If the cutting member is close to the
center of the bridge, the truck is positioned at the centerline. Both truck and
lane loads are such transversely positioned that truss panel A will be more
heavily loaded.

15.3.1 Loading cases

The full dead load (DL) and live loading plus impact (LL + I) were applied
as specified by AASHTO LRFD (AASHTO 2013) and Penn DOT Design
Manual (Penn DOT 2000) for extreme cases III and IV. They are summa-
rized as follows:

1. All DL intensities were computed from the actual weights of the indi-
vidual components of the bridge, and their load factors are listed in
Table 15.3.

2. (LL + I) was determined by applying a full PHL-93 or P-82 live load
longitudinally to obtain maximum tension and compression effects
for all members. The impact and distribution factors specified by
AASHTO were utilized. The Penn DOT vehicular live loading on
the roadways of bridges or incidental structures, designated as PHL-
93 (similar to AASHTO HL-93, except higher-design tandem), shall
consist of a combination of the following:

a. Design truck (HS-20 as shown in Figure 15.6a) or design tandem
(two axles of 31.25 kip or 139 kN)

b. Design lane load (0.64 kip/ft or 9.3 kN/m) and the P-82 permit
truck is shown in Figure 15.6b. Note that the loading HL-93 or
PHL-93 used here can be replaced by any other design vehicles
of any code and P-82 can be replaced by permit vehicles of any
jurisdiction.

Two load combinations are considered in either extreme event III (no cut)
or extreme event IV (cut) case. Computer-run cases in relation to element-
cut and load cases are listed in Table 15.4. Load factors in relation to load
combinations and load cases are shown in Table 15.5.

Table 15.3 Dead load factors for extreme events lll and IV

Load factors Extreme event Il Extreme event IV

Yoc Maximum 1.25 1.05
Minimum 0.90 0.95

Vow Maximum 1.50 1.05

Minimum 0.65 0.90
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(a) PHL-93 truck (b) P-82 permit truck

Figure 15.6 Penn DOT (a) PHL-93 and (b) P-82 permit truck configuration.

15.3.2 Results

A series of analysis cases, which are defined in Table 15.4, were developed
to assess the appropriate AASHTO code requirement (AASHTO 2012,
2013) as applied to each member bridge configuration and failure mode.
Analysis case 1 can be obtained by either TRAP (BEST Center 2006) or
ANSYS program. The results of this analysis case are not covered in this
book. Analysis cases 2 and 3, which are in the scope of the redundancy
analysis, have to be obtained by 3D analysis, and the ANSYS program is
used. Specifically, a total of 24 ANSYS runs with 24 analysis cases were
investigated for the redundancy analysis (Table 15.6), each case requiring
the application of multiple loadings for the 188 finite elements, which com-
pose each bridge configuration.

Contained within this section is a summary of results of the ANSYS
analysis of the Foxstop Road Bridge.

15.3.2.1 Extreme event lll

The 3D frame analysis uses the entire truss—deck system assemblage in
determining the stress in two plane trusses and floor beams. A review of
four load cases with no element cut reveals the following:

1. The maximum and average stresses due to bending for all dead and
maximum live load combinations are investigated as specified by
AASHTO LRFD specifications (AASHTO 2013) and Penn DOT
Design Manual Part IV (Penn DOT 2000).

2. The level of secondary stresses is generally low, and predominant
stresses are axial stresses on the truss panels.
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Table 15.5 Load factors in relation to load combinations and load cases

Load combination

Load factors

with element-cut Load
status cases Yoc Yow Yi. truck Y., lane Yo
Extreme event ll| | 1.25 1.5 1.3 x 1.33 1.3 -
(no cur) 2 125 1.5 - - I.1 x 1.33
3 1.25 1.5 1.3 x 1.33 1.3 -
4 1.25 1.5 - - .1 x 1.33
Extreme event IV | 1.05 1.05 1.15x 1.33 1.15 -
(cut element) 2 .05 105 - - 1.05 x 1.33
3 1.05 1.05 I.15x 1.33 1.15 -
4 1.05 1.05 - - 1.05 x 1.33

Table 15.6 Computer-run cases in relation to element-cut and load cases (one lane case)

Cases of element cut

Load cases

Computer-run cases

No cut
Cut |
(first bottom chord)

Cut 3
(third bottom chord)

Cut5
(fifth bottom chord)

Cut 28
(first diagonal chord)

Cut 31
(second diagonal chord)

Each with load cases

I. PHL-93 truck at midspan
and PHL-93 lane all over

2. P-82 truck at midspan

3.PHL-93 truck at I/3 L
and PHL-93 lane all over

4.P-82 truck at I/3 L

P82CLnocut, P82L3nocut,
PHL93CLnocut,
PHL93L3nocut

P82CLcutl, P82L3cutl,
PHL93CLcutl,
PHL93L3cutl

P82CLcut3, P82L3cut3,
PHL93CLcut3,
PHL93L3cut3

P82CLcut5, P82L3cut5,
PHL93CLcut5,
PHL93L3cut5

P82CLcut28, P82L3cut28,
PHL93CLcut28,
PHL93L3cut28
P82CLcut31, P82L3cut3|,
PHL93CLcut3|,
PHL93L3cut3|

3. No member exhibits a combined (axial and bending) stress that
exceeds the allowable given in AASHTO specifications or Penn DOT
Design Manual.

4. Noncomposite action is conservatively considered for the deck sys-
tem. For 3D analysis, floor beams are considered as part of the frame
action. The model showed that the stresses of floor beams (elements
103-152) are under the allowables and they are not the governing
cases compared to the truss members.

5. No yielding is found in any element of these four load cases.
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The results of these analyses are summarized in Table 15.7 under the title
of “no cut” in the column to identify an element cut. By investigation the
most critical stresses for a “no cut” case are —37.96 ksi (261.7 MPa) at
element 62 under load 2-a: 1.25Dc¢ + 1.5DW + 1.3%1.33P-82 (at L/3).
Because it is considered as extreme event III, the allowable stress is the
yield stress of the section, which is 50 ksi (345 MPa) in this case. Also,
the worst vertical displacements are 104 mm (4.1”) under load case 1-a.
Displacement of 104 mm (4.1”) of the 43.5-m (142’-8 1/2") Foxstop Road
Bridge corresponding to L/418 is adequate for the extreme event III limit
state.

15.3.2.2 Extreme event IV

As stated in Section 15.3.2, the test of redundancy required a 3D frame
analysis of the entire system under conditions of severing a single bottom
chord of any twin-channel bottom chord member while sustaining the
full AASHTO (or Penn DOT) dead and live loads applied to attain the
maximum stresses. Or the severed members may be identified as diagonal
tension members as listed in Table 15.6. The results of these analyses also
are given in Table 15.7 for the various member-cut conditions. A sum-
mary of these results follows:

1. Five (5) cut cases are identified, and their maximum stresses and
elastic and inelastic strains are summarized in Table 15.7. With
four load cases, there are 20 runs in total. Among these 20 runs,
one case for bottom chord cut case (load case 1-b-cut 1) and four
cases for diagonal cut cases (load cases 1-b-cut 28, 2-b-cut 28,
3-b-cut 28, 4-b-cut 28) have members plastified. After plastifica-
tion, stresses stay at the level of yield stress, and strains may still
grow to their respective maximum strains under the current load-
ing condition.

2. Ductility ratio listed under column (7) is defined as the maximum
strain divided by the yield strain (0.001724). Resulting from all analy-
ses, the maximum ductility ratio identified is 4.45, which is associated
with “load case 2-b with element 28 cut.”

3. The same “load case 2-b with element 28 cut” gives vertical (y-direction)
displacements of 95 mm (3.75”). Displacement of 95 mm (3.75") of
the 43.5-m (142’-8 1/2") Foxstop Road Bridge corresponds to L/457,
which is also considered adequate for the extreme event IV limit
state.
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Table 15.8 Summary of maximum strains and ductility factors for the two extreme

load cases
Element Maximum strain Ductility
Load case cut Tension Compression  factor
l-a: 1.25Dc + |.5DW + 1.3*%1.33P-82 | 0.002170  -0.002174 1.26
(at CL) (no cut) 28 0.005324  -0.003396  3.088

I-b:0.05Dc + 1.05DW + 1.15%].33P-
82 (at CL) (cut)

2-a: 1.25Dc + |.5DW + 1.3%].33P-82 28 0.007686 -0.006113 4.45
(at L/3) (no cut)

2-b:0.05Dc + 1.05DWV + 1.15%1.33P-
82 (at L/3) (cut)

3-a: 1.25Dc + 1.5DW + |.3Lane + 28 0.003642  -0.001904 2.1
1.3%1.33PHL93 (at CL) (no cut)

3-b: 1.05Dc + 1.05DW + I.15Lane +
.15%1.33PHL93 (at CL) (cut)

4-a:1.25Dc + |.5DW + 1.3Lane + 28 0.004192  -0.002209 243
.3*1.33PHL93 (at L/3) (no cut)

4-b: 1.05Dc + 1.05DW + I.15Lane +
.15%1.33PHL93 (at L/3) (cut)

4. Only a limited number of elements yield by cutting any FCM. This
means the structure would shake down after a few members yielded.
A nonlinear analysis program is capable of redistributing the load
after any member plastifies. The sum of the elastic and plastic strains
yields a ductility ratio of 4.45, shown in Table 15.8.

15.4 3D REDUNDANCY ANALYSIS UNDER BLAST
LOADING OF A PC BEAM BRIDGE, MARYLAND

This example demonstrates the analysis under equivalent blast load on
a prestressed concrete beam bridge formed by 3D frame elements with
plastic hinges assigned at specific locations. The bridge was designed
using AASHTO’s Standard Specifications for Highway Bridges for an
HS-20-44 live load. A representative prestressed concrete beam span is
simply supported, 18.3 m (60’) in length and 12.1 m (39’-8”) wide. There
are six AASHTO type III beams, spaced 2.2 m (7’-2") center to center.
Figure 15.7 shows the bridge’s typical half-section, with symmetry occur-
ring at the centerline.

The bridge deck is 178 mm (7”) thick, which includes a 13-mm (1/2")
monolithic wearing surface. The AASHTO type III beam cross section
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Figure 15.8 (a, b) AASHTO type Ill beam cross sections.

dimensions and prestressing tendon layout are shown in Figure 15.8.
Section A—A corresponds to the end of the bridge, while Section B-B is the
beam cross section at the bridge midspan. The prestressed beam concrete
has a minimum 28-day compressive strength of 5000 psi (34.5 MPa) and a
minimum compressive strength of 4000 psi (27.6 MPa) when jacking. The
prestressing tendons are number 7 wire strand, with 1/2” (13 mm) diameter
and a cross-sectional area of 0.153 in? (98.7 mm?). The capacity of the wire
is 270 ksi (1861.7 MPa).

15.4.1 Bridge model

SAP2000 (2007) is used to create a model of the prestressed concrete beam
bridge. As this example is concerned with the response of the deck as well
as the beams, the deck is also modeled using frame elements. By defin-
ing the deck as frame elements, nonlinear hinges (or plastic hinges) can
be assigned, so the deck will exhibit nonlinear plastic behavior. To prop-
erly model the bridge deck and account for transverse and longitudinal
stiffness, a grid of frame elements is created. The deck frame elements are
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Figure 15.9 Grid of deck frame elements for PC beam bridge.

connected to joints along the prestressed concrete beam centerlines. Four
frame elements are defined, two in the transverse direction and two in the
longitudinal direction.

The width of the deck sections are calculated via the beam tributary area.
The distance between joints along the centerline of the concrete beams in
the longitudinal direction is designated as b and equal to 3.05 m (10’). The
spacing between the concrete beams in the transverse direction is desig-
nated as s and equal to 2.18 m (7’-2”). The overhang distance between the
exterior concrete beams and the edge of the bridge is designated as o and
equal to 0.58 m (1’-11"). Figure 15.9 shows the deck grid model.

Figure 15.8 shows that the AASHTO type III beams have 20 prestressing
tendons. The tendons are modeled as truss elements. Four of these tendons
are deflected strands that vary along the beam length. The remaining 16
strands are straight through the beam length. The four deflected tendons are
modeled together as one at their centroid location, with a cross-sectional
area equal to four times the area of one tendon, or 0.612 in? (395 mm?).
The straight tendons are also modeled as one tendon group, with a cross-
sectional area equal to 2.448 in? (1579 mm?). The two top tendons are used
to resist tension on the top of the beam at release and are not modeled in
this analysis. Figure 15.10 illustrates the tendon layout in SAP2000 (2007).

15.4.2 Attack scenarios

The five attack scenarios for the PC beam bridge are restated in Table 15.9.
Each scenario is characterized by a charge weight of TNT and location
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Figure 15.10 Prestressing tendon layout.

Table 15.9 Attack scenarios for PC beam bridge

Attack Charge weight  Blast location along
scenario (Ib TNT) bridge length (ft)

| 674 34

2 1009 44

3 437 13

4 2911 36

5 1821 21

along the bridge’s 18.3 m (60’) length. The charge weights and locations
were assigned based on their probability distributions and were randomly
generated to several scenarios (Mahoney 2007).

The static equivalent loads of each attack scenario can be calculated.
Table 15.10 displays these calculations for attack scenario 1 as an exam-
ple. Having the distance between the blast and each bridge joint (D) and
the angle of blast (0;) calculated, the program AT-Blast (ARA 2004) based
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Figure 15.11 Attack scenario | (674-Ib TNT) static equivalent joint loads.

on an open-air hemispherical explosion calculates the static pressure at
each joint. The influence surface is the surface area expanding radially
from the explosion centroid. As the blast magnitude increases, the influ-
ence surface increases. Trial and error aided in deciding that the blast
loads may be cut off at pressures less than 200 psi (1.38 MPa). Using
the tributary area method, the pressure is resolved into joint loads. In
Table 15.10, the pressures that appear in bold are greater than or equal
to 200 psi (1.38 MPa), so the corresponding joint loads of these pressures
are applied to the PC beam bridge model. Figure 15.11 shows the static
equivalent joint loads for attack scenario 1 applied to the prestressed con-
crete beam bridge model.

15.4.3 Analyze structural response

The nonlinear static analysis output shows the performance of struc-
tural members’ plastic hinges with nodes color-coded showing the
hinge’s state on the moment-rotation or force—deformation curve. The
analysis generated responses for multiple steps. Figure 15.12 demon-
strates the final response step for one of the attack scenarios, which
reveals that the PC beam bridge experiences total failure in every attack
scenario. Therefore, the bridge under attack has no additional redun-
dancy and will have to be replaced. This result simplifies the quantifica-
tion of damaged areas by performance levels. Table 15.11 summarizes
the structural damage under 10, LS, and CP. With all attack scenarios
under the category of (>CP), there is no redundancy left for this type
of bridges.
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Figure 15.12 Attack scenario | response (step I1).

Table 15.11 PC beam bridge structural
damage costs

Damaged area by
performance level (ft?)

Attack

scenario (i) >10 >LS >CP
| - - 2380
2 - - 2380
3 - - 2380
4 - - 2380
5 - - 2380

15.5 3D ANALYSIS UNDER BLAST LOADING OF
A STEEL PLATE GIRDER BRIDGE, MARYLAND

This example demonstrates the analysis under equivalent blast load on a three-
span continuous steel PG bridge formed by 3D frame elements with plastic
hinges assigned at specific locations. The three-span bridge was designed using
AASHTO?s Standard Specifications for Highway Bridges for an HS-20-44
live load. Each span of the bridge is 61.6 m (202’) long, totaling 184.7 m (606),
with 22 equally spaced diaphragms per span. The concrete deck is 165 mm
(6.5”) thick and 11.68 m (38’-4") wide. There are two steel built-up PGs and
five rolled beam stringers. The PGs are spaced 8.53 m (28’) center to cen-
ter. Between the PGs, the interior stringers are spaced 2.13 m (7’) apart. The
exterior stringers are 1.4 m (4’-7”) center to center from the PGs. Figure 15.13
shows the bridge’s typical section and girder/stringer numbering scheme.
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All structural steel sections are A36 (248-MPa) carbon steel, and the con-
crete deck is lightweight concrete. The stringers are W16 X 40 rolled beams,
and the PG sections vary along the bridge length. There are three different
PG sections, each having a constant web plate depth of 120” (3048 mm). The
web thickness varies along the PG from 9.5 mm (3/8”) to 11 mm (7/16").
The PG flange plates are 762 mm (30”) wide, with a thickness ranging from
8§ mm (1 5/16”) to 57 mm (2 1/4”).

15.5.1 Bridge model

A model of the three-span continuous PG bridge is created by SAP2000
(2007). As this example is concerned with the response of the major
structural elements (e.g., PGs, stringers, deck), the deck is modeled using
frame elements. By defining the deck as frame elements, nonlinear hinges
can be assigned at the ends, so the deck will exhibit nonlinear plastic
behavior. To properly model the bridge deck and show transverse and
longitudinal stiffness, a grid of frame elements is created. The deck frame
elements are connected to the joints along the PG and stringer centerlines.
The modeling details are similar to the PC bridge example discussed in
Section 15.4.1.

The width of the deck sections are calculated via the girder tributary area.
The distance between joints along the centerline of the PGs and stringers in
the longitudinal direction is designated as b and equal to 2.6 m (8.5’). The
distance between the PGs and exterior stringers is designated as s, and equal
to 1.4 m (4'-7”). The spacing between the PGs and interior stringers in the
transverse direction is designated as s, and equal to 2.1 m (7’). The overhang
distance between the exterior stringers and the bridge edge is designated as
o and equal to 0.2 m (7”).

Deck section 1 is along the end of the bridge in the transverse direction.
The width of this section is equal to half the distance between joints along
the PGs and stringers, or b/2. Deck section 2 is also in the transverse direc-
tion, with a width equal to the spacing between joints, or b. Deck section 3
falls in the longitudinal direction along the exterior stringers, so the width
is defined as the overhang distance plus half the beam spacing, or (0 + s,/2).
Deck section 4 elements, also in the longitudinal direction, are along the
PGs, with a width equal to (s, + s,)/2. Deck section 5 elements are in the lon-
gitudinal direction along the interior stringers, with a width equal to their
center-to-center spacing, or s,. Figure 15.14 shows a plan view of the deck
grid at the left end of the bridge model.

15.5.2 Attack scenarios

The five attack scenarios for the steel PG bridge are restated in Table 15.12.
Each scenario is characterized by a charge weight of TNT and location
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Figure 15.14 Grid of deck frame elements for PG Bridge.

Table 15.12 Attack scenarios for steel PG bridge

Attack Charge weight  Blast location along
scenario (IbTNT) bridge length (ft)

| 674 347

2 1009 444

3 437 130

4 2911 361

5 1821 209

along the bridge’s 184.7 m (606’) length. As in the previous example, charge
weights and locations were assigned based on their probability distributions
and were randomly generated to several scenarios (Mahoney 2007).

The static equivalent loads of each attack scenario are calculated.
Table 15.13 displays these calculations for attack scenario 1 as an exam-
ple. The blast load on each joint is calculated the same way as the previ-
ous example. In Table 15.13, the pressures that appear in bold are greater
than or equal to 200 psi (1.38 MPa), so the corresponding joint loads of
these pressures are applied to the PG bridge model. Figure 15.15 shows
the static equivalent joint loads for attack scenario 1 applied to the PG
bridge model.
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15.5.3 Analyze structural response

The nonlinear static analysis output shows the performance of the struc-
tural members’ plastic hinges with nodes color-coded showing the hinge’s
state on the moment-rotation or force—deformation curve. As revealed
in the final response steps for one of the attack scenarios (Figure 15.16),
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Table 15.14 SG bridge structural damage
costs

Damaged area by performance

Attack level (ft2)

scenario (i) >I0 >LS >CP
| 3310 540 3930
2 2861 1962 4303
3 2902 1353 4273
4 1926 1341 3578
5 2041 930 4439

the steel girder (PG) bridge experiences damage in all three performance
levels but still has some redundancy left. Table 15.14 summarizes the
structural damage under 10, LS, and CP. With all attack scenarios under

the category of (>CP), there is some redundancy left for this type of
bridges.



Chapter 16

Integral bridges

16.1 BASICS OF INTEGRAL BRIDGES

16.1.1 Introduction

An integral bridge is a jointless bridge with no bearing at the connection
point where the superstructure and substructure are framed together.
Therefore, integral bridges are categorized as rigid-frame structures
because they eliminate expansion joints. Integral bridges include integral
abutment bridges (IABs) as well as integral piers. As most discussions
focus on IABs, this section will briefly mention integral piers before mov-
ing onto IABs.

One type of integral bridge is the integral pier, which involves build-
ing a monolithic or framing-in joint at the pier. There are a number of
ways to form an integral pier (Sisman and Fu 2004). A common method
in concrete construction is a frame-type structural system, namely, cast-in-
place concrete box girder bridges and was also carried over to steel I-girders
framing into a concrete pier cap or diaphragm. More recently, a number
of versions of integral piers have been developed, which involve steel plate
girder construction to improve substructure layouts, eliminate detrimen-
tal effects of a skewed substructure, or enhance bridge performance under
seismic loads. Some of the new concepts use steel framing-in caps, which
integrate with the concrete columns (Figure 16.1); others are various ver-
sions of traditional concrete caps with varying structural boundary condi-
tions. Whichever method, integral piers concealed within the boundaries
of superstructure lines are definite enhancements to the aesthetic value of a
bridge, whether it is in an urban setting or on a country road.

The main type of integral bridges is the TAB. An integral abutment is
a stub abutment on a single row of flexible piles and constructed without
joints. These bridges allow for expansion and contraction through move-
ment at the abutments. In the conventional design of the superstructure,
bridges are idealized as a continuous beam with simply supported ends.
Figure 16.2 shows possible configurations for a typical four-span highway

491
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Figure 16.2 Possible configurations for a typical four-span highway bridges.

bridge. However, unlike traditional bridges that sit on bearings with heavy
abutments, integral bridges can be formed by casting the deck integrally
with short abutments supported on a single row of flexible piles (Figure 16.3)
to take care of the longitudinal thermal movement of the bridge.

IABs are designed without any expansion joints in the bridge deck.
These bridges are generally designed with stiffness and flexibility spread
throughout the structure—soil system so that all supports accommodate the
thermal and braking loads. They are single- or multiple-span bridges that
have their superstructure cast integrally with their substructure. Generally,
these bridges include capped pile stub abutments. Piers for IABs may be
constructed either integrally with or independently of the superstructure.
Integral or semi-integral bridges are defined as single- or multiple-span con-
tinuous bridges with rigid, nonintegral foundations and movement systems
primarily composed of integral-end diaphragms, compressible backfill,
and movable bearings in a horizontal joint at the superstructure—abutment
interface (Wasserman and Walker 1996).
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Figure 16.3 Integral abutment with flexible piles.

16.1.2 Types of integral abutment

There are several different basic types of abutments, which are conventional,
semi-integral (Figure 16.4), and integral abutments (Figure 16.5). Integral
abutments are a class of abutments in which the superstructure is inte-
grally connected to the abutment and the abutment foundation. Generally
the girders are set on an abutment cap, and a closure pour is cast, which
encases the ends of the girders such that the girder ends are embedded
several inches or more into the abutment concrete (FHWA 2012). Integral
abutments are typically founded on a single line of vertical steel H-piles,
although integral details have occasionally been used with piles, drilled
shafts, and spread footings. Based on surveys, more than half of integral
abutments in the United States are built with their piles oriented for weak
axis bending to minimize the stresses in the abutments.

Semi-integral abutments are different from integral abutments in that inte-
gral abutments have no intentional moment relief detail (hinge) anywhere
between the superstructure and the abutment foundation (Figure 16.5).
With semi-integral abutments, however, the superstructure is integrally
connected to the abutment backwall, but the abutment backwall is isolated
from the abutment cap by means of certain hinge detail (Figure 16.4). The
superstructures for semi-integral bridges are generally supported on bear-
ings as with a conventional structure, thus allowing longitudinal transla-
tion. In this case the backwall is separated from the abutment stem, yet
the beam ends are encased in the backwall as in an IAB. Semi-integral
abutments offer some of the advantages of fully integral abutments such
as elimination of expansion joints and a robust-end diaphragm detail for
the superstructure, while also reducing the moment demand on the piles by
providing a reliable hinge detail that allows the piles to behave in a free-
head rather than fixed-head manner (FHWA 2012).
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Figure 16.4 Semi-integral abutment.

An important step in integral and semi-integral abutment design is to figure
out all the loads and calculate horizontal forces and moments in the foundation
elements. The following loads are considered in the integral abutment design:

¢ Abutment cap self-weight

e Abutment backwall self-weight

¢ Abutment wingwall self-weight

® Miscellaneous dead loads (bearing seats, lateral restraints, etc.)

¢ Superstructure dead load

e Approach slab dead load

e Lateral soil pressure on the backwall (active and passive)

¢ Lateral soil pressure on the wingwalls

¢ Longitudinal applied forces (in select cases, depending on the nature of
the bearings provided between the superstructure and the abutment)
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Figure 16.5 Full-integral abutment.

® Induced forces due to longitudinal movements (most important ther-
mal movements)
e Seismic loads

In addition to the primary effects due to dead load, live load, and so on, integral
bridges are subjected to secondary effects due to (1) creep and shrinkage,
(2) thermal gradients, (3) differential settlement and differential deflections,
(4) pavement-relief pressures when moisture and sustained high temperatures
trigger pavement growth, and (5) soil-pile interaction (Arockiasamy et al.
2004).

16.2 PRINCIPLE AND ANALYSIS OF IABs

The difference of modeling integral bridges and other types of bridges
is handling the soil-structure interaction. Analysis methodologies range
widely from simple to comprehensive analyses. A more comprehensive
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analysis is usually combined with a nonlinear soil-structure interaction
analysis of the foundation elements. A simplified way to approach this is to
separate the foundation analysis from the rest of the structure and consider
the foundation elements independently. For the case of pile or drilled shaft
foundations, this lateral analysis would be accomplished via a laterally
loaded pile analysis, often facilitated by a standardized computer model
based on a p—y curve analysis of the lateral response of the soil until the
laterally loaded pile analysis and the structural analysis converge.

A more rigorous approach to a comprehensive analysis might involve the
modeling of the soil response directly in the structural analysis model. This
step eliminates the tedious iterations of exchanging information manually
between the geotechnical and the structural analysis models, but the result-
ing soil-structure interaction model can become fairly complex (FHWA
2012). Often a simple two-dimensional (2D) model is a sufficiently compre-
hensive approach to the soil-structure interaction analysis. For a skewed
or curved bridge, a full three-dimensional (3D) analysis may be warranted.

In many integral abutments with foundations on steel piles, longitudinal
movements of the bridge will cause sufficiently high internal loads so that
the plastic moment capacity of the pile is exceeded. In those cases, the com-
mon assumption is to allow a plastic hinge to form during the analysis, which
provides significant moment relief for any movements above those that cause
yielding of the piles. Some designers have pointed out that allowing a plastic
hinge at the pile—abutment interface while simultaneously sizing the pile to pre-
vent even a nominal overstress in terms of bending—axial interaction lower in
the pile represents an inconsistent design approach, but to date there have been
no known significant in-service problems for piles designed in this fashion.

16.2.1 Force analysis

In this section, a sample design calculation to attain moment and shears of a

semi-integral abutment is provided for better understanding of the loading due

to earth pressure. Figure 16.6a shows the cross section of the superstructure,

and Figure 16.6b shows the elevation view of the semi-integral abutment. The

calculation steps for the backwall moments and shears are shown here:
Earth pressure resultant per unit width

2

1
w= EKp(Hbackwall) (16'13)

For unit weight of soil Y= 145 pcf (2325 kg/m?), K, = 4, assuming the use of
Expanded Polystyrene (EPS) material behind backwall, and backwall height

Hpacewa = 1.93 m (6.33), calculated w = 11.6 klf (169.2 kN/m). This can be
assumed a distributed line load applied along the abutment.
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Figure 16.6 (a, b) Sample design of a semi-integral abutment.

Beam/girder spacing along the skew can be calculated with

~ Steam (16.1b)

 cos 30°

With beam spacing S = 2.84 m (9.33’) and bridge skew angle of 30°,
L =3.28m (10.77).

Then, by assuming continuous beam along the abutment with supports
at girder lines, the moments, shears, and reaction under triangular earth
pressure can be calculated as

Max positive moment: My, = 0.08wl* = 0.08(11.6 kIf)(10.77 ft)2
= 107.6 fi-kip(145.9 kN-m)

Max negative moment: M, = 0.10wl* = 0.10(11.6 klf)(10.77 ft)2
= 134.6 fe-kip (182.5 kN-m)

www. TechnicalBooksPdf.com
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Max shear: Vi, = 0.6w] = 0.6(11.6 kIf)(10.77 ft)
= 75.0 kip(101.7 kN)

Max reaction at girder: R, = 1. 1wl = 1.1(11.6 klf)(10.77 ft)
=137.4 kip(186.3 kN)

16.3 MODELING OF IABs

When an IAB is analyzed, 2D and 3D models using the finite element method
(FEM) can be built. Three types of soil modeling are used: (1) equivalent
cantilever finite element model, (2) soil spring finite element model, and (3) soil
continuum finite element model.

16.3.1 Equivalent cantilever finite element model

For piles used in the IAB design, there are two pile design alternatives,
(1) conventional elastic design approach and (2) inelastic design approach,
which address the following three AASHTO specification design criteria
(Greimann 1989):

1. Capacity of the pile as structural member (Case A)
2. Capacity of the pile to transfer the load to the ground (Case B)
3. Capacity of the ground to support the load (Case C)

In Case A, a pile embedded in soil can be analytically modeled as an equiva-
lent beam—column structural member without transverse loads between the
member ends and with a base fixed at a specific soil depth. There can be
either a fixed or pinned head based on the rotational restraint at the pile head.
Figure 16.7 shows an idealized fixed-headed pile for both (a) an actual system
and (b) the corresponding equivalent cantilever system. The total length [ of
the equivalent cantilever equals the sum of the length /, above the ground
and the length [, from the soil surface to the fixed base of the equivalent
cantilever. The pile length, [,, that defined whether the pile behaves as a rigid
or flexible pile is given as (Greimann 1989)

I :4[4 EI] (16.2)

where:
E, I is the modulus of elastic and moment of inertia with respect to the
plane of bending of the pile

k, is the horizontal stiffness of the soil
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Figure 16.7 Cantilever idealization of a fixed-headed pile. (a) Actual system. (b) Equivalent
system.

For nonuniform soil conditions, an equivalent uniform lateral soil stiffness
parameter, k., is used to evaluate the length /, as

I

k, :%jkh(x)(lo ~xiPdx (16.3)
i)

where x; is the depth below the abutment. As length  is a function of k,,
interaction is needed for the calculation of k,.

AASHTO Cases B and C assume that the lateral displacement of the pile
can affect the capacity of the pile to transfer load to the ground through ver-
tical friction along the embedment length in Case B, but should not affect
the end-bearing resistance of flexible piles, nor the capacity of the ground
to support the load in Case C. Details of these two cases (Greimann 1989)
are not discussed here as the equivalent cantilever finite element model is a
simplified method with approximation compared to the next two methods.

16.3.2 Soil spring finite element model

This modeling technique represents the soil around a pile as a Winkler
foundation with distributed springs and dashpots (for dynamic analysis
only) that are constant or frequency dependent or with lumped springs con-
centrated at a finite number of nodes. In the modeling process, while the
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bridge deck, abutment walls, girders, and cross members at the piers are
idealized using four-node shell elements, piles and remaining cross mem-
bers are modeled as beam elements. The soil backfill and the piles, fixed at
their base, support the abutments.

16.3.2.1 Soil spring and p-y curve

To allow the stiffness of the deck—girder connection to be varied, spring
tied elements are employed at their interface. Nonlinear spring elements
model the soil backfill as well as the soil around the piles. A set of p—y
curves may be generated using the modified Ramberg—Osgood model as
shown in Figure 16.8 for different types of soil, particularly very stiff clay,
loose sand, and dense sand. Similar curves for f~z (load-slip) and g—z (pile
tip load—settlement) are also generated using the same modified Ramberg—
Osgood model. Based on Greimann and Wolde-Tinsae (1988), the modified
Ramberg-Osgood model can be used to approximate the p—y, f~z, and g—z
soil displacement-resistance curves as follows:

p= Ry (16.4a)
Y1+]y/y.
where:
P
. 16.4b
y b, ( )
where:

ky, is the initial lateral stiffness
P is the generalized soil resistance
P, is the ultimate lateral soil resistance

Modified Ramberg—Osgood

Elastic—perfectly plastic

Yu
y

Figure 16.8 The modified Ramberg—Osgood curve for a typical P—y curve.
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n is the shape parameter
y is the lateral displacement of the pile
Y. is the ultimate lateral displacement

Alternatively, the guidelines by the American Petroleum Institute (API)
(1993) are used to develop the P-y curves, which represent the stiffness for
the nonlinear springs substituting the soil around the piles. The P-y rela-
tionship is a hyperbolic tangent curve defined as follows:

kz
P = AP,tanh| —— .
tan {APM y} (16.5a)

where:
P, is the ultimate bearing capacity
k is the parameter defined by ¢ angle of internal friction
z is the depth in the soil
y is the lateral displacement of the pile
A is the parameter that varies with soil depth in case of static loading
according to Equation 16.5a

A=3.0—0.8%2 0.9 (16.5b)

where:
X is the soil depth
D is the average pile length

16.3.2.2 Soil behind the abutment

The soil-structure interaction is modeled by attaching linear springs at the
selected nodes of the abutment and piles. The springs simulate the effect of
the abutment fill on the bridge. As shown in Figure 16.9, the number of soil
springs behind the abutment depends on the size of the tributary area each
spring represents.

Using the design curves by National Cooperative Highway Research
Program (NCHRP, Barker 1991), passive and active earth pressure effects
behind the abutment can be modeled for the soil with the corresponding
unit weight and ¢ angle of internal friction.

16.3.2.3 Soil around piles

Figure 16.10 shows the soil-pile interaction where the soil is idealized by
three sets of springs: lateral springs k,,, vertical springs k,, and a point spring k..
Table 16.1 lists the parameters for soil spring (Greimann and Wolde-Tinsae
1988).
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Figure 16.9 Rendering finite element model of an integral abutment bridge. (Data
from Shah, B.R., “3D Finite Element Analysis of Integral Abutment Bridges
Subjected to Thermal Loading,” MS Thesis, Kansas State University,
Manhattan, KS, 2007.)
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Figure 16.10 Soil—pile interaction with soil springs.
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Table 16.1 Parameters for soil springs
Case

Parameter Clay Sand
Lateral springs
P, 9¢,B 3yBk,x
ki, 67c, nx
Vertical springs
froax (H-piles), (kIf) The least of 0.02N[2(d + 2b)]

2(d + byc,

2(d + 2b)c,

2(dc, + b,
frmax (Others), (kIf) The lesser of: 0.04NI,

I,

i<,
kv I Ofmax/zc I quax /Zc
Point spring
qmax (ka) 9CU 8NC0YT‘
kq I quax /ZC | quax /ZC
B = pile width;

b; = flange width of H-pile (ft);

¢, = adhesion between soil and pile = o, (psf);

¢, = undrained cohesion of the clay soil = 97.0N + 114.0 (psf);

d = section depth of H-pile or diameter of pipe pile (ft);

J =200 for loose sand, 600 for medium sand, 1500 for dense sand;
I, = gross perimeter of the pile (ft);

k, =tz:1n2(45O + %)

N = average standard penetration blow count;
N, = corrected standard penetration test (SPT) blow count at the depth of pile tip
= N (uncorrected) if N < |5;
=15+05(N-15if N> I5;
n, = constant of subgrade reaction = Jy/1.35;
x = depth from the soil surface;
z. = relative displacement required to develop f;., OF .
= 0.4" (0.033’) for sand;
= 0.2" (0.021") for clay;
o, = shear strength reduction factor;
v = effective unit soil weight;
¢ = angle of internal friction.

corr
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Figure 16.11 Soil spring model on a pile.

Three types of soil resistance—displacement models can describe soil charac-
teristics (Greimann and Wolde-Tinsae 1988): lateral resistance—displacement
(p-y) curves; longitudinal load-slip (f-z) curves; and pile tip load—settlement
(g—z) curves. The p—y curves represent the relationship between the lateral
soil pressure against the pile (force per unit length of the pile) and the cor-
responding lateral pile displacement. The f—z curves describe the relation-
ship between skin friction (force per unit length of the pile) and the relative
vertical displacement between the pile and the soil. The g—z curves describe
the relationship between the bearing stress at the pile tip and the pile tip
settlement. The total pile tip force is g times the effective pile tip area. All
three types of curves assume the soil behavior to be nonlinear and can be
developed from basic soil parameters where the p—y curve is the most prom-
inent one, so it is called the p—y method. Figure 16.11 shows the spring
model of a steel pile.
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16.3.3 Soil continuum finite element model

In this approach a 2D or 3D finite element model of the superstructure and
substructure, including surrounding soil, is built. Both pile and soil can be
modeled into a 3D finite element model using eight-node solid continuum
elements with a nonlinear response (Khodair and Hassiotis 2013). While
an elastic—plastic response was adopted for the pile elements, the Mohr—
Coulomb model with strain hardening idealized the nonlinear soil response.
A surface-to-surface contact algorithm was employed to model the sand-
pile interaction. To model the tangential contact, the friction coefficient for
the interaction between pile and soil materials was calculated.

In the 3D finite element model shown in Khodair and Hassiotis (2013),
the pile and soil were modeled using 3D eight-node solid continuum ele-
ments. Three boundary conditions were imposed in the finite element
model: (1) the pile is fixed at the bottom to model the embedment of the
piles, (2) all degrees of freedom associated with the exterior surface of
the sand surrounding the piles are restrained to model the confinement
of the galvanized steel sleeves by crushed stone backfill (which may not
be the case for others), and (3) guided fixation at the top of the pile is
modeled by tying the nodes at the top surface of the pile to a defined ref-
erence point located in the centroid of the cross section of the pile at its
top to simulate the embedment of the piles into the abutments. The steel
piles were modeled using an elastic—perfectly plastic model. The soil was
modeled using a strain hardening model implementing Mohr-Coulomb
failure criterion. The soil-pile interaction was simulated by adopting tan-
gential and normal contact behavior in the model. Master and slave sur-
faces were defined in the model such that the exterior surface of the pile
was used to model the master surface and the interior surface of the sand
was used for the slave surface.

For a predrilled hole case, such as a drilled shaft, special treatment has
to be made where interface elements allow relative movement between
the structural elements and the contact soil. More detailed descrip-
tion of the modeling technique is covered by an illustrated example in
Section 16.5.

16.4 ILLUSTRATED EXAMPLE OF A STEEL GIRDER
BRIDGE IN SOIL SPRING FINITE ELEMENT MODEL

An TAB described in a PhD dissertation at the University of Maryland
(Thanasattayawibul 2006) is used as a case study in this chapter. The cross
section of the bridge is shown in Figure 16.12. The bridge consists of a
178-mm (7”)-thick concrete slab that is supported by six girders. There is a
0.6-m (2') overhang on each side of the bridge. There are 11 piles supporting
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Figure 16.12 Cross section of the illustrated bridge.

the bridge abutment oriented for strong axis bending. Girders, cross brac-
ing, and piles are beams of W30X132, L6X6, and HP10X42, respectively.
The piles are placed such that the bending occurs around their strong
axis. The pile length in this example is 12.5 m (41’), of which 0.3 m (1') is
within the abutment. The total width of the abutment is equal to the width
of the bridge, 10.4 m (34’) as shown in Figure 16.12.

16.4.1 Structure

The model is analyzed using the ANSYS program. The shell element type
that is chosen for the slabs, girders, and piles is SHELL 43, a four-node
plastic shell. The element has plasticity, creep, stress stiffening, large deflec-
tion, and large strain capabilities. The element has six degrees of freedom
at each node: translations in the nodal x-, y-, and z-directions and rota-
tions about the nodal x-, y-, and z-axes. Cross bracings are modeled using
beam elements of type BEAM 4, a 3D elastic beam. BEAM 4 is a uni-
axial element with tension, compression, torsion, and bending capabilities.
The element has six degrees of freedom at each node: translations in the
nodal x-, y-, and z-directions and rotations about the nodal x-, y-, and
z-axes. Abutments are modeled using solid elements of type SOLID 45. The
element has plasticity, creep, swelling, stress stiffening, large deflection,
and large strain capabilities. The element is defined by eight nodes having
three degrees of freedom at each node: translations in the nodal x-, y-, and
z-directions. Multipoint constraint elements, MPC184, with rigid beam
option are used to connect all elements together. MPC184 comprises a gen-
eral class of multipoint constraint elements that implement kinematic con-
straints using Lagrange multipliers. A rigid beam option has six degrees of
freedom at each node: translations and rotations in x-, y-, and z-directions.
As stated, the concrete slab is modeled using shell elements, and a node is
placed at each end of the typical section, along the centerline of each girder,
along each end of the girders’ top flange, and at a point halfway between
girders. Beam elements are used to model the cross bracings with the same
nodes at the intersection of webs and flanges. The layout of nodes for the
concrete slab, girders, and cross bracings is shown in Figure 16.13.
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Figure 16.13 Superstructure node distribution of the IAB example.

16.4.2 Soil

Soil is modeled using spring elements, COMBIN39, a spring between a
node and ground. The spring is a unidirectional element with nonlinear
generalized force—deflection capability. The element has three degrees of
freedom at each node: translations in the nodal x-, y-, and z-directions,
with their properties as described in Section 16.3.2. There are three types
of springs used in the model. The first type represents the displacement in
lateral and longitudinal directions and consists of two springs. Both springs
are at the center of the web. They are modeled at each layer of the nodes
along the pile starting at one layer below the bottom of the abutment and
continuing all the way to one layer above the tip of the pile. The second
type of spring represents friction along the pile. It consists of a single spring
at each node along the web of each pile starting one layer below the bottom
of the abutment and ending one layer above the tip of the pile. The third
and final type of spring is the tip spring that represents the settlement in
the pile and consists of seven springs at each node at the tip of the pile. This
spring representation of the tip of each pile allows for uniform resistance to
pile settlement and is used in the analysis of friction piles. These pile tip—
settlement springs are replaced with fixed end conditions when analyzing
bridge models with end-bearing piles. Figure 16.11 depicts the spring model
of a steel pile used in this example.

16.5 ILLUSTRATED EXAMPLE OF A STEEL
GIRDER BRIDGE IN 3D SOIL CONTINUUM
FINITE ELEMENT MODEL

The same example used in Section 16.4 built with soil springs is also used
here to demonstrate the soil continuum finite element model. A 3D nonlin-
ear finite element model using ANSYS was built and listed in another PhD
dissertation at the University of Maryland (Rasmi 2012). The nonlinearity
is considered for the nonlinear effect of the material plasticity of steel piles.
Due to symmetry and the complicity of the continuum modeling, only a
quarter of the bridge was modeled.

The entire model was meshed using plane and hexahedral elements.
The concrete slabs, piles, and girders were meshed using the 2D shell element
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(SHELL181) of four nodes with six degrees of freedom per node. Cross brac-
ings were modeled using the one-dimensional beam element (BEAM188).
The concrete abutment and soil were modeled using a 3D solid element
(SOLID185) of 20 nodes with three degrees of freedom per node. SOLID185
has plasticity, hyperelasticity, stress stiffening, creep, large deflection, and
large strain capabilities and is used for 3D modeling of solid structures.

As described in Rasmi’s work (Rasmi 2012; Rasmi et al. 2013), the
geometry of the quarter model and the boundary conditions are shown in
Figure 16.14. Symmetry boundary conditions are applied on the symmetry
planes: z = 0 on symmetry surface 1 and x = 0 on symmetry surface 2. The
bottom of the soil is fixed in the y- and z-directions to simulate the end-bear-
ing type pile. The soil thickness in the positive z-direction (backfill soil thick-
ness) is assumed to be 0.9 m (3’), and its thickness in the negative z-direction
behind the piles is assumed to be 3 m (10’). Assuming that these soil layers are
thick enough, the free surfaces of the soil are assumed to be stationary in the
z-direction as the piles move. Therefore, the displacements perpendicular to
these free areas (displacement in the z-direction) are assigned zero value as the
boundary condition. Gravity is applied in the y-direction (Figure 16.14). The
supports are provided in the y-direction underneath the slab at 15.2-m (50)
distances. The y-displacement at these constraints is zero.

As for material properties, steel material used in piles, girders, and cross
bracings are modeled as elastic—plastic material with multilinear plastic
behavior using a MISO command in ANSYS and only the deviatoric stress is
assumed to cause yielding. Concrete, where it is only used for slab and abut-
ment, is assumed to behave only elastically. For soil, the material cannot stand

Symmetric surface 1

Figure 16.14 Geometry of the quarter model of the integral abutment bridge. (Data
from Rasmi,].,“Thermo-Mechanical Fatigue of Steel Piles in Integral Abutment
Bridges,” PhD Dissertation, Civil and Environmental Engineering, University
of Maryland, College Park, MD, 2012.)
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Figure 16.15 Model displacement due to temperature. (Data from Rasmi, J., “Thermo-
Mechanical Fatigue of Steel Piles in Integral Abutment Bridges,” PhD
Dissertation, Civil and Environmental Engineering, University of Maryland,
College Park, MD, 2012.)

tension and can support only compressive forces where their strength and yield
are pressure dependent. For this type of material usually the Drucker—Prager
(DP) model is used (Rasmi 2012). To define the DP model, a flow potential and
yield function are required. Several different types of functions are available
in ANSYS (linear, power low, and hyperbolic). For this analysis a linear yield
function and a linear flow potential are used. Figure 16.15 shows the analysis
results of model displacement due to temperature.

In this chapter, two examples, one using 3D soil spring finite element model
and another using 3D soil continuum finite element model, are illustrated. The
soil spring finite element model is more commonly used in research as well as
in design. The benefit of using this model is the simplification of assigning p—y
curves to their respective soil springs, and only local soil has to be concerned.
The soil continuum finite element model usually involves a more calculation-
intensive modeling of the surrounding soil. In this case, soil-structure interac-
tion and the artificial soil boundary to reflect the wave are of major concerns of
the modeling process. The third modeling technique associated with boundary
elements, which usually needs special programs or finite element library to
solve the problem, is not discussed in this example. When modeling using the
third method, soil elements should be carefully selected to simulate the behav-
ior between the soil and the piled structure.
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Chapter 17

Dynamic/earthquake analysis

17.1 BASICS OF DYNAMIC ANALYSIS

Structures may subject to both static and dynamic loading. Unlike static
analysis, in which only static structural displacement is considered, acceler-
ation and velocity are introduced as well in dynamic analysis. For a system
that has only one degree of freedom (DOF), as shown in Figure 17.1, the
forces resisting the applied loading are considered as the following:

1. A force proportional to displacement (the stiffness), which can be
expressed as ky

2. A force proportional to velocity (the damping), which can be consid-
ered as cy

3. A force proportional to acceleration (the inertia), which can be
expressed as my

So, as shown in Figure 17.1, the fundamental dynamic equilibrium equa-
tion is

myi(t) + cy(t) + ky(t) = £ (t) (17.1a)

where y, y, and § are displacement, velocity, and acceleration, respectively.
For a system that has multiple DOFs, the equation corresponding to
17.1a can be rewritten as

Mii(t) + Calt) + Ka(t) = f(z) (17.1b)

where:
M is the global mass matrix
C is the global damping matrix
K is the global stiffness matrix
a(t) is the displacement vector
f(2) is the external load vector

511
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Figure 17.I Dynamic forcing system.

In comparison with the static equation 3.3, forces due to acceleration and
damping are introduced in dynamic analysis.

The damping ratio, or damping coefficient, &, is defined as c/c, = c/2Jkm
where steel bridges normally have a low damping coefficient § < 0.02. Most
commonly used experimental method to determine the damping in a struc-
ture is the half-power (bandwidth) method by two frequencies shown in
Figure 17.2 and can be calculated by Equation 17.2 as

_h-h
€= hif (17.2)

where two frequency points f; and f, (in cycle/sec) are on either side of the
curve in Figure 17.2.

Figure 17.2 Half-power method to estimate damping by experiment.
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Figure 17.3 Relationship between damping ratio and frequency for Rayleigh damping.

Modal analysis is the most popular and efficient method for solving engi-
neering dynamic problems. In order to apply modal analysis of damped
systems, it is common to assume proportional damping. Mathematically
the most common and easy way is to use Rayleigh damping method, with a
linear combination of the mass and the stiffness matrices as

¢ =agm—aik (17.3)
where:
¢, m, and k are the damping, the mass, and the stiffness matrix,
respectively

a, and a, are proportional constants

The relationship between damping ratio and frequency for Rayleigh damp-
ing is shown in Figure 17.3. By simplification, this relationship leads to the

next equation:
LA
{ 0} (17.4)
23
Wy

& 1
£, 2

where , and ®,, are the damping ratios (§, and §,,) associated with two spe-
cific angular frequencies (@, and ®,, in radian/second) are known, the two
Rayleigh damping factors (4, and a,) can be calculated by Equation 17.4.
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17.2 PRINCIPLE OF BRIDGE DYNAMIC ANALYSIS

In this section, five types of bridge dynamic analysis will be briefly discussed.
The first type is the dynamic interaction between vehicle and bridge. The sec-
ond type is the pedestrian bridge dynamics between pedestrian and bridge,
which gained more attention recently. The third type is associated with the
dynamic methods for analyzing bridge structures, including soil-foundation—
structure interaction, when subjected to earthquake loads. The fourth type
is the blast analysis, and the fifth type is the analysis of long-span bridge
responses to wind. These five different types of analysis, though all based on
linear or nonlinear analyses, have different emphases and thus different mod-
eling techniques, which will be discussed in Sections 17.2.1 through 17.2.5.

17.2.1 Vehicle-bridge interaction

The aim of this subject is to analyze the effects of highway vehicle- or train-
induced vibrations for impact analysis or fatigue analysis. The vibration-
induced stresses could lead to fatigue or other types of failure, such as deck
cracking. In the modeling process, only the superstructure is of a concern to
be included in a beam (Figure 17.4), grid, or more sophisticated shell model.
Although the structural analysis model is linear, the interaction between
bridge and moving vehicle or train is often considered as a nonlinear dynamic
problem in the aspect of time domain. To simulate the dynamic interaction,

Ay(xt) pxd)
e - b x
El,m
T—> x —»‘ L— dx
|« L >
()
px,t)dx
Vix,t) T
A OM(x,0)
M(x0) - //- M) + === dx
l | Vien + —a‘g(;"t) dx
flx,t)dx
x —P— dx

(b)

Figure 17.4 Basic beam subjected to dynamic loading. (a) Beam properties and coordi-
nates. (b) Resultant forces acting on the differential element.
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theoretically the bridge and the vehicle or train could be modeled into two
elastic structures connected with contact force due to their relative move-
ment. This contact force interacting with two structures is time dependent
and nonlinear as the contact force might move from time to time. All vehicles
possess the suspension system, either in air suspensions or steel-leaf suspen-
sions. Air suspensions use hydraulic shock absorbers for damping, whereas
steel-leaf suspensions use steel strips to provide damping through Coulomb
friction between steel strips. Meanwhile, the bridge is also an elastic body
subject to the dynamic loading due to moving vehicles (Figure 17.5). A two-
dimensional nonlinear vehicle simulation program (NLVSP) was developed
by Cole and Cebon (1992) to predict the tire forces of articulated vehicles
with well-damped suspension modes under typical speed and road rough-
ness. The steel-leaf-spring suspension model used in the NLVSP is simulated
by nonlinear suspension elements. For an air-suspended vehicle, air-spring
elements with parallel viscous dampers are then used. BridgeMoment, devel-
oped by Green and Cebon (1994), Varadarajan (1996), and Xie (1999), pre-
dicts the bending moments in a bridge due to the passing of a heavy transport
vehicle. The bridge displacement is determined by the general equation of
motion for a bridge and the convolution integral. For this bridge structure,
the infinite number of DOFs can be discretized to a multi degree-of-freedom
(MDOF) structure where the general equation of motion for the vertical
vibration in a two-dimensional beam can be expressed as

O’y(x,2) | 0y(x1)

m(x) or’ ot

+ky(x,t) = f(x,2) (17.5)
where:
k is the self-adjoint linear differential operator with respect to the spa-
tial variables
m is the distributed mass of the bridge

Zg) .} eyZ

X
A

z

QO = linear spring and damper
(D = nonlinear leaf-spring element
Figure 17.5 Tractor and trailer vehicle model. (Data from Cole, D.). and Cebon, D.,

“Validation of Articulated Vehicle Simulation,” Vehicle System Dynamics, 21,
197-223, 1992.)
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c is the viscous damping operator with respect to the spatial variables

y(x,t) is the vertical deflection of the bridge along longitudinal
x-direction at time ¢

flx, t) is the force exerted by the vehicle on the bridge

To obtain a unique solution, the boundary conditions and the initial dis-
placement y(x,0) and velocity y (x,0) must be defined. The eigenvalues and
eigenvectors (modal shapes), all in the vertical direction, of Equation 17.5
can be easily handled by close-form solution or through mathematical
modeling. Based on Green and Cebon (1994), Equation 17.5 can be solved
with the convolution integral of

y(x,t) = j hlx,xs,t = 1)f (x5, 1)dT (17.6)

where h(x,x;,t — 1) = impulse response function at position x for an impulse
applied at position x, which is related to the mode shapes. Therefore, the
bridge response is determined by the mode shapes and the forcing function.

The main factors affecting vehicle-induced bridge dynamics are bridge
surface roughness, speed, frequency matching, and vehicle suspension type
(Cantieni and Heywood 1997). Solving the problem can be described in the
following steps (MacDougall et al. 2006):

Step 1: Simulate the vehicle within a routine to solve for the vehicle’s nat-
ural frequency and the wheel static load. This routine is used to predict
the tire forces of articulated vehicles where, for example, Figure 17.5
shows an 11-DOF vehicle model used by Cole and Cebon (1992).

Step 2: Apply the vehicular loads on the bridge model to calculate the
force f(x,t) exerted on the bridge at certain location x and time ¢ due
to the moving vehicle.

Step 3: Use the calculated force f(x,t) from step (2) and the bridge’s
impulse response function h(x,x,t—1) to determine the bridge’s
deflection y(x,z).

Step 4: Based on the calculated bridge’s deflection y(x,t), the equiva-
lent external loading applied on the bridge is equal to the sum of the
bridge’s self-weight and the bridge’s inertia force:

Frpplicd = mg +ma =mg + mjj(x,t) = mg + f(x,t) —cy —ky (17.7)

In the case of highway bridges, moving vehicles on bridge are arranged
randomly in terms of speeds, loads, direction, and location; however, for
railway bridges, train vehicles generally provide uniformly distributed load
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and can be treated as a sequence of moving masses. Also, railway traf-
fic provides inherent frequencies due to repetitive characters of wheel or
bogie loads; a more significant resonance might be produced and affects
the bridge durability. Recently, in order to accurately simulate the moving
vehicle-bridge interaction, LS-DYNA (1998) with FEA was used.

17.2.2 Pedestrian bridge vibrations

Resonance has been ignored in the design of pedestrian bridges until recently.
Pedestrian bridges, especially light bridges supported by cables, should be
checked for vibration serviceability due to human activities. Unless the bridge
is supported by flexible substructure or soil condition, only the superstruc-
ture is simplified in the modeling process as a beam linear dynamic analysis
model. Modal analysis is the first step for the pedestrian bridge dynamic
analysis for determining the natural frequencies and mode shapes of a struc-
ture, as well as the responses of individual modes to a given excitation.
Vibration of the pedestrian bridge can be due to two sources, vertical and
lateral vibrations. Lateral vibration is assuming synchronous lateral excita-
tion. This occurs when a large enough group of pedestrians senses a lateral
movement and subconsciously tries to counteract that movement by shifting
their weight in opposition to the perceived movement, in effect creating a
steady driving force. On the other hand, footsteps are the source of vertical
vibration where the force f{¢) in Equation 17.1 can be represented by

D fi= P(l + ) asc0s[ 2t + (p,»]) (17.8)

where:
P is the person’s weight
o; is the dynamic coefficient for the harmonic force
i is the harmonic multiple (1, 2, 3,...)
faep 18 the step frequency of activity
t is the time
©; is the phase angle for the harmonic

In the assumption, £, is commonly assumed at 2 Hz, or 2 steps per second.
Values for alpha are typically taken at 0.5, 0.2, 0.1, and 0.05 for the first
four harmonics of walking. It is when £, matches the frequency of any of
the modes of vibration of the structure that resonance will occur.

Figure 17.6 shows recommended peak acceleration for human comfort
for vibrations due to human activities (Allen and Murray 1993; Murray
et al. 1997). As shown in the figure, the tolerance limits for vibration fre-
quencies between 4 and 8 Hz are lower, whereas outside this frequency
range, people accept higher vibration accelerations. Two sources provide
design-limiting values for bridges:
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Figure 17.6 Recommended peak acceleration for human comfort for vibrations due
to human activities. (Data from Allen, D.E. and Murray, T.M., Engineering
Journal, 4th Qtr, AISC, 117-129, 1993; Murray, T.M., Allen, D.E., and Ungar,
E.E., “Floor Vibrations due to Human Activity,” AISC Steel Design Guide #11,
Chicago, IL, 1997. https://www.aisc.org/store/p-1556-design-guide-11-floor-
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where [ is the fundamental frequency of the pedestrian bridge where it can
be manually calculated by assuming a single-DOF (SDOF) system or found
from the computer model (shown in detail in the next section), K is a con-
figuration factor varied from 0.6 to 1.0, and v is the dynamic response fac-
tor depending on the span length [ and decay of vibration 8 based on bridge
composition.

The serviceability of a pedestrian bridge is important for obvious reasons.
In design, the overriding factors for serviceability are the structure’s dynamic
characteristics—stiffness and its ability to avoid resonance.

17.2.3 Bridge earthquake analysis

AASHTO guide specifications in LRFD (2012), differing from the early
practices, is adopting displacement-based design procedures instead of the
traditional force-based “R-factor” method. It is widely recognized that
the traditional force-based design (FBD) approach cannot provide the appro-
priate means for implementing concepts of performance-based design.
Performance levels as shown in Table 17.2 are described in terms of dis-
placements where damage is in closer correlation with displacements rather
than forces. As a consequence, new design approaches, based on displace-
ments, have been recently implemented. The former force approach was
based on generating design-level earthquake demands by reducing ultimate
elastic response spectra forces by a reduction factor (R-factor). The reduc-
tion factor was selected based on structure geometry, anticipated ductility,
and acceptable risk. The newly adopted displacement approach is based on
comparing the elastic displacement demand to the inelastic displacement
capacity of the primary structural components while ensuring a minimum
level of inelastic capacity at all potential plastic hinge locations.

Based on their requirements, four seismic design categories (SDCs) are
established in AASHTO guide specifications (2012): SDC A (for simple-span
bridges), B, C, and D. Three global seismic design strategies are allowed:
type 1—ductile substructure/elastic superstructure, type 2—elastic sub-
structure/ductile (steel) superstructure, and type 3—elastic superstructure/
elastic substructure/fusing mechanism (seismic isolation or energy dissipa-
tion) in between.

Based on Equation 17.1, differential equation governing the response of
a structure to horizontal earthquake ground motion ii,(¢) is converted to

mii + cu + ku = —mlii, (z) (17.9)

where:
u is the vector of N lateral floor displacements relative to the ground
m, ¢, and k are the mass, classical damping, and lateral stiff matrices of
the system; each element of the influence vector 1 is equal to unity
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By using modal response history analysis (RHA), the modal coordinate
q,(t) is governed by

G + 28,0, + g, = —T i, () (17.10)

In which ®, is the natural vibration frequency and (, is the damping ratio
for the nth mode. The solution g,(#) can readily be obtained by comparing
Equation 17.10 to the equation of motion for the nth-mode elastic SDOF
system, an SDOF system with vibration properties—natural frequency ,
and damping ration {,—of the nth mode of the MDOF system, subjected
to i, (7).

Besides RHA, modal response spectrum analysis (RSA) was also adopted
for linear seismic analysis where the peak modal response can be combined
by the conservative absolute sum (ABSSUM) modal combination rule:

N

rnﬁz

n=1

(17.11)

"0

or by the more reasonable square-root-of-sum-of-square (SRSS) rule:

N 3
= <Zrﬁo> (17.12)

n=1

or by the complete quadratic combination (CQC) rule to a system with
closely spaced natural frequencies:

N N &
= <22pmr,-on,o> (17.13)

j=1 n=1

17.2.3.1 Linear and nonlinear seismic analyses

Four distinct analytical procedures, as shown in Figure 17.7, can be used in
systematic rehabilitation of structures (FEMA-273 1997): linear static, lin-
ear dynamic, nonlinear static (pushover), and nonlinear dynamic procedures
(NDPs). Linearly elastic procedures (linear static and linear dynamic) are
the most common procedures in seismic analysis and design of structures
due to their simplicity. On the other hand, adjustments to overall deforma-
tions and material acceptance criteria can be incorporated to consider the
inelastic response. Based on their importance, bridges can be classified as
either ordinary or important bridges where ordinary bridges can be further
defined as standard and nonstandard ordinary structures. In their Caltran
study, Aviram et al. (2008) described bridge seismic analysis types based on
the bridge classifications, which are also listed in Table 17.1.
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Figure 17.7 Four distinct analytical procedures for seismic analysis.

Table 17.] Bridge seismic analysis types recommended by Caltrans

Nonlinear static Dynamic
Time-history
. analysis—direct
Equrva.lent Inc.rementa( Response integration
static static analysis spectrum
Bridge classification analysis (Pushover)  analysis—linear  Linear ~ Nonlinear
Ordinary standard A R A A A
Ordinary nonstandard N R A A R
Important N R A A R

A: Acceptable analysis type
N: Not acceptable analysis type
R: Acceptable and strongly recommended analysis type, not necessarily comprehensive

A large number of bridges were designed and constructed at a time
when bridge codes had no seismic design provisions or when these pro-
visions were insufficient according to current standards. Many of these
bridges may suffer severe damage when struck by earthquakes, as evi-
denced by recent moderate earthquakes. Linear elastic procedures are
sufficient as long as the structure behaves within elastic limits. If the
structure responds beyond the elastic limits, linear analyses may indi-
cate the location of first yielding but cannot predict failure mechanisms
and account for redistribution of forces during progressive yielding. This
fact makes the elastic procedures insufficient to perform assessments and
retrofitting evaluations for those bridges in particular and structures in
general. Nonlinear (static and dynamic) procedures are the solutions
that can overcome this problem and show the performance level of the
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structures under any loading level. Nonlinear procedures can also help
demonstrate how structures really work by identifying modes of failure
and the potential for progressive collapse. Nonlinear procedures will help
engineers to understand how a structure will behave when it is subjected
to major earthquakes, assuming that the structure will respond beyond
the elastic limits, and this will resolve some of the uncertainties associated
with codes and elastic procedures. The performance approach, which was
shown in AASHTO guide specifications (2012), is considered, as shown
in Table 17.2.

Performance-based engineering, with their performance levels shown in
Figure 17.8, is set to select design structural criteria such that at specified
level ground motion, the structure will not be damaged beyond certain
limiting states.

In this section, conventional dynamic analysis (nonlinear dynamic in
Figure 17.7) and modal pushover analysis procedures (nonlinear static
in Figure 17.7) to determine seismic demands for inelastic structures are
presented.

Table 17.2 Performance approach

P level
Probability of exceedance for design erformance leve

earthquake ground motions Life safety Operational
Rare earthquake (MCE) Service  Significant disruption Immediate

3% in 75 years Damage Significant Minimal
Frequency of expected earthquake  Service Immediate Immediate

50% in 75 years Damage Minimal Minimal to none

IO (immediate occupancy)

A
lP LS (life safety)
° lP l S CP (collapse prevention)
1%
: l
-qz P S
= C
[
£ B
5
Z
D E
A »

Deformation or deformation ratio

Figure 17.8 Performance level of structures.
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17.2.3.2 Nonlinear time-history analysis

Time-history analysis (THA) is a step-by-step analysis of the dynamical
response of a structure to a specified loading that may vary with time through
a process of numerical integration of the equations of motion. It involves the
development of a complete mathematical model of the bridge wherein an effort
is made to model nonlinear forms of behavior in a highly localized (rather than
global) manner. The mathematical model is formulated in such a way that the
stiffness and even connectivity of the elements can be directly modified based
on the deformation state of the structure. This permits the effects of element
yielding, buckling, and other nonlinear behavior on structural response to be
directly accounted for in the analysis. The model is then subjected to time
histories of earthquake ground acceleration that may be in either historical
records or design spectrum compatible records. In either case, an attempt is
made to capture the full time history of the nonlinear structural response.

The use of multiple records in the analyses allows observation of the dif-
ference in response resulting from differences in record characteristics. As a
minimum, suites of ground motions include at least three different records
(FEMA-450 2003).

Different from linear THA, the differential equations of motion for non-
linear THA (NL-THA) cannot be considered as smooth functions. It is due
to the nonlinear hysteresis of most bridge structural materials, friction forces
developed between contacting surfaces, and buckling of elements. Therefore,
only step-by-step methods are recommended for the solution of the nonlinear
time history of bridge structures. The step-by-step solution methods attempt
to satisfy dynamic equilibrium at discrete time steps and may require itera-
tion, especially when nonlinear behavior is developed in the structure and
the stiffness of the complete structural system must be recalculated due to
degradation of strength and redistribution of forces (Aviram et al. 2008).

Unlike linear time history, the nonlinear case can take a significant
amount of time to solve structural systems with just a few hundred DOFs.
Engineers must be careful in the interpretation of the results and check the
results using the applicable acceptance criteria. An example of a bridge case
analyzed by linear THA and NL-THA methods plotted on the same graph
is shown in Figure 17.9.

17.2.4 Blast loading analysis

Blast loads are considered as most extreme loads, and even a small amount
of blast can produce a serious damage to the structure. The blast wave
produced by explosion travels even faster than the speed of sound. When
it arrives at a location, it causes a sudden rise in the normal pressure. The
increase in atmospheric pressure over normal values is referred to as over-
pressure, and the simultaneous pressure created by the blast winds is called
dynamic pressure. Blast pressure can create loads on structure that are



524 Computational analysis and design of bridge structures

Bridge deck displacements

2
15 —— Linear THA
. ’ —— Nonlinear THA
g 1
vy
o AN
=
E o ya-a /\ . . . . . .
g 1 \2/ \3}/ 4 W VU o
= —-0.5
o
A -1
—1.5 A
-2

Time

Figure 17.9 Linear versus nonlinear time-history analysis for a nine-span bridge model.

many times greater than the normal design loads, and blast winds can be
much more severe than hurricanes.

Blast waves are produced whenever an explosion takes place. These
waves propagate in the form of spherical waves, resulting in discontinuities
in the structures. Some of these waves transfer across the structures while
remaining are reflected back. During this wave propagation, high pressure
and high temperature are generated, which travel across the least resistance
path of the structure. This entire process of the wave generation and propa-
gation last for a few milliseconds.

The initial step in blast design or analysis is the determination of the
blast loads. The factors that consider attention are energy absorption, load
combinations, critical elements, and structural redundancy to prevent pro-
gressive collapse of the structure.

If an explosion occurs on the top of the bridge, bridge deck will experi-
ence the downward thrust of the overpressure, which will be transmitted to
other bridge components such as hangers, cables, and towers. Foundation
will experience blast-induced vertical and overturning forces. If the blast
load is applied at the bottom of the bridge, deck slab and the supporting
girders will experience an upward pressure for which they are generally not
designed. When they are subjected to vertical upward forces, the bottom
of the deck member is subjected to compression and the top is subjected to
tension, for which they are not normally designed for. Towers and founda-
tions are also subjected to vertically upward lateral forces and overturn-
ing moments. Failure of the system is obvious unless otherwise they are
designed for the vertical upward forces.

Several structural analysis options are available for blast-resistant design:

1. Equivalent static analysis (ESA). This method is generally for simple
system to determine the equivalent static design load conservatively
and neglects the inertial effects of members in motion.
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2. SDOF linear/nonlinear dynamic analysis. This method is considered
the current state-of-practice method that ignores higher-order failure,
allowing for the analysis of a large number of load cases, bridge types,
and structural configurations.

3. MDOF, uncoupled/coupled, nonlinear dynamic analysis. This method
includes the finite element method (FEM) analysis. A coupled analysis
accounts for coupled effects of structural response with fluid dynamics
behavior of an explosion load, considering time and spatial coupling
while uncoupled analysis does not.

The most common and simplified blast dynamic analysis method used in prac-
tice is an SDOF or MDOE, uncoupled, nonlinear dynamic analysis. The loads
acting on a structure are usually determined using a shock-wave propagation
program. Once the loads have been determined, the structural response can
be analyzed using a dynamic structural analysis, accounting for the full plastic
capacity of the members. In an uncoupled analysis, the blast load calculations
are separated from the structural response. A coupled analysis, which is more
refined, performs the blast load calculations and structural response simulta-
neously. This technique accounts for the motion and response of structural
members as the blast wave proceeds around (or through) them and will mostly
provide a more accurate prediction of the structural response. Several tech-
niques exist for performing a coupled analysis, all of which involve time-space
discretization. Uncoupled analyses will usually provide conservative yet reason-
able results with much less effort and are best suited for typical design cases. The
LS-DYNA (1998) with FEA-coupled analysis as mentioned in Section 17.2.1
can also be used here to simulate the blast load-bridge interaction.

The dynamic response of bridge structures under a blast load is quite
complex due to the highly nonlinear nature of shock wave lasting around
several milliseconds. It is hard to analyze accurate deformation or crack
conditions of bridges subjected to blast wave. Nonlinear static analysis can
be used to analyze the bridge structures with blast loading. Therefore, the
blast pressures must be converted to equivalent static loads. In 1990, the
U.S. Department of Defense published the TM 5-1300 Manual, Structures
to Resist the Effects of Accidental Explosions. The manual contains an
empirical formula to find the scaled distance (Z) of a blast wave.

= % (17.14)
In Equation 17.14, R is the standoff distance of an object from the blast cen-
troid, measured in feet, and W is the charge weight of TNT in pounds. The
TM 5-1300 Manual (1990) contains a chart using this empirical formula.
A typical pressure time-history curve in free field is shown in Figure 17.10.
The positive phase is usually idealized to an equivalent triangular blast load
having the same peak pressure and an idealized duration (¢,). The amplitude
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Figure 17.10 Pressure time history for free field blast. (Data from TM 5-1300, Structures to
Resist the Effects of Accidental Explosions, Department of Army, Washington,
DC, 1990.)

of the negative phase is much lower than that of the positive phase, and
usually the negative phase is neglected in the design. Only for light struc-
tures does the negative phase have a significant effect (Winget et al. 2005).
Although blast load is a dynamic load, equivalent static loads due to explosion
are usually used in assessing the structural performance because they impact
the structure for a very short duration. If dynamic effect is considered, the tran-
sient overpressure loads used on the right-hand side of Equation 17.1 can be
estimated where the decay of the reflected overpressure is assumed to obey the
modified Friedlander exponential decay equation, which can be written as

pt) = pll—tit,]e " (17.15)

where:
p 1s pressure
p.. is peak pressure
t, is positive phase duration
o is the waveform parameter

Since the structure behavior after sudden impact is localized, care must be
exercised when performing dynamic analysis; in particular, all high modes
of vibration should be included when using modal superposition or Ritz vec-
tor analysis methods. Direct step-by-step integration methods are preferable,
since such algorithms account for all possible vibration modes associated
with the given finite element mesh and analysis time step. Also considered in
dynamic analysis are nonlinear dynamic loads and thus nonlinear behavior.
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As mentioned above, many used ESA in their studies. Two examples, one
for PC and one for steel girder bridges, are illustrated in Chapter 15 as part
of the redundancy analysis. Bridge model, attack scenarios, and structural
responses were discussed in Sections 15.4 and 15.5.

17.2.5 Wind analysis

Wind induces two typical aerodynamic phenomena in long-span bridges:
fluttering and buffeting. The former is an aerodynamic instability that may
cause failure of the bridge, and the latter is an aerodynamic random vibra-
tion that may lead to fatigue damage, excessive vibration, and large dis-
placements. The wind velocities at which the bridge starts to flutter are
called flutter velocities. Aerodynamic design must ensure that the critical
flutter velocity is higher than the maximum wind velocity at the site and
that the bridge does not vibrate excessively under gusty winds. Flutter may
occur in both laminar and turbulent flows. Buffeting is a random response
of structures to turbulent flow.

Natural winds, which are turbulent in nature, cause both flutter and buf-
feting problems (Cai et al. 1999).

Aerodynamic loading is commonly separated into self-excited and buffet-
ing forces. The self-excited forces acting on a unit deck length are expressed
as a function of the so-called flutter derivatives (Scanlan 1978a), which can
be expressed as

LSe
{F.} =1 D, { =U*[Ei]iq} +U?[E ]{q) (17.16)
MSB
Similarly, the buffeting forces (Scanlan 1978b) are expressed as
L,
{R) =4 D, { =U*[C,]{n) (17.17)
M,
where:
L., D, and M, are the self-excited lift force, drag force, and torsional

moment, respectively

[F,] and [F,] are the flutter derivative matrices corresponding to dis-
placement and velocity, respectively

[C,] is the static coefficient matrix

{n} is the vector of turbulent wind components normalized by mean
wind velocity

U, which is distinguished from the mean value U in the previous expres-
sion, will be interpreted as the mean or instantaneous wind veloc-
ity in different cases
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Equations 17.16 and 17.17 can be used to replace the forcing function
shown on the right-hand side of Equation 17.1. Special technique and spe-
cialized program have to be adopted for the analysis. For details, please
refer to Scanlan (1978a, 1978b) and Cai et al. (1999) for FEM formulation.

For wind analysis, many used ESA in their studies. To demonstrate blast
analysis, two examples are illustrated in Chapter 15 as part of the redun-
dancy analysis.

Long-span bridge design should follow special guidance for aerodynamic
issues. Wind tunnel testing may be unavoidable for the design of long-span
bridges. The aerodynamic stability issue is not covered in this chapter while
wind load can be considered as a static wind load pressure. Its application is
discussed in Chapter 11 for cable-stayed bridges and illustrated in Section
11.5 for the Sutong Bridge, China.

17.3 MODELING OF BRIDGE FOR DYNAMIC ANALYSIS

As introduced in the last section, bridge dynamic analyses can be catego-
rized into five different types: (1) dynamic interaction between vehicle and
bridge, (2) pedestrian bridge dynamics, (3) bridge earthquake analysis, (4)
blast analysis, and (5) long-span bridge wind analysis. The first two types
of bridge dynamic analysis, except few special cases, can be modeled with
superstructure only where the substructure and foundation have little con-
tribution on the dynamic behavior. Modeling for the other three types of
analysis will include the whole system, super- and substructures, where the
earthquake analysis even includes the foundation. The first, second, and
fifth types can be handled by linear dynamic analysis, whereas the third
and fourth types may involve nonlinear dynamic analysis.

Due to its uniqueness in analysis and popularity in usage, only the model-
ing technique of bridge earthquake analysis is discussed in detail here. The
earthquake-resistant system (ERS) for bridges may be modeled with the
entire super- and substructures (the global model) or an individual bent or
column (the local model). Individual bridge components (the local model)
shall have displacement capacities greater than the displacement demand
from the global model to satisfy the performance requirement.

17.3.1 Linear elastic dynamic analysis

Linear elastic dynamic analysis (EDA) will be a minimum requirement for
the global response analysis. The global analytical model should include
the stiffness and mass distributions of the bridge. Commonly a three-
dimensional (3D) model is used where it, as shown in Figure 17.11 (NHI
1996), can be a spine model, a grillage model, and a 3D FEM model where
the spine and grillage models are the popular kinds. Because elastic analysis
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Figure 17.11 (a—d) Types of analytical models.

assumes linear relationship between stiffness and strength, effective sec-
tion properties should be determined for seismic analysis of reinforced con-
crete structures with the consideration of concrete crack and steel yielding.
One important note of the bridge modeling is that to catch all the essential
modes, a minimum of three elements per flexible column and four elements
per span should be used in the linear elastic model (AASHTO 2012).

The superstructure is idealized using equivalent linear elastic beam—column
elements. For either spine or grillage model of concrete structures, the effective
bending stiffness and thus the moment of inertia I, can be taken as

E I :% (17.18)
Py
And the shear stiffness parameter (GA), for pier walls in the strong direc-
tion may be determined as

1
(GA)t =G.Aq, TH (17.19)

g

And the effective torsional moment of inertia [ is determined by
]eff = Oz]g (1720)

where:
M, is the moment capacity
@, is the curvature of section at first yield of the reinforcing steel
E. is the modulus of elasticity
G, is the shear modulus of concrete
I, is the gross moment of inertia about the weak axis
A, is the cross-sectional area of pier walls
J, is the gross torsional moment of inertia of the reinforced concrete
section



530 Computational analysis and design of bridge structures

S~ CGof superstructure

/ \>\ Rigid link to soffit

Foundation node

Column elements

(number depends
on height)

s Footing elements
Foundation springs
(if used)

Figure 17.12 lllustration of a spine model.

In either spine or grillage model, elements are defined with superstructure
simplified, substructure with ends released, fixed or directly modeled
through soil spring elements, and proper connectivity between super-
and substructures. A close-view illustration of such model is shown in
Figure 17.12. The superstructure is represented by a single line (spine
model) or multilines (grillage model) of 3D frame elements, which pass
through the center of gravity (CG) of the superstructure. Each of the col-
umns and the cap beam are represented by 3D frame elements, which pass
through the geometric centers and midheight, respectively. Rigid end zone
can be used to account for the offset between the centerline of the cap beam
and the soffit of the superstructure.

17.3.2 Soil stiffness

Abutment may provide longitudinal stiffness K, due to passive soil pres-
sure uniformly distributed over the height (H,) and width (W) of the back-
wall or diaphragm.

P, = p,H,W, (17.21)

For integral- or diaphragm-type abutments, equivalent linear secant stiff-
ness K. is
Ko =10 (17.22)
(F.Hy)
where F,, is a factor taken between 0.01 and 0.05 for soils ranging from
dense sand to compact clays.
The foundation modeling methods (FMMs) adopted are depending on
their SDC where FMM 1 is for SDCs B and C while FMM I is for SDC
D (Table 17.3). There are two ways to determine the foundation stiffness
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Table 17.3 Foundation modeling methods

Foundation type Modeling method | Modeling method I

Spread footing Rigid Foundation spring required if footing
flexibility contributes more than
20% to pier displacement

Pile footing with Rigid Foundation spring required if footing
pile cap flexibility contributes more than
20% to pier displacement
Pile bent/drilled shaft Estimate depth Estimate depth to fixity or soil
to fixity springs based on p—y curves
1
K=o B K, 3 G&v

Circular 2

footing — Ko

stiffness 2B 2L

Embedment D
factor = B
R R
S
27 2 I

Shape —— Y
factor v B

Figure 17.13 Half-spaced method for spread footings. (Data from NHI Course No. 13063
“Seismic Bridge Design Applications,” April 25, Publication No. FHWA.-
SA-97-017 [Part One] and -018 [Part Two], 1996.)

(NHI 1996). One is elastic foundation method, and another is elastic half-
space method (Figure 17.13).

In elastic foundation method, k, for vertical stiffness (or subgrade reac-
tion coefficient) and k, for rotation stiffness can be determined by

P

k, = in kip/ft* or kN/m® 17.23
(Area)(Deflection) (in kip/tt” or o) ( )
3 .
k=k| LB (in kip—fr  kN-m (17.24)
16 rad rad

where:
P is the vertical load on the mat foundation
L and B are the half sizes of the mat in their respective longitudinal and
transverse directions
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In elastic half-space method, footing is bonded to elastic half-space medium
where shape (o factor) and embedment (B factor) are considered in the
formulation (Figure 17.11):

k = afky (17.25)

where unfactored stiffness k, of circular surface footing is listed in Table 17.4.
Shape (o) and embedment (B) factors can be found in Figures 17.14 and
17.15, respectively.

As defined in FMM 1II for SDC D (Table 17.3), soil flexibility is mod-
eled. Three types of foundation are illustrated in Figure 17.16, which are
(1) spread footing, (2) piles/drilled shafts, and (3) seat or integral abut-
ments. Discussion of types 2 and 3 are covered in Chapter 16.

Table 17.4 Stiffness of circular surface footing

Degree of freedom Equivalent radius R Stiffness K,

Vertical translation Ro= \/m 4GR/(1-V)

Lateral translation (both) Ro= \/m 8GR/(2-V)

Torsion rotation R,=(4BL[4B* +4L*1/6m)"* 16GR*/3

Rocking about 2 R, =([2B]’[2L]/3m)"* 8GR*/3(1-v)

Rocking about 3 Ry =([2B][2L]*/3m)"* 8GR*/3(1-v)
1.20

Torsion (1-axis)

Shape factor, o0
—
—
IS

1.05

1.00 1

L/B

Figure 17.14 Shape factor (o) for rectangular footing. (Data from NHI Course No. 13063
“Seismic Bridge Design Applications,” April 25, Publication No. FHWA-
SA-97-017 [Part One] and -018 [Part Two], 1996.)
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Figure 17.15 Embedment factor (f). (2) Embedment dimensions. (b) Embedment factor.

17.3.3 Nonlinear analysis

Nonlinear dynamic analysis typically involves the development of a complex
bridge mathematical model with highly localized (rather than global) non-
linear behavior. The interior expansion joints and the abutment joints are
modeled using zero-length elastoplastic gap-hook elements. Based on the
report by Aviram et al. (2008), Table 17.5 summarizes the recommended
linear and inelastic modeling of the primary components of an ordinary
standard bridge structure. The behavior of the plastic hinge can be cat-
egorized by a yield surface and a moment-rotation relation. The yield sur-
face defined the interaction between axial force, weak and strong bending
moments, and even torque. However, it should be aware that nonlinear
dynamic analysis is problematic for routine application with reasonable
nonlinear components, sensibility to the details of the model, and inten-
sive output interpretation (Fu and Ahmed 2012). However, for bridges of
importance (those categorized as other than ordinary), an inelastic static
analysis should be performed.

17.3.3.1 Nonlinear static—Standard pushover analysis

AASHTO guide specifications (2012) also recommend pseudostatic “push-
over analysis” be used for the displacement-based performance design
method. This procedure examined the nonlinear response of a structure as
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Figure 17.16 Modeling soil flexibility.

,\/

Table 17.5 Linear and nonlinear component modeling

Component Linear elastic ~ Nonlinear
Superstructure X

Column—plastic hinge zone X
Column—outside plastic hinge zone X

Cap beam X

Abutment—transverse
Abutment—longitudinal
Abutment—overturning
Abutment—gap
Expansion joints

X X X X X

Foundation springs
Soil-structure interaction

X X
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Figure 17.17 Pushover force—deformation (P—d) or moment rotation (M—0) curve.

its members yield sequentially under increasing loads. The pushover analysis
is stopped when the bridge reaches either a predefined displacement limit or
the ultimate capacity limit. The ultimate capacity may correspond to either
a localized failure (i.e., a plastic hinge reaching its curvature capacity) or
the development of global collapse mechanism (i.e., sufficient plastic hinges
developed to cause structure instability). The pushover curve (force vs. dis-
placement) of the bridge, such as the one shown in Figure 17.17, allows
identifying any softening behavior of the entire structure due to material
strength degradation or P-A effects. The pushover analysis of the bridge is
conducted as a displacement-controlled method to a specified limiting dis-
placement value to capture the softening behavior of the structure by moni-
toring the displacement at a point of reference, such as one of the column’s
top nodes or the center of the superstructure span (Aviram et al. 2008). An
illustrated example is shown in the Section 17.4.

17.3.3.2 Nonlinear static alternate—Modal pushover analysis

The modal pushover analysis (MPA) method has been presented by Chopra
and Goel (2002) for complex building structures, which accounts for
higher mode effects on the behavior of structures. Due to the nature of
bridges, which extend horizontally, rather than buildings that extend verti-
cally, some considerations and modifications should be taken into account
to render the MPA applicable for bridges. Key elements of applying the
MPA procedure for the case of bridges are the following:

¢ Definition of the control node. The control node is used to monitor
displacement of the structure. Its displacement versus the base shear
forms the capacity (pushover) curve of the structure.

e Development of the pushover curve and transformation of it into a
capacity curve.
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e Use of the capacity spectrum for defining the earthquake demand for
each mode.
e The number of modes that should be considered.

Step-by-step extended MPA procedure for bridges was proposed and pre-
sented in detail in the works of Ahmed (2010) and Ahmed and Fu (2012).

17.4 3D ILLUSTRATED EXAMPLE OF
EARTHQUAKE ANALYSIS BY SPA, MPA,
AND NL-THA—FHWA BRIDGE NO. 4

This example is used to illustrate the MPA and its comparison with stan-
dard pushover analysis (SPA) and NL-THA. This bridge is one of the
FHWA examples series (Mast et al.) and was modified for nonlinear anal-
yses. It consists of three spans. The total length is 97.5 m (320’) with
span lengths of 30.5-36.6-30.5 m (100"-120"-100), respectively. All sub-
structure elements are oriented at a 30° skew from a line perpendicular
to a straight bridge centerline alignment. Figure 17.18 shows plan and

£ BRG abut A BRG abut B

£ Bent 1 £ Bent 2
100°0” 120°0” 100”0

AW O P

< @

5 5

cl - ~ i

2 g g 2

m m m m
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EXD " FIX " FIX X
PIN PIN
Elevation
(b) (Looking parallel to bents)

Figure 17.18 (a) Plan and (b) elevation views of illustration example |. (Data from Mast, R.,
Marsh, L., Spry, C., Johnson, S., Grieenow, R., Guarre, J., and Wilson, W.,
Seismic Design of Bridges—Design Examples |-7 [FHWA-SA-97-006 thru 012],
USDOT/FHWA, September 1996.)
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Figure 17.19 Cross-sectional view of illustration example I. (Data from Mast et al. 1996.)

elevation views of illustration example 1. The superstructure is a cast-in-
place concrete box girder with two interior webs. The intermediate bents
have a crossbeam integral with the box girder and two round columns that
are pinned at the top of spread footing foundations. Figure 17.19 shows
the cross-sectional view.

17.4.1 Foundation stiffness

The intermediate bent foundations were modeled with equivalent spring
stiffness for the spread footing. For this bridge, all of the intermediate bent
footings used the same foundation springs. Values of stiffness were devel-
oped for the local bent supports and transformed to global support when
input to SAP2000 (2007) program so as to have compatible results for the
MPA analysis and the NL-THA. Values of stiffness for foundation springs
provided by (Mast et al. 1996) are used in this study. The abutments were
modeled with a combination of full restraints (vertical translation and
superstructure torsional rotation) and equivalent spring stiffness (trans-
verse translation); other DOFs were all released.
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17.4.2 Finite element model and analyses

Figure 17.20 depicts the finite element model with their section proper-
ties shown in Table 17.6. The superstructure was modeled with four ele-
ments per span, and the elements axes are located along the centroid of the
superstructure. The total mass of the structure was lumped to the nodes
of the superstructure. The bents were modeled with 3D frame elements
that represent the cap beams and individual columns. Since columns are
pinned to the column bases, two elements were used to model each column
between the top of footing and the soffit of the box girder superstructure;
the upper element represents the plastic hinge, whereas the lower one rep-
resents the rest of column. A rigid link was used to model the connection
in between. The first element from the bottom is a plastic hinge element,
which represents the inelastic behavior of the column. The length of the
plastic hinge was calculated using the following formula in English units
(Priestly et al. 1996):

¢ Abutment B

@V
Q;Bentl/v SQ(A“(&
2
spt b 30° skew

LN
30° skew
/\\

—Rigid link (typical)

Plastic hinge
/r (typical)
\— Bent column
(typical)
Support node
Y at abutment (typical)

Z
Global

Figure 17.20 Finite element model of illustration example |. (Data from Mast et al. 1996.)
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Table 17.6 Section properties for the bridge model

Element properties CIP box superstructure Bent cap beam Bent column
Area in ft2 (m?) 72.74 (6.76) 27.00 (2.51) 12.57 (1.17)
I ~Torsion in ft* (m*)? 1177 (10.16) 100,000: 25.13 (0.22)
I, in fe* (m*)P° 401 (3.46) 100,000° 9.00 (0.08)
L inft* (m*)c 9697 (83.69) 100,000¢ 9.00 (0.08)

2 This value has been increased for force distribution to bent columns. Actual value is I, = 139 ft*

(1.20 m*).

This value has been increased for force distribution to bent columns. Actual value is

I, =90 fc*(0.78 m*).

¢ This value has been increased for force distribution to bent columns. Actual value is I, = 63 ft*
(0.54 m*).

b

L, = 0.08L + 0.15f,.dy > 0.3f,.d, (17.26)

where:
d,; is the diameter of the longitudinal reinforcement (ft)
f,. is the effective yield strength of steel reinforcement (ksi)
L is the distance from the critical section of the plastic hinge to the
point of contraflexure (ft)

In this example, L is the clear height of the column since the column base is
pinned. The second element is the actual column element. The third element
represents the varying section between the column section and the column
head, which is modeled by the fourth element. The moments of inertia for
the column and the plastic hinge elements are based on a cracked section
calculated using the moment—curvature and moment-rotation curves.
NL-THA was performed to the three bridges to compare its results with the
SPA and MPA results. Three actual acceleration histories were implemented
in this example; which were adjusted to match the design response spectrum
for each analysis case. Those actual acceleration time histories are as follows:

¢ El Centro 1940
¢ Northridge 1994, Century City LACC North
® Santa Monica 1994, City Hall Grounds

Maximum seismic demand displacement of monitoring point is predicted
using the SPA, MPA (without inelastic behavior correction for demand dis-
placement), and the modified MPA (using modified control point displace-
ment #,,) and then compared with the average demand displacement of the
same node obtained from the NL-THA using three different ground accel-
eration histories closely matching the demand spectrum.

Results of the modal analysis, modal periods and frequencies, modal
participation factors, and modal participating mass ratios are shown in
Table 17.7a—c, respectively.
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Pushover curve (Figure 17.21) uses mode 2 as the lateral load (mode
shape as shown in Figure 17.22 multiplied by the mass). NL-THA was per-
formed using three different acceleration histories, and average response
was compared with those from the modal pushover analysis.

Peak ground accelerations (PGAs) of 0.30g and 0.45g were considered.
Comparison is performed for the maximum demand displacement in the
transverse direction, total base shear, and rotations of plastic hinges. Results
of the standard and modal pushover approaches were evaluated by compar-
ing them with those from the NL-THA; the latter is considered to be the
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Figure 17.21 Pushover curve using mode 2 as the lateral load.

Figure 17.22 Deformed shape of mode 2 (T, = 0.5621s).
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Modal deck displacements
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Figure 17.23 Comparison of different methods by deck displacement.

Modal deck displacements
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Figure 17.24 Comparison of different methods by deck displacement (PGA = 0.30g).

most rigorous procedure to compute seismic demands. To this effect, a set
of three real-time acceleration records compatible with the design spectrum
was used in the NL-THA analyses. The deck displacements determined
from each of the SPA and MPA analyses with respect to the control point of
the most critical pier were compared with those from NL-THA for increas-
ing levels of earthquake excitation, as shown in Figure 17.22, for multiple
earthquake with their average, and Figures 17.23 and 17.24 compared SPA,
MPA, and NL-THA, both for PGA = 0.30g.
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17.5 3D ILLUSTRATED EXAMPLE OF A HIGH-PIER
BRIDGE SUBJECTED TO OBLIQUE INCIDENCE
SEISMIC WAVES—PINGTANG BRIDGE, PEOPLE’S
REPUBLIC OF CHINA

The time-lag effect in seismic wave propagation has an influence on large-
span structure. This case study demonstrates the effect of the topography
and the angle of the oblique incidence waves. 3D finite element analysis
with equivalent artificial boundary is used to simulate the radial damp-
ing of continuous medium within a finite domain (Gu et al. 2014). This
equivalent artificial boundary can be represented by viscoelastic artificial
boundary elements to simulate the spring and dash system around the soil
outside boundary.

The numerical model of a continuous rigid bridge with the total length
of 560 m and its spans of 100 m + 180 m + 180 m + 100 m was built.
The pier is a RC double wall of 2 m thickness, 9 m depth, and about
30 height. The diameter of the circular pile is 2.8 m. The bridge layout is
shown in Figure 17.25(a). The numerical model of the bridge with special
topographic shape is shown in Figure 17.25(b). The parameters of the
ANSYS model elements (ANSYS 2012) and soil are shown in Tables 17.8
and 17.9, respectively.

Anza Earthquake record of a short duration was selected for this study.
The results of the internal forces are compared by inputting the seismic
wave in vertical direction and on an oblique incidence. The bottom and the
top of the pier are the most vulnerable locations in this rigid continuous
bridge. The force at the bottom is larger than that at the top in this case.
So the internal forces at the bottom of piers are studied. Locations of the
numbered piers are shown in Figure 17.25(a). The amplitudes of the internal
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Figure 17.25 Layout of Pingtang bridge and FEA model: (a) elevation (in cm); (b) soil-
bridge finite element model to simulate the spring and dash system.
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Table 17.8 3D FEA model and elements
Element BEAM 88 MASS21 SOLID45 BEAM4

structure Girder, pier, pile Lump mass Soil Rigid
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Table 17.9 Material parameters of soil

Velocity of P wave Velocity of P wave Poisson ratio Soil density Thickness of soil
Vs (mls) Ve (mls) K p (kglm’) (m)

500 866 0.25 2200 30

forces of piers subjected to P waves of different input angles of the oblique
incidence wave are shown in Figure 17.26. The results showed that the
shear force of the middle pier is smaller than the other two piers. The shear
force and moment of the piers with seismic wave in the vertical direction
are smaller than the force and moment with inputting wave at a 30° angle.
Conversely, the axial force of the piers is larger in the vertical direction.

The amplitudes of the internal forces of piers with SV waves of differ-
ent input angles of the oblique incidence waves are shown in Figure 17.27.
The shear force of the middle pier is smaller than those of the other two
piers as well. But the results of the SV waves showed a reverse trend from
the P waves. The shear force and moment of the piers with seismic wave in
the vertical direction is larger than the force and moment with inputting
wave at a 30° angle. Conversely, the axial force of the piers is smaller in the
vertical direction.
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Figure 17.26 Maximum amplitude of internal forces at bottom of piers under oblique
incidence P waves: (a) shear force (V); (b) axial force (N); (c) Moment (M,).
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Figure 17.27 Maximum amplitude of internal forces at bottom of piers under oblique
incidence SV waves: (a) shear force (V); (b) axial force (N); (c) moment (M,).

Table 17.10 Indices of nonuniform effects for piers under oblique incidence waves at 30°

Internal Me Nsv

forces Pier 2 Pier 3 Pier 4 Pier 2 Pier 3 Pier 4
v 552% 874% 477% -53.28% -62.39% -62.80%
N -13% —24% —27% 118.86% 274.26% 259.41%
M 359% 319% 344% —44.76% -29.41% -56.02%

Y

Considering ratio of the values computed from vertical and oblique inci-
dence input, an index can be calculated as follows:
max |F|—max|F
= M (17.27)
max‘Fo‘
where:
F, is the internal force of the piers including shear forces, axial forces,
and moment computed by vertical input
F is the internal force computed by oblique incidence wave

The indices of nonuniform effects for piers in valley under oblique inci-
dence waves at 30° are shown in Table 17.10. It is shown that the oblique
incidence waves have great effect on the piers of bridges in valley.



Chapter 18

Bridge geometry

18.1 INTRODUCTION

Bridges are counted as a part of road facilities to serve the purpose of
transportation. Most bridges are designed and built to satisfy their roads’
requirements. To satisfy requirements of a road alignment, the axis of a
bridge may have to be curved in both horizontal and vertical directions, and
the finished grade of bridge deck must comply with the transverse slopes set
forth in road geometries. Also, a bridge has to be designed under certain
engineering aesthetic guidelines, which may force a bridge axis, profiles, or
its components in curve or complex shapes. In other words, both the bridge
axis and a bridge component are more complex than what they are usually
described in mathematics and mechanics models.

A few questions may arise when building an analysis model of a
geometrically complicated bridge, for example, how a curved girder axis
is calculated and meshed into small elements and how a haunched girder
profile is defined and simulated. In this chapter, bridge geometry-related
principles and practical methods will be introduced.

18.2 ROADWAY CURVES

The design of a roadway curve is usually separated into horizontal and
vertical curves. The horizontal curve, the projection of a roadway on plane,
defines the transition from one tangent to another allowing a vehicle to turn
in a graduate horizontal rate; the vertical curve, the projection of a road-
way on elevation, defines the transition from one slope to another allow-
ing a vehicle to change grade in a graduate vertical rate. In addition to the
constraints of sight distances and drainages, the design of both curves must
provide a roadway with graduate changes of curvatures or grade, rather
than a sharp change. Due to the different requirements of horizontal turns
and vertical grade changes, characteristics of horizontal curves and vertical
curves are different.

547
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For the geometry modeling purpose, a term of mainline is introduced.
Roadway mainline is just the centerline of the roadway, the geometry at the
center of the roadway in terms of roadway design, not necessarily the middle
of the roadway. Not only many roadway geometric characteristics but also
their bridge components depend on the mainline geometry. Figures 18.1
through 18.3 show the relationship between the mainline of a roadway and
bridge girders. In general, the girder geometry should follow the mainline
in both horizontal and vertical curves as shown in Figures 18.1 and 18.2,
respectively (Wang and Fu 2013).

The location of the mainline or its alignment in transverse and verti-
cal curves is critical and should be unique. For the purpose of roadway
geometry design, mainline is always aligned with the control point in the
transverse direction on top of the roadway surface, which is not necessarily
the center of a roadway. The thick line in the middle of Figure 18.3 shows
the mainline and its location.

18.2.1 Types of horizontal curves

When a vehicle runs on a curve, the horizontal centrifugal force is propor-
tional to the reciprocal of curve radius or curvature of the roadway. To pro-
vide an acceptable riding smoothness and to meet physical requirements,

] Jr%/

(b)

Figure 18.] Roadway and girder horizontal curves. (a) Horizontal curves of a roadway
centerline and span layout. (b) Girder axes follow roadway horizontal curves.

Figure 18.2 Girder axes follow roadway vertical curves, and curves in girder profiles.
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Figure 18.3 Roadway mainline. (a) Mainline is the roadway centerline, but not necessar-
ily in the center of roadway. (b) Mainline is aligned on the top of the deck.

when roadway transits from one tangent to another the rate of curvature
changes and the maximal of curvature has certain limitation. This require-
ment of roadway makes arcs, spirals, and their combinations suitable and
very common for horizontal transitions.

An arc has a constant curvature. When used as a part or the whole tran-
sition as shown in Figures 18.1 and 18.4, the absolute value of its curvature
should meet the maximal curvature requirement and the changes to the
previous segment or to the next segment cannot be too sharp. For example,

Connecting Connecting
point __ ___ . point
Connecting _.—" 8- ’Arc AR Sy Connecting
point ~*“Spiral Spiral "*~| point
P N, S\traight line
@ Straight line ~.
Start point Connect;§g~ ~ .S\piral
point Saml_Arc g
Connecting End
point point

Figure 18.4 An example of a plane curve—components of a compound curve.
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in situations where only one arc segment is used to connect two tangents,
the arc radius cannot be too small as the curvature change is from zero to
the arc’s curvature.

A spiral can be a perfect fit for a transition from one curvature to another
as it is so defined that the curvature change is proportional to the curve
distance. As shown in Figure 18.4, a spiral is used to connect two segments
that have different radius. In addition to the requirements of maximal cur-
vatures at two end segments, the spiral length, which controls the rate of
the curvature change, cannot be too short.

Parabolic curve, which is exclusively used for vertical and transverse curves,
fails to possess the advantages of arcs or spirals as horizontal curve transitions
(Hickerson 1959). In most horizontal transition situations, tangents (straight
lines), arcs, spirals, and their combinations are commonly used.

18.2.2 Types of vertical curves

Vertical curves are used to make a transition from one slope to another.
Parabolic curve is the only type of curve used in vertical curves. As shown
in Figure 18.5, the parabolic segment is called sag vertical curve when the
transition of slopes is from negative to positive and crest vertical curve vice
versa.

18.2.3 Types of transverse curves

A roadway is usually required to have certain crowns in the middle and
cross slopes on sides to help water draining from roadway laterally. Thus,
the cross section or profile at any station of a roadway contains two tan-
gents and one transition curve. As shown in Figures 18.6 and 18.7, the
parabolic curve is widely used in transverse curves.

18.2.4 Superelevation and superwidening

When traveling along curve transition segment, vehicles will overcome
centrifugal forces by mainly lateral tire friction to maintain movement in
circular. In cases where either roadway curvature is big or design speed is
high, the transverse slope on the outer side of a roadway should be raised
up to flat or even positive toward inner side so that extra horizontal forces

+ Elevation Parabola

Connecting Connecting Straight line Connecting End point

Straight line point : point
Start point Straight line  Parabola Straight line
point - .
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Figure 18.5 An example of a vertical curve—components of a vertical curve.
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Figure 18.8 Plane view of a transverse curve transition example.

can be gained from vehicle gravity to help balancing centrifugal forces. The
change of transverse slope from a normal rate to accommodate turning is
called superelevation of a roadway. When designing superelevations, the
superelevation change rate, the final transverse slope, and the runout/run-
off length should meet certain requirements. However, the transition rate
of superelevation or the change of transverse slope within the runout/runoff
length is usually linear as shown in Figure 18.7.

When turning along a curve segment, vehicle wheels are easily off-tracking,
hence curve roadway widening is needed to ensure safety and to protect
shoulders from impacting. Similarly, transitions from normal-width segment
to widened segment, as shown in Figures 18.7 and 18.8, should be designed.
As superelevation transitions, superwidening transitions are usually linear,
that is, the change of the width is linear in terms of transition length.

18.2.5 Bridge curves

As part of a roadway, most bridge structures have to comply with geometries
set forth by a roadway globally. Therefore, the geometry of a bridge axis
or mainline is the same as a roadway curve in both horizontal and vertical
directions (Figures 18.1 through 18.3). Deck curves in transverse direction,
including superelevation and superwidening, must also meet requirements
from road transverse curves.

For most girder bridges, geometry of a girder axis follows the geometry
of a bridge axis, or mainline, so as to form the deck plan accordingly. For
example, a girder in a multiple-girder bridge is parallel to the bridge main-
line in horizontal curve and has a vertical curve as defined by the vertical
curve of the bridge mainline and transverse curve of the roadway. However,
cases where deck curves in both horizontal and transverse directions are
made up of deck components themselves are common too. For example,
straight girders are often used in small-curvature bridges, especially those
in simply supported multiple-span bridges.

In addition to bridge mainline geometries, girders in a continuous bridge
may be haunched longitudinally to incorporate changes of internal forces.
Haunches can happen in both concrete and steel bridges. Figure 18.1 shows
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the curved girders in horizontal view, and Figure 18.2 shows the elevation
view of these haunch girders.

18.3 CURVE CALCULATIONS

Given the most commonly used curve types, such as straight lines, arcs,
spirals, and parabolas, calculations needed to obtain a point on curve are
simple and straightforward mathematically. Challenges, however, arise
from the engineering depiction of a curve in a way of easy representing
actual roadway curves in three-dimensional (3D) space and accurately
controlling geometries of any bridge component. To model a bridge in 3D
based on a spatial curve preset by roadway, defining an appropriate curve
model is fundamental. Procedures for sampling points along a 3D curve or
road surface can then be established.

18.3.1 Bridge mainline curve model

The bridge mainline, or the deck centerline, is the reference line of modeling
a bridge in 3D. Geometries and locations of most bridge components can be
derived or located by referring to the bridge mainline. Often the mainline
of a bridge can be the same as the centerline of the roadway. Vertically, it
is aligned on top of the deck. Figure 18.3 shows an example of a bridge
mainline. As a spatial curve shown in Figure 18.3, geometries of a bridge
mainline contain plane curves, or the horizontal curves, and vertical curves
(Wang and Fu 2013).

Following the practices of roadway design and route locations (Hickerson
1959), spatial curves can be described in horizontal (plane) and vertical
curves separately. A pure mathematical description of a roadway curve in
spatial is not practical at all in road engineering. Therefore, a bridge main-
line can be described separately by its (1) plane curves and (2) vertical curves.

Plane curves are compound curves in general, which may contain straight
lines, arcs, and spirals with smooth connections from one to another.
Figure 18.4 shows a plane curve as an example. Smooth connection from one
component to another means tangents at connecting points are continuous at
least. In most cases, as the example shown in Figure 18.4, smooth connection
can further mean that curvatures at connecting points are continuous. Under
such a restriction, a spiral segment is needed to connect a straight line and
an arc. The connecting of straight line and arc, especially those with small
radii, which causes the curvature changes from zero to a constant, is dis-
couraged. Having parameters of each connecting components including the
type and length of curve segment and radius of an arc or ending radius of a
spiral, plus the starting point and tangent defined, geometric properties, such
as location, tangent, and curvature at any given curve length ordinate, can
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be obtained by a simple calculation procedures. Section 18.3.4, for instance,
provides principles and steps to calculate a spiral segment.

Vertical curves are compound curves too but contain only straight lines
and parabola. Figure 18.5 shows an example of vertical curves. Unlike
plane curves, connections in vertical curves are simple. When grade tran-
sition is needed, parabola is always used to connect one straight line to
another one. As slopes or tangents in the vertical curve of both connecting
grades are known, only external distance is needed to define a parabola fil-
leting two straight lines. The parabola used in vertical curves can be called
as vertical parabola. Similarly for spirals used in a plane curve, in which the
change of curvature is proportional to the curve length, the grade change
of a vertical parabola is proportional to curve horizontal length. Curve
tangents at connecting points, as shown in Figure 18.5, are continuous.

Having the earlier definitions on both plane and vertical curves, the
mainline of a bridge, or the roadway centerline, can be described separately.
When defining the vertical part, the horizontal ordinate is the unfolded
curve length of the corresponding plane curve, that is, the stations of road-
way centerline; the vertical ordinate is the elevations (Figure 18.5). The
following list provides examples of definitions of bridge mainline curves:

Plane curves. (1) A straight line with a length of 61 m (200’); (2) a spiral
with a length of 152 m (500’) connecting the straight line to the next arc
segment with a radius of 244 m (800'), curve goes clockwise; (3) an arc seg-
ment with a length of 122 m (400’) and a radius of 244 m (800’); (4) another
spiral segment with a length of 152 m (500’) connecting the arc to the next
straight line; (5) a straight line with a length of 122 m (400’); (6) a spiral with
a length of 122 m (400’) connecting the line and next arc segment with a
radius of 274 m (900’), curve goes counterclockwise; and (7) last arc segment
with a length of 152 m (500’) and a radius of 274 m (900’); starting tangent
is 120° to latitude axis and location is (0 longitude, 0 latitude).

Vertical curves. (1) Control point at station 0: altitude = 0; (2) control
point at station 274 m (900’): altitude = +20’ (6.1 m), parabola fillet with
an external distance of 1.2 m (4'); (3) control point at station 610 m (2000’):
altitude = =15’ (4.6 m), parabola fillet with an external distance of 0.3 m
(1'); (4) control point at station 762 m (2500’): altitude = -15" (4.6 m),
parabola fillet with an external distance of 0.5 m (1.5’); and (5) last control
point at station of 884 m (2900"): altitude = 0.

18.3.2 Roadway transverse curve model

Transverse curve model defines the roadway transverse slopes, crowns,
superelevations, and superwidening. As shown in Figure 18.6, the trans-
verse curve at a roadway cross section can be defined by (1) left width, the
horizontal distance from the mainline to road edge on the left; (2) right
width, the horizontal distance from the mainline to road edge on the right;
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(3) left and right slopes; and (4) external distance of the crown. Although
most roadway crowns are parabolic, an arc crown can be simply included
in this definition by using a signed value of the external distance. For exam-
ple, a negative external distance indicates a parabolic crown and an arc
crown if otherwise.

Considering the vertical curve model that contains only parabolic fillets,
a generic parabolic/arc vertical curve model can be shared among vertical
and transverse curves. When this model is applied to vertical curves, only
parabolic fillets are applicable.

The local coordinates system, which is used to describe transverse
curve at any cross section, is important in roadway surface calculations.
Figure 18.6 shows the transverse curve coordinate system, whose origin is
aligned with roadway mainline. From the definitions of plane and vertical
curves of mainline, once geometric parameters (e.g., longitude, latitude,
altitude, and tangent of the plane curve) of a given point on the mainline
are known, any point on the roadway surface along a cross section will be
known. For design purposes, these separated representations of roadway
cross sections are practical and accurate enough. For the purpose of digi-
tal visualization, triangular surface meshes can be easily established, given
two consecutive roadway cross sections.

18.3.3 Transitions of transverse curves

As discussed in the previous sections, transverse curves may vary in curve
segments as superelevation and superwidening are required. Key transverse
curves can be explicitly specified at certain known locations along curve
segments. Transverse curve properties of cross sections in between consec-
utive key locations, such as widths, slopes, and external distances, can be
interpolated by linear, circular, or parabolic methods. When linear method
is used to interpolate a geometry property, only two key cross sections are
required. When the circular or parabolic method is used, three consecu-
tive key cross sections are required. The following list provides examples
of transverse curve transition definitions: (1) cross section at station 30 m
(100’) is symmetric with a total width of 9.1 m (30’), a slope of 1.5% and
a parabolic crown with an external distance of 15 mm (3/5”); (2) cross
section at station 61 m (200’) has a 1.5 m (5’) superwidening on the right
side, superelevation on the left side causes the slopes to +1% and -2.5% on
the right side, crown maintains the same; (3) cross section at station 122 m
(400’) remains the same as that at 61 m (200’); and (4) cross section at sta-
tion 600’ changes back to that at station 30 m (100’) (Figure 18.7).

As a generic example, Figure 18.8 shows the plane view of transverse
curve transitions. Dot lines are roadway edges; radial lines are cross sec-
tions of interested. Figure 18.9 shows the perspective view of mainline and
interested cross sections.
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Figure 18.9 Perspective view mainline and cross sections.

18.3.4 Spiral calculation

Spirals used in roadway plane curves are for making a curvature transition.
A spiral for this purpose is simply defined as a curve whose curvature is
proportional to curve length, or the curvature change-to-curve length ratio
is constant:

Co — Cq

L

cl)=c, + (18.1)

where:
¢ denotes curvature
subscripts s and e denote starting and ending of spiral, respectively
L is the total length of spiral
I is the curve length ordinate

From the definition of curvature, reciprocal of curve radius, the differential
of sweeping angle 6 is

do = c(dl (18.2)
Integrating Equation 18.2 with the substitution of 18.1 and considering

zero initial sweeping angle, sweeping angle at any given curve length ordi-
nate can be obtained as

o) =cl+ S 18.3
(l) =cd + Y3 ( )

Taking a local coordinate system as shown in Figure 18.10, the differentials
of ordinates x and y can be written as

dx = cos[csl ) lzjdl dy = sm(csl ) lzjdl (18.4)
2L 2L
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Figure 18.10 Spiral curve and its local coordinate system.

Therefore, local coordinates x and y at any given curve length are the inte-
gration forms of Equation 18.4:

I

]
x = J-cos[csl 4G lzjdl, y= Isin[csl 4 e =G lzjdl (18.5)
) 2L ) 2L

Given a curve length ordinate I, point on a spiral and curve properties can
be computed by Equations 18.1, 18.3, and 18.5. When computing coordi-
nates by Equation 18.5, Simpson’s Rule can be used as a generic numerical
integration method.

As a spiral is a part of compound plane curve as usual, local coordi-
nates and tangent at any point on a spiral as shown in Figure 18.10 have
to be transformed to global coordinate system by a simple rotation and a
translation.

18.3.5 Vertical parabola calculation

Parabolas used in roadway vertical curves are for making a grade transition.
Similar to spiral, the grade of a vertical parabola is proportional to hori-
zontal curve length, or the grade change to horizontal length is constant:

g =D — g BBy (18.6)

dx X
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Figure 18.11 Vertical parabola and its local coordinate system.

where:
g denotes grade
subscripts s and e denote starting and ending of parabola, respectively
X is the total horizontal length of parabola
x is the curve horizontal ordinate

Taking the starting point as the origin of the local coordinate system as
shown in Figure 18.11, by integrating Equation 18.6, the ordinate y of point
on curve at x can be obtained as

8e — & \2 (18.7)
2X

y=8X+

In addition to connecting grades, g, and g., the horizontal length for the
transition X is a critical characteristic of a vertical parabola as it controls
the rate of grade change. Considering that the vertical line at x = (1/2)X
passing through point V as shown in Figure 18.11, the relationship between
the external distance e and X can be written as

8e
ge - gs

X = (18.8)

18.4 CURVE AND SURFACE TESSELLATION

When showing a 3D road curve that contains spirals/arcs in plane and
parabolas in vertical curve on screen, curve has to be subdivided into small
straight lines or arc segments as computer graphics technologies cannot
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reproduce and render such a 3D curve. This subdivision process is the
so-called curve tessellation. As tessellations are for visualization purpose
only, the minimum length of subdivision can be 1 m or a couple of feet.
When tessellating a curve, several different types of points on curve have to
be subdivided. These points, the so-called ensured points include (1) geom-
etry control points where either plane curve or vertical curve changes, (2)
girder or beam section change points, (3) point of interests, (4) support
points, (5) diaphragm points, (6) roadway cross-sectional points, and (7)
control points for superelevation and superwidening. Once the ensured
points are obtained according to geometry theories, points in between any
two consecutive ensured points will be inserted according to a minimum
tessellation segment length.

When the tessellation is for the purpose of plane view, tessellated seg-
ments may contain arcs and straight lines, for arcs can be rendered by gen-
eral computer graphics technologies. When the tessellation is for 3D view,
the tessellated segments can only be straight lines.

When showing roadway surface or deck in 3D, a similar tessellation
process is needed to produce triangle planes in space so that the surface
can be shown as 3D views. In addition to the longitudinal tessellation on
3D roadway centerline, cross sections at each longitudinal tessellation
point will be further evaluated, as discussed in Section 18.3. Each cross-
section curve will be tessellated transversely. The ensured points on trans-
verse curve include (1) geometry control points such as where a parabola
starts or ends; (2) locations of all girder centerlines; and (3) locations
of mainline, road edges, curbs, or medians. Given two transverse seg-
ments on two consecutive cross sections, as shown in Figure 18.12, two
triangle planes can be produced for 3D rendering. Figure 18.12 shows a
roadway in 3D with the wireframe mode so that the tessellated triangles
can be illustrated, whereas Figure 18.14 shows the roadway with the solid
rendering mode.

Figure 18.12 Tessellations of roadway surface or deck.
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18.5 BRIDGE DECK POINT CALCULATIONS

During the construction of a bridge, certain points on the bridge deck may
need to be verified to control bridge geometry, specifically to control the
finished grade on the deck. In general, any point on the deck can be desig-
nated as a control point. However, intersections of girders, curbs, or medi-
ans and diaphragms are usually the default control points for deck grade
verifications.

As discussed in Section 18.3, having the separated representations in
plane and vertical curves of a 3D roadway mainline and transverse curve
definitions of each cross section, any point on the roadway surface or deck
can be evaluated. When reporting elevations of these control points, preset
camber values on these points should be separated from derived elevations
that are obtained by roadway geometry definitions. Cambers are usually
required for a bridge to counter vertical structural displacements due to
dead loads and/or part of live loads.

Figures 18.13 and 18.14 show an example of bridge deck control points.
In Figure 18.13, each triangle mark indicates the location of a control point

Figure 18.14 Deck points in 3D view.
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in plane. In Figure 18.14, cross symbols show such locations in 3D. With
modern computer graphics techniques adopted, detailed information about
each point such as plane locations and elevations can also be shown when
hovering over a symbol, as rectangle boxes shown in both Figures 18.13
and 18.14.

18.6 PRECAST SEGMENTAL BRIDGE
GEOMETRY CONTROL

Precasting concrete girder segments in yard while substructure is being
built and assembling in place later is a popular construction method for
concrete box girder bridges. Many advantages such as eliminating time to
curing concrete and reducing concrete creep and shrinkage at earlier ages
made segmentally precasting method widely adopted in concrete box girder
bridges. As girder segments are casted in yard and assembled later in place,
how to ensure the finished bridge curve in close agreement with theoretical
bridge curves in both horizontal and vertical directions becomes a critical
issue in this type of construction method. Geometry control of girder seg-
ments during casting in yard so that errors in the finished bridge curve are
under control is a common and very important topic of precast segmental
bridge. In this section, key concepts and principles in precast segmental
bridge geometry control will be introduced.

18.6.1 Basics
18.6.1.1 Long-line casting and short-line casting

When girder segments are casted in yard, there are two different types of
casting: (1) long-line casting and (2) short-line casting (Baker 1980). In long-
line casting system, all segments of a cantilever or a span are casted in their
correct relative position on a continuous soffit of sufficient length. When
one segment is cast, the forms will be moved to the next segment position
along the soffit. Figure 18.15 shows the schematic of a long-line casting sys-
tem. Geometry control in long-line system is established by adjusting forms
and soffit before pouring concrete. In the perspective of geometry control,
the long-line casting system is easy to set up. The disadvantage of long-line
system is obvious that substantial space is required.

In short-line casting system, only one girder segment is casted at one
time on the casting bed, and cured segments are moved to the storage yard.
Figure 18.16 shows the schematic of a short-line casting system. The pros
and cons of this type of precasting are obvious too. As there is only one
segment to be casted in one time, the length of casting bed is limited. Forms
can be used repeatedly for other segments. The most important advantage
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Forms moving direction ~ f— Movable forms
—_— gl

Casting segment 1=~}
Cast segments -

(a) Plane view of fixed soffit and casting sequence of a long-line system

Segments to be cast o Casting segment Cast segments
Vertical casting curve

(b) Elevation view of fixed soffit and casting sequence of a long-line system

Figure 18.15 (a) Plane and (b) elevation view of a long-line casting system.

is that the forms can be built as machinery so as to be easily unfolded and
folded, for both quantities and size permit to do so. Therefore, higher qual-
ity of precast can be achieved. The disadvantage of short-line system is the
geometry control during the casting of each segment. Imaging a curved
box being sliced into many short segments, the deliberated geometry con-
trol measurements have to ensure different segments are casted in their
right shapes so that the theoretical girder can be reproduced when all are
resembled in place. This section will mainly discuss on the geometry con-
trol during precasting in short-line system.

18.6.1.2 Final curve and theoretical casting curve

As casting segments are laid on casting bed or supported, conditions are
different from when they are assembled where structural displacements due
to dead loads and/or poststressing happened. There are two types of girder
curves involved during precasting and assembling of a precast segmen-
tal bridge. The first one is called the final curve, which is what engineers
designed and expected after a bridge is built. For a segmental constructed
bridge, there will be many permanent load applications after a segment is
assembled that cause the girder curve change from the initial condition.
Examples of these loads include structural weight of a girder segment, pre-
stressing, concrete creep or shrinkage, and superimposed dead loads. The
second curve is called the theoretical casting curve, which is what geometry
control is aiming at. It can be imagined that the theoretical casting curve is
what all segments should form after assembled without any load applica-
tion, as there is no load applied on segments while casting in yard. The the-
oretical casting curve can be obtained by backward analyses, in which each
applied permanent load is removed one by one from closure stage. From
the perspective of precasting geometry control, it can be simply taken that
a theoretical casting curve, which is different from the final curve, should
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Final design curve

Theoretical casting curve obtained
by backward analyses

Figure 18.17 Difference between the final curve and the curve to control casting.

be achieved during the precasting of segments. Figure 18.17 illustrates the
difference of these two curves. Note that the theoretical casting curve may
be above the final curve depending on the quantity of prestressing tendons
and other loads.

18.6.1.3 Casting segment and match cast segment

In short-line casting system, only one segment is casted at one time, which
is called casting or wet segment. Comparing the short length of each precast
segment and the length of the entire span, it can be easily understood that
the reproduction of theoretical casting curve is solely controlled by the con-
nections between segments. The accuracy of the shape of each individual
segment does not control the geometry as a whole. Therefore, the geometry
control of precasting segments is really the control of the connection face for
any two consecutive segments. This is achieved by casting a segment against
the segment it connects that is already casted. The segment is called match
cast segment, that is, the segment used to be matched for a new casting seg-
ment. Figure 18.18 illustrates these two segments. Figure 18.16 shows an
actual short-line casting system.

18.6.2 Casting and matching

As shown in Figures 18.16 and 18.18, the formworks for the segment to
be casted are laid on the fixed casting bed. One end form is the bulkhead,
which is fixed as well. On the opposite of the bulkhead, the connection face
of the matching segment is used as another end form directly. Before cast-
ing, debonder is applied on the connection surface to prevent bonding of
the concrete. This match casting against the hardened surface of its connec-
tion segment leaves an almost invisible joint when segments are assembled.
As the match cast segment sits on top of the supporting soffit, both vertical
and horizontal alignments can be reached by adjusting screw jacks beneath
or the horizontal locations of the soffit. In case the superelevation exists, the
casting segment may be twisted relatively as shown in Figure 18.16¢. This
can also be achieved by adjusting the support of match cast segment.
Figure 18.19 shows a 3D rendering of a segmental bridge being assem-
bled. Coordinate system Long—Alt-Lat as shown in Figure 18.19 is the
global coordinate system in which both final and theoretical casting curves
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Figure 18.18 Adjustment of match segment and formworks for casting segment.
(Courtesy of Ninive™ CASSEFORME, http://www.ninive.it/bridge-formwork/
segmental-box-girder-forms/.)

T Alt

Figure 18.19 Segments assembled and global/local coordinate systems.

are established. Coordinate system Long’-Alt’-Lat’ is the casting coor-
dinate system or the local coordinate system. By transforming the global
coordinate system to casting coordinate system as shown in Figures 18.19
and 18.20, the relative locations of the match segment to the casting seg-
ment in both vertical and horizontal directions can be obtained. Therefore,
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Figure 18.20 Local (casting yard) coordinate system and control points for alignment.

locating of the match segment to ensure a perfect (theoretical casting) vertical/
horizontal curve and superelevation, if applicable, can be achieved.

18.6.3 Control points and transformation

As shown in Figure 18.20, adjustments of match segment are controlled by
measurements of certain control points on concrete segments. Mathematically,
three points on a rigid body are enough to determine its location in space. For
the purpose of easy practice and the need to control the shape of casting seg-
ment, six points on top of a segment are used as control points: two points
on each web centerline and two on the theoretical centerline. Longitudinally,
the control points are located at the segment edge as close as possible, 51 mm
(2”) offset from the edge, for example, so as to produce enough control of the
vertical alignment.

Measurements of control points are done in casting yard under a local
coordinate system (Long'—Alt’-Lat’), whereas theoretical curve values are
established in global coordinate system. Transforming of a 3D point from
the global system to the casting system is essential. As described in detail in
Section 18.6.7, given a defined local system, transforming between global
and local is simple.

18.6.4 Procedures of casting and control

The first segment to be casted is different from successive segments as both
ends are against bulkhead, rather than the normal casting as shown in
Figure 18.16. After the first segment is cured and before moving to match
cast position, all control points’ coordinates in the casting system are sur-
veyed and are taken as as-cast values.
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The first segment is moved to match cast position, and the casting bed
is ready for the second segment. A new local system aligned in face of
the second segment is established. Of the 12 points, six points for the
first segment (match cast segment), which is already casted, and six for
the second segment (casting segment) are transformed from the global
system to this new local system. Transformed values for the match cast
segment are used to guide the adjustment of supporting jacks so as to
ensure the end form of the casting segment is in correct position and ori-
entation. Values for the casting segment are used to guide the punching
of six marking bolts on top of casting segment (through the connection
to rebars beneath). This step is a main part of geometry assurance and
is called setup. Control values in this setup are also called setup values
(LoBuono 2005).

Again, after the casting segment is cured and before moving to match
cast position, as-cast values are surveyed again. Theoretically, as-cast
values are the same as setup values. The earlier process will be repeated till
all segments are casted.

18.6.5 Error finding and correction

However, as-cast values are not exactly the same as setup values in real-
ity. Their difference from setup values indicates the existence of geometry
error. If these errors are simply ignored, they will be accumulated along the
casting, and thus the final curve after assembling will be out of control. To
make sure the as-cast curve is in close agreement with the theoretical curve,
the error must be detected and corrected during casting.

It should be noted first that the as-cast values of a segment are mea-
sured in the segment’s own local system. For example, as-cast values of
the second segment are under the local system of the second segment
and as-cast values of the third segment are under the third’s local system.
Transforming these local as-cast values from each individual local system,
as-cast curve in the global system can be obtained. Finding casting error
can be done by further comparing as-cast curve with the theoretical curve.
Figure 18.21 shows the elevation errors between as-cast curve and theo-
retical cast curve. Errors on plane and twist along the longitudinal axis are
in the same manner.

As shown in Figure 18.21, corrections can be done using adjusted setup
values for match cast segment when casting segment is set up. The adjusted
setup values are obtained by transforming the as-cast points of match cast
segment, instead to the local system of casting segment. Chances are that
accumulated as-cast errors are too big to be fully corrected in the imme-
diately followed casting segment, for too big a kink in vertical, planar, or
longitudinal twist not satisfying the smooth geometry requirements. In that
case, as shown in Figure 18.21, the error can be partially corrected in the next
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Theoretical casting curve to reach

Current as-cast curve

Match segment

Cast segment

Cast segment

— Partially correct position

N One step fully correct position

Figure 18.21 Error of as-cast curve and correction.

casting segment and the remaining error can be carried to the next segment.
This technique is called split error correction.

18.6.6 Evolution of geometry control in
precast segmental bridge

The precast segmental bridge construction method was first developed in
1930s by French engineer Eugene Freyssinet. It was first practiced in 1973 in
the United States. Precasting and geometry control methods had long been
developed ever since. However, advancing of computer and survey technolo-
gies impacts the evolution of geometry control techniques. For example, the
modern computer software technologies have enabled controlling of more
sophisticated 3D curves and the replacement of traditional optical theodo-
lite by modern total station has greatly improved the survey accuracy and
field efficiency. Real-time survey and control technologies have also enabled
the automation of the whole process of measuring, calculating, and adjust-
ing (Kumar et al. 2008).

18.6.7 Geometry transformation

As the underlying process of geometry control, geometry transformation is
the basis. The goal of geometry transformation is to find the ordinate repre-
sentation of a fixed point in another coordinate system, given that another
coordinate system is defined under one coordinate system. Geometry trans-
formation is also a primary process in computer graphics; its principle can be
widely found in computer graphics books. One point that should be noted
is what is used of geometry transformation in match cast geometry control
is much simpler than what computer graphics may be used of. In computer
graphics, transformations are most aimed at object transforming, in which
a point is either translated/rotated along an axis or scaled. In this section,
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Figure 18.22 Direction cosines.

transformation of a fixed point from one coordinate system to another is
briefly summarized.

18.6.7.1 Direction cosines

Given a direction a with a length of r and coordinate components of
a.,d,,a, as shown in Figure 18.22, the cosines of its angles to three axes
a./r,a,/r,a,/r, respectively, are called direction cosines. Specifically when
a is a unit direction, it can be represented by its direction cosines as

ﬂ=(dx,ﬂy,dz) (18.9)

Having a direction’s cosines as shown in Equation 18.9, the point on direc-
tion a with a length ordinate of [, can be represented by /,+(a,a,,4a.).

18.6.7.2 Direction cosines matrix of a
local coordinate system

Similar to Equation 18.9, direction cosines of three axes of a defined local
system X,Y',Z can be found as

X = (20 Xy X2 )3 Y = (Vs Vys V)i Z = (Ries 2y 22) (18.10)

Given a point P, which has coordinates of (x,y,z) in a local coordinate
system defined as Equation 18.10, its representation in the global coordi-
nate system where the local coordinate system is defined as
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(xayaz):(xlyy(az’)}“ (18.11)

where A is called direction cosine matrix of local coordinate system and is

defined as

Xy X, X,
A=y Yy Y (18.12)
Ze 2y Z

18.6.7.3 Transformation between two coordinate systems

Once a local coordinate system is defined, A is known. A point represented
by a local coordinate system (x,y,2z') can be transformed to the global sys-
tem by Equation 18.11 so its coordinates in the global system (x,y,z) can
be obtained. Similar to Equation 18.11, its reverse transformation can be
found as

(xyay,az’):(xsysz)}‘fl (1813)

By using Equation 18.13, a point represented by its global coordinate sys-
tem (x,y,z) can be transformed to a local system so its local coordinate
system (x,y,z) can be obtained.

Transforming Equation 18.11 to 18.13 is based on that the two coordi-
nate systems have the same origin as shown in Figure 18.22. When apply-
ing to transformation between the global and local systems as shown in
Figure 18.19, the origin of the local coordinate system has to be translated
to the same origin with the global system before the transformation. The trans-
formed coordinates will then be translated back to the true origin of the
local system.

18.6.7.4 Definition of the casting system in global system

The connecting nodes between segments on the theoretical casting curve are
known, as shown in Figure 18.16. Therefore, the origin and the longitudinal
axis of the local system (Long’) for the current casting segment as shown in
Figure 18.20 can be established. As the vertical axis of the local system (Alt’)
cannot be generally assumed being parallel to the global vertical axis (Alt) due
to the existence of superelevation, the transverse axis of the local system
(Lat’) has to be defined instead.

Because the transverse axis (Lat’) is always parallel to the bulkhead, Lat’
can be known as long as a point along the bulkhead is known. This can be
obtained by the control point shown in positive Lat’ axis in Figure 18.20.
By constructing a line on the plane constructed by points p,,p,1 and the
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control point that is perpendicular to line p,,p,_1, the axis of Lat’ as a line
can be known. Further, the direction of positive Lat’ can be determined by
referring the control point.

Having Long’ and Lat’ defined, Alt’ can be simply derived from a cross-
product operation of Lat’ X Long’. Thus, the direction cosine matrix, as
defined by Equation 18.12 for the transformation between the current
casting system and the global system, is established. Once the A matrix is
obtained for the current casting segment, transforming of control points
between the global coordinate system and the casting system can be per-
formed further.

When implementing geometry control program for precast segmental
bridges, geometry transformation can be simply called as underlying func-
tionalities. Other procedures such as calculating setup values, collecting
as-cast values, and detecting errors can follow the discussions in the earlier
sections. Together with regular tabular data reports, a 3D rendering, as
shown in Figure 18.20, truly reflecting segment geometries, setup values,
and as-cast measurements, will be greatly helpful for both designers and
field engineers.

18.6.8 An example of short-line match
casting geometry control

To demonstrate the geometry control of precast segmental bridges in cast-
ing yard, an example of a single-span curve bridge of radius 183 m (600’)
is presented. As the plane curve shown in Figure 18.23, the example span
contains 16 segments with a total length of 37.6 m (123.5’). Figure 18.23
contains two centerlines: (1) The theoretical curve and (2) as-cast curve, or
the obtained curve (these two curves, however, are overlapped on each other
due to minor discrepancies). However, they may not show clearly because
the obtained curve is very close to the theoretical curve. Figure 18.24 shows
a prediction of setups for segment No. 10 so that casting of segment No. 11
would be in the correct position. This prediction is based on the survey of
all previous segments. Values shown in Figure 18.24 indicate that the dry
segment should be positioned by jacking its support so that the segment to
be casted will be at the right position after assembled. Figure 18.25 shows
the survey points and values after segment No. 13 is casted, which will
affect the prediction of the setup of this segment after it is moved to match
position.

—— —_—

Figure 18.23 The plane curve of a segmental bridge with 16 precast segments.
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Figure 18.24 Prediction of setup values for a match cast segment.
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Figure 18.25 Survey values after cast of a segment.
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18.7 TREND OF BRIDGE COMPUTER
MODELING AND VISUALIZATION

As a close issue to bridge geometry, bridge computer modeling and visu-
alization have long been the focus of computer technology applications
in bridge engineering. Comparing with applications in other fields, the
advancing of bridge computer modeling and visualization, however, does
not match what modern computer graphics technologies promise and what
bridge engineers expect. Most bridge analysis and design software avail-
able nowadays are still based on mathematics or mechanics model of a
bridge, rather than the engineering model of a true project. What the cur-
rent bridge software provide a typical process of bridge analysis and design
to engineers still is (1) to establish and analyze a bridge’s mechanical model,
(2) to check design code for each component based on the analysis results,
and (3) to resize components or adjust structural dimensions and repeat the
previous process if necessary. The benefit of fast technology advancement
in both computer hardware and software improves only the performance of
each step; challenges such as abstracting mechanical model from engineer-
ing model and representing analysis results in the way engineers used to
are still governing the whole process of analysis and design of bridge struc-
tures. Another aspect that shows great potential for advancing in computer
application is visualization. Showing only 2D or 3D frame lines of mechan-
ics model or bridge schematics cannot meet the demanding of bridge analy-
sis and design nowadays.

The modern computer graphics technologies are now well capable of
processing virtual 3D bridge models in great detail. The key to take the
advantage of it is to establish a bridge engineering model, rather than a sim-
plified and abstracted bridge mechanical model. The complexity of bridge
engineering model can be greatly simplified so as to be feasible when a
particular, commonly used bridge type is focused. Figure 18.26 illustrates
some modeling and visualization features as trends envisioned in bridge
analysis, design, and rating applications. Roadway and bridge geometries
are the first part to describe a bridge project. Detailed bridge component
dimensions and materials can be defined further. While a bridge engineer-
ing model is being edited, its true 3D rendering will be reflected in real time
so engineers can get visual feedback instantly. A key feature that makes 3D
rendering more useful, not merely a visual confirmation, is to allow iden-
tification of any component on-the-fly and to bring up its detailed design
parameters for editing. For example, when the highlighted stiffener as
shown in Figure 18.26 is clicked, the stiffener’s definition will be showing
up on screen so as to be edited instantly in place. Because the engineering
model is established, the mechanical model can be automatically created
and analyzed. The tedious error-prone process of converting the structural
analysis model and analyzing can be automated. 3D bridge components
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Figure 18.26 Trend of computer modeling and visualization.

can then be rendered by color codes (not shown here) reflecting the analysis
or rating results. When existing bridges are to be rated, geographic infor-
mation system and centralized database system can be used as the underly-
ing support technologies.

In short, the great demand of structural rating due to the deterioration
of bridge structures and changing of traffic loading patterns in large geo-
graphic scales, and the availability of highly advanced modern computer
hardware and software technologies are enabling the development of new-
generational bridge software applications toward automation, visualiza-
tion, and virtualization.
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“With the increasing complexity of bridges today, bridge engineers require more
contemporary references on the topic of bridge analysis. This book provides a great
desktop reference for the entry-level to the seasoned bridge engineer. The authors
have provided a great balance in theory and application to cover the spectrum of
bridge types we design, rehabilitate, preserve, and repair in the industry today.
The analysis of bridges continues to evolve to meet the complexity of today’s
bridges—this book will serve as a vital tool to bridge engineers challenged with
implementing a more refined analysis.”

—Shane R. Beabes, PE, District Chief Engineer—Bridges, AECOM

“Modern bridge design has evolved, along with the technology of computers,
exponentially in our time. The expertise offered by these authors in this book
will be invaluable to anyone interested in learning modern bridge design through
computer modeling. All of the available options for computer modeling are
discussed along with their pros and cons, and are demonstrated with examples and
powerful graphics. ...The application of today’s computer technology to the art of
bridge design can be a big challenge. This book lays out the available options and
their limitations for the use of computer modeling in designing virtually all types
of bridge components, structure types, and span lengths.”

—William J. Moreau, PE, New York State Bridge Authority

Bridge structures vary considerably in form, size, complexity, and importance. The
methods for their computational analysis and design range from approximate to
refined analyses, and rapidly improving computer technology has made the more
refined and sophisticated methods of analyses more commonplace.

The key methods of analysis and related modeling techniques are set out, mainly
for highway bridges, but may also be applied to railway bridges. Special topics
such as strut-and-tie modeling, linear and nonlinear stability analysis, redundancy
analysis, integral bridges, dynamic/earthquake analysis, and bridge geometry are
also covered. The material is largely code independent.

The book is written for students, especially at MSc level, and for practicing
professionals in bridge design offices and bridge design authorities worldwide.

Chung C. Fu is director of the Bridge Engineering Software and Technology
Center at the University of Maryland
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